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Abstract: Human cardiac-derived c-kit+ stromal cells (CSCs) have demonstrated efficacy in preclinical
trials for the treatment of heart failure and myocardial dysfunction. Unfortunately, large variability
in patient outcomes and cell populations remains a problem. Previous research has demonstrated
that the reparative capacity of CSCs may be linked to the age of the cells: CSCs derived from neonate
patients increase cardiac function and reduce fibrosis. However, age-dependent differences between
CSC populations have primarily been explored with bulk sequencing methods. In this work, we
hypothesized that differences in CSC populations and subsequent cell therapy outcomes may arise
from differing cell subtypes within donor CSC samples. We performed single-cell RNA sequencing
on four neonatal CSC (nCSC) and five child CSC (cCSC) samples. Subcluster analysis revealed cCSC-
enriched clusters upregulated in several fibrosis- and immune response-related genes. Module-based
analysis identified upregulation of chemotaxis and ribosomal activity-related genes in nCSCs and
upregulation of immune response and fiber synthesis genes in cCSCs. Further, we identified versican
and integrin alpha 2 as potential markers for a fibrotic cell subtype. By investigating differences in
patient-derived CSC populations at the single-cell level, this research aims to identify and characterize
CSC subtypes to better optimize CSC-based therapy and improve patient outcomes.

Keywords: heart failure; single cell RNA sequencing; c-kit+ cardiac stromal cells

1. Introduction

Cell therapy has emerged as a promising therapeutic strategy for the treatment of
diseases, including auto-immune disease, blood disorders, cancer, neurodegenerative
disease, and cardiovascular disease [1,2]. Various tissue-specific cells, blood cells, and
stem cells have been clinically approved, including the use of autologous mesenchymal
stem cells for acute myocardial infarction. Unfortunately, cell therapy has been hampered
by mixed results, in part due to high cell heterogeneity. Unlike small molecule drugs,
cells are highly variable, adaptive to biological cues, and complex in their mechanisms
of action. Inconsistencies in cell therapy trials may be explained by batch-to-batch or
patient-to-patient variation. Specifically, cell donor age and disease have been shown to
negatively impact cell efficacy, reducing the effectiveness of cardiac-derived progenitor
cells [3–5], adipose stem cells [6,7], and mesenchymal stem cells [8–11], among others [12].
Given the high heterogeneity of cell populations, emphasis has been placed on identifying
mechanisms of repair and markers of “good” cells. Recent studies have leveraged single-
cell RNA sequencing to identify subpopulations of cells that may be driving therapeutic
efficacy [13–15]. By identifying potential cell surface markers of reparative cells, researchers
will be able to isolate and/or enrich for optimal cell populations.

J. Cardiovasc. Dev. Dis. 2022, 9, 374. https://doi.org/10.3390/jcdd9110374 https://www.mdpi.com/journal/jcdd

https://doi.org/10.3390/jcdd9110374
https://doi.org/10.3390/jcdd9110374
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcdd
https://www.mdpi.com
https://orcid.org/0000-0002-2398-9988
https://doi.org/10.3390/jcdd9110374
https://www.mdpi.com/journal/jcdd
https://www.mdpi.com/article/10.3390/jcdd9110374?type=check_update&version=1


J. Cardiovasc. Dev. Dis. 2022, 9, 374 2 of 13

Currently, autologous human cardiac-derived c-kit+ stromal cells (CSCs) are under
investigation in the CHILD clinical trial for the treatment of hypoplastic left heart syndrome,
a complex congenital heart disease (NCT03406884) [16]. Preclinical results indicate CSCs
induce repair in damaged myocardium [4,5,17,18]. While there is clear evidence that these
cells do not become cardiomyocytes and their use was considered controversial, the repara-
tive potential of pediatric CSCs focuses on the paracrine effects of these cells. Recent results
from the phase II CONCERT-HF trial (NCT02501811) suggest that a combination of CSCs
and MSCs improves clinical outcomes in patients with ischemic heart failure [19]. Previous
research investigating CSC heterogeneity has demonstrated that cell culture conditions
(e.g., hypoxia [20–22] and cell aggregation [23]), as well as donor age [4,24] and disease
status, affect CSC composition and therapeutic potential. Additionally, CSC reparative out-
comes may be linked to age: CSCs derived from neonate patients (nCSCs) outperform cells
derived from older patients [3,4,22,24–26]. Specifically, nCSCs possess greater anti-fibrotic
signaling, reduced immune response, and increased chemotaxis capabilities in comparison
to child CSCs (cCSCs) [4].

Nevertheless, differences among CSC populations have been primarily investigated
using bulk sequencing methods, which treat patient-derived cells as a homogenous sam-
ple. Here, we hypothesized that variance in patient outcomes may be driven by differ-
ences in cell subtypes or subpopulations and that CSCs transition to reduced reparative
states as patients age. To address this hypothesis, we used single-cell RNA sequencing to
(1) identify potentially phenotypically different cell subpopulations and (2) map transcrip-
tomic trajectories of cells from CSCs of the neonate (n = 4) and child (n = 5) congenital
heart disease patients. Overall, we uncovered a more heterogenous cell population among
older patient samples and identified fibrotic and inflammatory cell subpopulations within
these samples, which may explain differences in therapeutic outcomes. Our trajectory and
differential expression analyses unveiled differences between cells belonging to a fibrotic
cell cluster and cells belonging to clusters enriched in cell cycle and cell proliferation pro-
cesses. We identified markers of this fibrotic cell cluster—versican (VCAN) and integrin
subunit alpha 2 (ITGA2)—isolated these cells using fluorescence-activated cell sorting and
observed lower cell proliferation in this subpopulation. Ultimately, by identifying and
distinguishing pro- and non-reparative CSC populations, it may be possible to improve
cell therapy outcomes.

2. Materials Methods
2.1. CSC Culture and Expansion

Cells collected from the right atrial appendage of five neonatal (<1 month) and five
child (3.43 years ± 2.6 years) patients with congenital heart disease were separated for c-kit+
CSCs using magnetic cell sorting. Patient characteristics for samples used in the study are
listed in Table S1. Cells were cultured in Ham’s F-12 medium (Corning Cellgro®, Corning,
NY, USA) with 10% fetal bovine serum, 1% penicillin-streptomycin, 1% L-glutamine, and
0.04% human fibroblast growth factor-β. Characterization of CSC populations was analyzed
using an Aurora Flow Cytometer (Cytek) (Figure S1). Sorted cells were expanded in culture
and submitted for single-cell RNA sequencing between passages 5 and 15. Cells were
washed with PBS 2× before sequencing to reduce the presence of ambient RNA and help
ensure a high quality of RNA. Sequencing was performed at the Emory University NPRC
Genomics Core at a depth of 50,000 reads/cell (10× Genomics Chromium Controller).
The 10× system used Next GEM technology to perform droplet-based cell capture and
barcoding. Total reads and other sequencing metrics are listed in Table S2.

2.2. Computational Methods

Raw reads from single-cell sequencing were processed using CellRanger (10× Genomics,
v6.0.0) [27]. Quality control metrics are listed in Table S2. Data are available at Gene
Expression Omnibus accession # GSE204928. The doublets were filtered using Scrublet
and Scanpy, and the raw count’s data was processed using the Seurat package in R [28–30].
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Cells with 1000–7000 distinctly expressed genes and mitochondrial gene fraction totaling
< 5% of total transcript counts were kept. One neonatal patient sample (Patient 985) was
removed due to low transcript counts (<4000) and a small number of distinctly expressed
genes (<2000). A total of 72,798 cells were sequenced, and 52,293 cells were analyzed after
filtering (Table S2).

Data from patient samples were integrated by first normalizing counts using the
SCTransform method with variation due to mitochondrial gene fraction regressed out of
the datasets [31]. The patient datasets were combined using the comprehensive integration
methodology implemented in Seurat: integration features and anchors were selected using
default parameters. Integrated data were then scaled, and principal component analysis
(PCA) and uniform manifold approximation and projection (UMAP) were performed.
Thirty principal components were considered. Thirteen cell clusters were identified using
the Louvain community finding algorithm. Differential expression was computed on
non-batch corrected data using the FindAllMarkers function and the Wilcoxon rank sum
method. Putative cell type identities for each cluster were estimated using the SCType
scoring algorithm (Table S3) [32]. Scores were computed for each cell cluster using a curated
list of heart tissue cell gene markers (Table S3).

Trajectories were constructed using Monocle 3 with the “ncenter” parameter in the
learn_graph function set to 500. Pseudotimes were computed by setting the root node as
the cluster of interest and allowing the monocle to compute pseudotime values for the re-
maining cells. The dataset was batch corrected using the Batchelor alignment methodology
implemented in Monocle. Co-expression of genes was computed along trajectories using
the Moran’s I statistic as implemented in Monocle, and highly co-expressed genes with a
q-value < 0.05 were clustered into 21 gene modules using the Leiden community detection
algorithm (Table S4) [33–38]. A summary of the analysis pipeline is shown in Figure 1A.

Principal component analysis of samples was performed with pseudobulk data
(“AggregateExpression” Seurat function, Figure S2). Differential expression analysis com-
paring nCSCs and cCSCs within each cell cluster was performed using edgeR (Figure S2).
Gene expression was first aggregated by taking the sum of cell counts for each gene. Lowly
expressed genes were filtered out using edgeR’s “filterByExpr” function with default pa-
rameters. A differential expression model was constructed using cell passage and age
group co-variates (glmFit, Benjamini Hochberg correction). Differentially expressed genes
were considered (FDR < 0.05, log2FC > 1, Table S5).

Surface proteins were identified using the cell surface protein atlas validated surface
proteomes dataset [39]. The surface proteome dataset was filtered for proteins for which
there was high confidence of expression on the cell surface. The dataset was also further
filtered for the cluster of differentiation (CD) proteins for better identification of cell surface
proteins. The dataset was analyzed for differentially expressed genes that are conserved
across donor samples within the same cluster. The differentially expressed genes were then
filtered for only genes present in the filtered surface proteome dataset for the determination
of the highest transcriptionally expressing surface proteins.
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Figure 1. Clustering and cluster compositions of nCSCs and cCSCs. (A) Top sequence: CSC isola-
tion from CHD patients and culture. Bottom sequence: analysis pipeline and computational tool 
summary. Figure generated in BioRender. UMAP projections of all patient-derived CSCs colored 
by (B) cell cluster and (C) age group. Cluster composition as grouped by (D) age group and (E) 
patient sample. (F) Enrichment of selected pathways from positive cluster marker gene sets, as listed 
in Table S6. 

2.3. Cell Sorting of CSC Subpopulations 
Fluorescence-activated cell sorting was utilized for the isolation of CSC subpopula-

tions based on the expression of the versican and integrin alpha 2 surface proteins. Anti-
versican (Creative Biolabs, CBMAB-C9301-LY) and anti-integrin alpha 2 (R&D Systems, 
FAB1233P) antibodies conjugated to Alexa Fluor 647 and PE, respectively, were selected 
for analysis. Zombie Yellow™ dye (Biolegend) was used to assess cell viability. CSCs from 

Figure 1. Clustering and cluster compositions of nCSCs and cCSCs. (A) Top sequence: CSC isolation
from CHD patients and culture. Bottom sequence: analysis pipeline and computational tool summary.
Figure generated in BioRender. UMAP projections of all patient-derived CSCs colored by (B) cell
cluster and (C) age group. Cluster composition as grouped by (D) age group and (E) patient sample.
(F) Enrichment of selected pathways from positive cluster marker gene sets, as listed in Table S6.

2.3. Cell Sorting of CSC Subpopulations

Fluorescence-activated cell sorting was utilized for the isolation of CSC subpopulations
based on the expression of the versican and integrin alpha 2 surface proteins. Anti-versican
(Creative Biolabs, CBMAB-C9301-LY) and anti-integrin alpha 2 (R&D Systems, FAB1233P)
antibodies conjugated to Alexa Fluor 647 and PE, respectively, were selected for analysis.
Zombie Yellow™ dye (Biolegend) was used to assess cell viability. CSCs from patient 926,
as well as pooled child CSCs from patients 926, 938, and 902 (4-year-old patient with atrial
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septal defect), were stained using manufacturers’ suggested concentration. Samples were
sorted using a Sony SH800 Self Run Cell Sorter (Sony Biotechnology).

3. Results
3.1. Clustering and Compositional Analysis Reveal Differences in Neonate and Child CSCs

To identify cell subtypes in patient-derived CSC samples, we performed initial cell clus-
tering with Louvain to identify thirteen CSC subpopulations (Figure 1B,C). Neonate-derived
samples were largely enriched in clusters 0 and 1, while child-derived samples were enriched
in clusters 3, 6, 8, and 9 (Figure 1D,E). Notably, we observed a higher level of sample-to-sample
variability in child-derived samples. Patients 896 and 926 possessed a more neonate-like
clustering profile, whereas patients 938, 1048, and 1092 produced a more dissimilar clustering
profile with fewer cells represented in clusters 0 and 1 and more cells represented in clusters 3,
6, 8, and 9 (Figure 1E). Next, we identified positive cluster markers and performed pathway
analysis to determine the biological significance of these gene sets. Markers for each cluster and
pathway analysis results are listed in Tables S6 and S7, respectively. Our analyses indicated that
cCSC-enriched cluster 6 is related to TGF-β and general receptor tyrosine signaling pathways
(Figure 1F). Further, while fewer positive markers were identified for nCSC-enriched clusters
0 and 1, top biological pathways from these gene lists included extracellular matrix organi-
zation, blood vessel development, and cytoplasmic translation (Table S7). Finally, clusters 2
and 5 (representative of both nCSCs and cCSCs) were highly enriched in cell cycle processes,
programmed cell death, and RNA metabolism.

3.2. Trajectory Analysis Identifies Co-Expressed Genes within CSC Subpopulations

To understand how transcriptomic profiles change as cells move between CSC sub-
populations, we performed trajectory analysis with Monocle 3 (Figure 2A). We computed
pseudotimes using various clusters as the starting or root node. Notably, pseudotimes
computed using cluster 2 cells (enriched in proliferative and cell cycle processes) as the root
node resulted in the highest pseudotimes in cluster 8 cells (enriched in processes associated
with oxidative stress and stimuli), indicating the transcriptomic profiles of these cells to be
the most distinct from the cluster 2 cells (Figure 2B). Alternatively, pseudotimes computed
using cluster 6 (enriched in fiber organization) as the root node resulted in the largest
pseudotimes at cluster 2 (Figure 2B).

Next, to relate the previously determined cell clusters to gene sets, we computed
co-expressed gene modules from our trajectory analysis. Co-expression of genes was
computed along trajectories categorized based on Moran’s I statistic computed in Monocle,
where a higher value indicates a higher level of co-expression with cells in similar positions
of the trajectory. Highly co-expressed genes were clustered using the Leiden algorithm into
21 gene modules (Figure 2C, Table S4). Some modules corresponded strongly with certain
cell clusters from the Seurat analysis. For example, cluster 4 cells had high expression of
genes in module 8, while cluster 2 and 5 cells had high expression of module 12 genes.

Relating gene modules to CSC age groups, we determined that nCSCs were highly
upregulated in genes belonging to modules 9, 13, 14, and 21, and cCSCs were upregu-
lated in genes belonging to modules 1, 3, 8, 15, and 16. Pathway analysis of module 13
and 21 genes (upregulated in nCSCs) indicates enrichment of pathways related to small
molecule biosynthesis and ribosomal activity, respectively (Figure 2D,E). Module 8 genes
(upregulated in cCSCs) contained several immune-related cytokines, including IL6 and
IL1B. Module 9 contained notable gene members CD34 and PDGFB and contained genes
associated with chemotaxis. Across both age groups, modules 3, 9, 13, and 15 contained
genes linked to extracellular matrix organization.
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Figure 2. Trajectory analysis and gene clustering. UMAP projections with trajectories determined by
Monocle colored by (A) monocle clusters and (B) pseudotime with root nodes set to cluster 2 (top)
and cluster 6 (bottom) from the Seurat analysis. (C) gene module expression heatmap by Seurat
cluster. Modules were determined through a Leiden clustering of highly co-expressed genes along
trajectories. Module expression levels are computed by age group and are shown in the two rightmost
columns in the heatmap. Cluster proportions by age group are illustrated by bar charts on top of the
heatmap. Pathway analysis for the highest expressing modules among (D) neonates and (E) children
highlights important biological differences between the age groups.
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3.3. cCSC-Enriched Cell Clusters 4 and 6 Are Upregulated in Inflammatory Cytokines and
Fibrosis-Associated Genes

To understand transcriptional differences between CSC subpopulations and identify
genes that mark non-reparative cells, we examined differential gene expression in cCSC-
enriched cell clusters. Notably, differential gene expression analysis identified several
cytokines upregulated in cluster 4 cells, such as IL1β, CXCL8, CCL2, CXCL6, IL33, CXCL1-3,
and IL6 (Figure 3A). Pathway analysis indicated the enrichment of immune-related sig-
naling pathways, including genes involved in the IL-17 and IL-18 signaling pathways
(Figure 3B). In addition, cluster 4 was enriched in apoptotic signaling and negative regula-
tion of cell proliferation processes. Many of the differentially expressed genes from this
cluster were captured by the module 8 gene cluster, potentially indicating many of the
cytokines expressed by these cells are driven by similar biological processes. This cell sub-
population was enriched in cCSCs; however, analysis of donor-specific clustering profiles
indicates one nCSC sample (Patient 2016) had a high proportion of these cells (Figure 1E).

Next, we identified several fibrosis-related genes in cCSC-enriched cluster 6. Path-
way analysis demonstrated enrichment of extracellular matrix organization and inte-
grin cell surface interactions (Figure 3B), as well as TGF-β signaling (Figure 1B). Specif-
ically, this cell population displayed high expression of several different types of col-
lagen and genes associated with fibrosis, including TGFB2, CCN1, CCN2, and FBN1
(Figure 3C,D) [40,41]. PDGFRA and FAP, known fibroblast markers that correlate with an
epithelial-to-mesenchymal transition, and myofibroblast markers POSTN and PLOD2 were
also upregulated in cluster 6 [42,43]. Further, well-studied long non-coding RNAs NEAT1,
MEG3, and MALAT1 are among the most upregulated RNAs in cell cluster 6 and have been
shown to contribute to myocardial injury and adverse remodeling (Figure 3C). Multiple
groups have determined that MALAT1 and NEAT1 play a role in cardiac fibrosis [44,45],
and MEG3 has been shown to promote myocardial damage in an ischemia-reperfusion
model by enhancing myocyte apoptosis and decreasing cell proliferation [46]. Cluster 6 cells
showed high expression of fibronectin, a critical player during cardiac repair [47]. Finally,
cluster 6 is also upregulated in angiogenic markers such as VEGFA and downregulation
of the proliferation-related gene H2AFZ. Overall, cluster 6 may represent a pro-fibrotic,
anti-proliferative subpopulation, potentially contributing to less reparative outcomes from
older CSCs.
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Figure 3. Characterization of inflammatory and fibrotic cell clusters 4 and 6. (A) Top 25 differentially
expressed genes ordered by log fold change between cluster 4 cells and non-cluster 4 cells. Inflamma-
tory cytokines are highlighted in purple. (B) Pathway analysis barplot of upregulated differentially
expressed genes for clusters 4 and 6 cells. (C) Top 25 differentially expressed genes ordered by log
fold change between cluster 6 cells and non-cluster 6 cells. Long non-coding RNAs (lncRNAs) are
highlighted in green and fibrosis and extracellular matrix-related RNAs are highlighted in blue.
(D) Dot plot of selected genes relating to fibrosis, angiogenesis, and proliferation. (E) Transcriptional
expression of conserved differentially expressed surface proteins in cluster 6 cells. (F) Identification
of a cluster 6-like population of interest in pooled child CSCs: ITGA2+, VCAN+.

3.4. Identification of Non-Reparative Surface Markers for Cell Sorting

To identify markers and isolate less-desirable, pro-fibrotic cluster 6 cells, we exam-
ined differentially expressed surface markers using the cell surface protein atlas database
(Figure 3E) [39]. Primary anti-versican and anti-ITGA2 antibodies were selected to char-
acterize and sort patient 926 cCSCs and pooled cCSC subpopulations. Child CSCs were
pooled previously and were comprised of patients 926, 938, and 902 (a 4-year-old patient
with atrial septal defect). Cell viability was confirmed with a Zombie Yellow™ dye (>85% vi-
ability, data not shown). A subpopulation of cells with high versican and ITGA2 expression
make up approximately 14% of the pooled child CSCs (Figure 3F). Our trajectory analysis
results showed a marked difference between cluster 6 cells and cluster 2 cells enriched in
cell cycle-related genes (Figure 2B). Therefore, we measured cell proliferation of unsorted
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nCSCs, cCSCs, and VCAN+/ITGA2+ cCSCs. Our results suggest that VCAN+/ITGA2+
cCSCs may represent a less proliferative cell population (Figure S3).

4. Discussion

There are clear age-dependent therapeutic differences in neonate and child CSC popu-
lations [3,4]. In comparison to cCSCs, nCSCs demonstrate greater anti-fibrotic potential,
cell proliferation and chemotaxis, and enhanced secretion of cardioprotective paracrine
factors [4]. Importantly, previous studies have isolated CSCs from patient cardiac biopsies
using c-kit+ selection and explored age-dependent differences between nCSCs and cCSCs
using bulk RNA sequencing and arrays [3,4,48]. This approach, however, masks the identity
of potential cell subpopulations and attributes sample variance to patient variables. Here,
we aimed to understand how these macroscopic dynamics present at the single-cell level,
and whether we would be able to discern CSC subpopulations for selection, or depletion,
with cell surface markers. To do so, we computed initial cell clusters—our CSC subpop-
ulations. Then, to determine the major differences between cell clusters, we examined
both differentially expressed genes and the enrichment of co-expressed gene modules. By
combining multiple single-cell analysis methods, we uncovered potential phenotypes of
CSC subpopulations that may explain CSC variability.

First, we expected to find major differences in nCSCs and cCSCs. Indeed, nCSCs
largely clustered among clusters 0–5, whereas a considerable portion of cCSCs clustered in
the offshoot branches of the UMAP projection, namely clusters 3, 4, 6, 8, and 9 (Figure 1B–E).
Furthermore, given the previously demonstrated reduced performance of cCSCs, we hy-
pothesized that cCSC samples are more heterogenous and may represent cells transitioning
to a less reparative state. Here, we identified a high level of sample-to-sample variability
among child patients, with some samples having more neonate-like clustering profiles than
others (Figure 1E). Most obviously, the two cCSC samples with neonate-like clustering
profiles also corresponded to the youngest of the child patient cohort (Patients 896 and 926,
12 months and 14 months old). Based on this observation, we ran a quasi-Poisson regression
model to assess gene expression variability dependent on patient age. Ultimately, these
results mirrored the results from the clustering-based analysis (Figure S4; Table S8). Genes
such as ABI3BP and CXCL6 that were upregulated in cCSC-enriched clusters also expressed
highly in older patients, while genes such as CXCL12 and CXCR4 that are upregulated in
nCSC-enriched clusters had higher expression in younger patients.

Interestingly, we found evidence for the enrichment of pro-inflammatory cell subpop-
ulations and gene modules in cCSC samples, as compared to nCSC samples. First, cluster
4 cells showed high expression of several inflammation- and immune-related cytokines,
including IL1β, CXCL8, and IL6 (Figure 3A). While some CSCs from neonate patients 2016
were found in this cluster, cluster 4 was overall enriched in cCSCs (Figure 1E). Second,
we identified age-related differences among the composition of cytokine gene modules
8 and 9, determined with trajectory analysis. nCSC-enriched module 9 cytokines were
more strongly associated with chemotaxis, whereas cCSC-enriched module 8 included
inflammatory-related cytokines (Figure 2C–E). Furthermore, we found a high positive
correlation between cluster 4 and gene module 8. These results contradict a recent study by
Vagnozzi et al., which challenged the efficacy of CSCs, attributing reparative function to an
acute inflammatory-based wound healing response after cell delivery [49]. Of note, this
work was completed in a mouse model of ischemia-reperfusion injury with murine CSCs,
and CSC efficacy was evaluated two weeks after injection. Nevertheless, other studies
investigating human CSCs from neonate patients corroborate our single-cell results. The
results reported here are consistent with our previous research indicating that cCSCs drive
an increased immune response and nCSCs induce higher levels of mesenchymal stem
cell chemotaxis [4]. Pathway analysis of gene array data comparing nCSCs and cCSCs
demonstrated enrichment of anti-inflammatory response in nCSCs [4]. Additionally, in a rat
model of myocardial infarction, nCSCs reduced macrophage infiltration in the myocardium
post-injury compared to adult CSCs [5].
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Another cCSC-enriched subpopulation, cluster 6, showed high expression of genes
related to fibrosis and angiogenesis, including ITGB1, FBN1, DST, FN1, FST, ADAMTS1,
and COL3A1/4A1/8A1(Figure 3B,C). Given the strong connection of cluster 6 to adverse
remodeling processes and the upregulation of fibrotic genes, we sought to identify markers
for this cell subpopulation. We identified ITGA2 and VCAN, a proteoglycan extracellular
matrix regulator, as candidate markers for cluster 6 cells (Figure 3E). We used fluorescence-
activated cell sorting to confirm surface protein expression and sort for a VCAN+/ITGA2+
subpopulation with pooled cCSCs and patient 926 cCSCs (Figure 3F). We measured cell
proliferation and observed a trend for lower proliferation in the VCAN+/ITGA2+ cCSC
subpopulation, as compared to the unsorted cCSC and nCSC populations (Figure S3).
These results support our trajectory analysis, indicating that cluster 6 and cluster 2 (cell-
cycle process enriched cell cluster) are the most dissimilar. Future studies should confirm
this subpopulation’s pro-fibrotic function and sort out these deleterious cell subtypes to
enhance CSC treatment efficacy.

Furthermore, we assigned putative cell labels to our CSC subpopulations to under-
stand which cell types may be present in our samples (Table S3). Our results indicate that
clusters 0, 1, and 2 may represent smooth muscle cells, endothelial cells, and immune cells,
respectively. Interestingly, cluster 6 cells scored high for both atrial cardiomyocytes and fi-
broblasts. Importantly, a previous murine lineage tracing study determined that c-kit+ cells
are primarily endothelial cell progenitors, minimally contribute to cardiomyocytes, and
have some propensity to generate fibroblasts, smooth muscle cells, and immune cells [50].
Additionally, lineage tracing studies in various animal models have posited that fibroblasts
may be endogenously activated and may be endocardium- or endothelial-derived [51–53].
Given our transcriptomic results suggest cluster 6 is a fibroblast-like cell cluster, additional
experiments to confirm cell identification and origin are warranted. For now, we subclus-
tered our cluster 6 cells for comparison to previously published fibroblast subpopulations
(Figure S5). Notably, single-cell studies in zebrafish [52] and mice [54] have identified
anti-Wnt signaling in activated fibroblast subpopulations. While our results suggest some
cluster 6 cells express canonical myofibroblast markers (POSTN, PLOD2, ACTA2) and Wnt
markers (WNT5A, DKK3), these results are limited by our cluster 6 cell count.

Finally, we acknowledge the limitations of this study’s design and subsequent results.
First, CSCs were passaged several times before performing single-cell sequencing. CSCs
constitute a small percentage of cells in the myocardium, and their therapeutic use requires
cell expansion [16,26]. Here, we have limited our analyses to CSCs ≤ passage 15 to
limit transcriptomic drift and validated c-kit+ expression with flow cytometry after cell
expansion (Figure S1). Additionally, we do not discount the potential effect of disease
diagnosis on cell composition. CSCs were isolated from cardiac biopsies of pediatric
patients undergoing routine cardiac surgery. Considering their source, age and disease
variables are inherently dependent. In this study, neonate cells were sourced from patients
with critical defects (hypoplastic left heart syndrome, total anomalous pulmonary venous
return, and coarctation of the aorta), whereas child cells were isolated primarily from
patients with more simple defects (subaortic stenosis, atrial and ventricular septal defects).
Future studies including more congenital heart disease patients will help distinguish
between age-dependent factors and factors related to a specific disease state.

Overall, we have identified a fibroblast-like population of CSCs, which may drive
the suboptimal performance of CSCs derived from older patients. The identification of
subpopulations driving (or hindering) therapeutic success will be important for optimizing
cell therapy and limiting cell variability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcdd9110374/s1, Figure S1. Characterization of CSCs. Figure
S2. Differential expression of genes in cell clusters. Figure S3. Proliferation of VCAN+/ITGA2+
cCSCs and unsorted nCSCs and cCSCs. Figure S4. Pathway analysis of enriched genes from age
group regression. Figure S5. Sub-clustering and marker identification of Cluster 6 fibroblast-like
cells. Table S1. Patient characteristics (age, disease, cell passage). Table S2. Sequencing metrics for
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each sample. Table S3. Cell type predictions for each cluster and gene marker dataset. Table S4.
Co-expressed gene modules, as determined by Monocle. Table S5. Differentially expressed genes
(edgeR); Neonate vs. Child for each cell cluster. Fold-change: Neonate/Child. Table S6. Positive
cluster marker gene sets for 13 cell clusters. Markers computed on non-batch corrected data using
Seurat’s FindAllMarkers function and Wilcoxon rank sum method. Table S7. Metascape pathway
analysis of positive cluster markers in Table S1. Values reported are −log10 (p-value). Table S8. Top
20 genes from each age group using the quasi-poisson regression model implemented in Monocle.

Author Contributions: Analysis, manuscript writing, and study design by J.R.H. and A.R.J. Wet-lab
experiments and manuscript writing by S.B. Study conception, financial and administrative support
by M.E.D. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by grants from the National Institute of Health (R01HL145644 to
M.E.D.; F31HL154725 and T32GM008602 to J.R.H.). This work was also supported by funding from
Additional Ventures as part of the Cures Collaborative.

Institutional Review Board Statement: This study was approved by the Institutional Review Board at
Children’s Healthcare of Atlanta and Emory University under protocol IRB00005500 (expiration 9/2023).

Data Availability Statement: The sequencing data reported here have been uploaded to the GEO
Database (GSE204928).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, X.-L.; Yi, F.; Pan, H.; Duan, S.; Ding, Z.-C.; Yuan, G.-H.; Qu, J.; Zhang, H.; Liu, G.-H. Progress and prospects in stem cell

therapy. Acta Pharmacol. Sin. 2013, 34, 741–746. [CrossRef] [PubMed]
2. Mason, C.; Brindley, D.A.; Culme-Seymour, E.J.; Davie, N.L. Cell therapy industry: Billion dollar global business with unlimited

potential. Regen. Med. 2011, 6, 265–272. [CrossRef] [PubMed]
3. Shoja-Taheri, F.; George, A.; Agarwal, U.; Platt, M.O.; Gibson, G.; Davis, M.E. Using Statistical Modeling to Understand and

Predict Pediatric Stem Cell Function. Circ. Genom. Precis. Med. 2019, 12, e002403. [CrossRef]
4. Agarwal, U.; Smith, A.W.; French, K.M.; Boopathy, A.V.; George, A.; Trac, D.; Brown, M.E.; Shen, M.; Jiang, R.; Fernandez, J.D.; et al.

Age-Dependent Effect of Pediatric Cardiac Progenitor Cells after Juvenile Heart Failure. Stem Cells Transl. Med. 2016, 5, 883–892.
[CrossRef]

5. Sharma, S.; Mishra, R.; Bigham, G.E.; Wehman, B.; Khan, M.M.; Xu, H.; Saha, P.; Goo, Y.A.; Datla, S.R.; Chen, L.; et al. A Deep
Proteome Analysis Identifies the Complete Secretome as the Functional Unit of Human Cardiac Progenitor Cells. Circ. Res.
2017, 120, 816–834. [CrossRef] [PubMed]

6. Efimenko, A.; Dzhoyashvili, N.; Kalinina, N.; Kochegura, T.; Akchurin, R.; Tkachuk, V.; Parfyonova, Y. Adipose-Derived
Mesenchymal Stromal Cells from Aged Patients with Coronary Artery Disease Keep Mesenchymal Stromal Cell Properties but
Exhibit Characteristics of Aging and Have Impaired Angiogenic Potential. Stem Cells Transl. Med. 2014, 3, 32–41. [CrossRef]

7. Jumabay, M.; Moon, J.H.; Yeerna, H.; Boström, K.I. Effect of Diabetes Mellitus on Adipocyte-Derived Stem Cells in Rat. J. Cell.
Physiol. 2015, 230, 2821–2828. [CrossRef]

8. Stolzing, A.; Jones, E.; McGonagle, D.; Scutt, A. Age-related changes in human bone marrow-derived mesenchymal stem cells:
Consequences for cell therapies. Mech. Ageing Dev. 2008, 129, 163–173. [CrossRef]

9. Khong, S.M.L.; Lee, M.; Kosaric, N.; Khong, D.M.; Dong, Y.; Hopfner, U.; Aitzetmüller, M.M.; Duscher, D.; Schäfer, R.; Gurtner,
G.C. Single-Cell Transcriptomics of Human Mesenchymal Stem Cells Reveal Age-Related Cellular Subpopulation Depletion and
Impaired Regenerative Function. Stem Cells 2019, 37, 240–246. [CrossRef]

10. Kim, H.H.; Han, J.W.; Lee, J.Y.; Choi, Y.J.; Sohn, Y.-D.; Song, M.; Yoon, Y.-S. Diabetic Mesenchymal Stem Cells Are Ineffective for
Improving Limb Ischemia Due to Their Impaired Angiogenic Capability. Cell Transplant. 2015, 24, 1571–1584. [CrossRef]

11. Fan, M.; Chen, W.; Liu, W.; Du, G.-Q.; Jiang, S.-L.; Tian, W.-C.; Sun, L.; Li, R.-K.; Tian, H. The Effect of Age on the Efficacy of
Human Mesenchymal Stem Cell Transplantation after a Myocardial Infarction. Rejuvenation Res. 2010, 13, 429–438. [CrossRef]
[PubMed]

12. Vasa, M.; Fichtlscherer, S.; Aicher, A.; Adler, K.; Urbich, C.; Martin, H.; Zeiher, A.M.; Dimmeler, S. Number and Migratory Activity of
Circulating Endothelial Progenitor Cells Inversely Correlate with Risk Factors for Coronary Artery Disease. Circ. Res. 2001, 89, E1–E7.
[CrossRef] [PubMed]

13. Xie, Z.; Yu, W.; Ye, G.; Li, J.; Zheng, G.; Liu, W.; Lin, J.; Su, Z.; Che, Y.; Ye, F.; et al. Single-cell RNA sequencing analysis of human
bone-marrow-derived mesenchymal stem cells and functional subpopulation identification. Exp. Mol. Med. 2022, 54, 483–492.
[CrossRef] [PubMed]

14. Deng, Q.; Han, G.; Puebla-Osorio, N.; Ma, M.C.J.; Strati, P.; Chasen, B.; Dai, E.; Dang, M.; Jain, N.; Yang, H.; et al. Characteristics
of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas.
Nat. Med. 2020, 26, 1878–1887. [CrossRef]

http://doi.org/10.1038/aps.2013.77
http://www.ncbi.nlm.nih.gov/pubmed/23736002
http://doi.org/10.2217/rme.11.28
http://www.ncbi.nlm.nih.gov/pubmed/21548728
http://doi.org/10.1161/CIRCGEN.118.002403
http://doi.org/10.5966/sctm.2015-0241
http://doi.org/10.1161/CIRCRESAHA.116.309782
http://www.ncbi.nlm.nih.gov/pubmed/27908912
http://doi.org/10.5966/sctm.2013-0014
http://doi.org/10.1002/jcp.25012
http://doi.org/10.1016/j.mad.2007.12.002
http://doi.org/10.1002/stem.2934
http://doi.org/10.3727/096368914X682792
http://doi.org/10.1089/rej.2009.0986
http://www.ncbi.nlm.nih.gov/pubmed/20583954
http://doi.org/10.1161/hh1301.093953
http://www.ncbi.nlm.nih.gov/pubmed/11440984
http://doi.org/10.1038/s12276-022-00749-5
http://www.ncbi.nlm.nih.gov/pubmed/35365767
http://doi.org/10.1038/s41591-020-1061-7


J. Cardiovasc. Dev. Dis. 2022, 9, 374 12 of 13

15. Sheih, A.; Voillet, V.; Hanafi, L.-A.; DeBerg, H.A.; Yajima, M.; Hawkins, R.; Gersuk, V.; Riddell, S.R.; Maloney, D.G.; Wohlfahrt,
M.E.; et al. Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T im-
munotherapy. Nat. Commun. 2020, 11, 219. [CrossRef]

16. Kaushal, S.; Hare, J.M.; Shah, A.M.; Pietris, N.P.; Bettencourt, J.L.; Piller, L.B.; Khan, A.; Snyder, A.; Boyd, R.M.; Abdullah, M.; et al.
Autologous Cardiac Stem Cell Injection in Patients with Hypoplastic Left Heart Syndrome (CHILD Study). Pediatr. Cardiol. 2022,
43, 1481–1493. [CrossRef]

17. Saha, P.; Sharma, S.; Korutla, L.; Datla, S.R.; Shoja-Taheri, F.; Mishra, R.; Bigham, G.E.; Sarkar, M.; Morales, D.; Bittle, G.; et al.
Circulating exosomes derived from transplanted progenitor cells aid the functional recovery of ischemic myocardium. Sci. Transl.
Med. 2019, 11, eaau1168. [CrossRef]

18. Tang, X.-L.; Rokosh, D.G.; Guo, Y.; Bolli, R. Cardiac Progenitor Cells and Bone Marrow-Derived Very Small Embryonic-Like Stem
Cells for Cardiac Repair after Myocardial Infarction. Circ. J. 2010, 74, 390–404. [CrossRef]

19. Bolli, R.; Mitrani, R.D.; Hare, J.M.; Pepine, C.J.; Perin, E.C.; Willerson, J.T.; Traverse, J.H.; Henry, T.D.; Yang, P.C.; Murphy,
M.P.; et al. A Phase II study of autologous mesenchymal stromal cells and c-kit positive cardiac cells, alone or in combination, in
patients with ischaemic heart failure: The CCTRN CONCERT-HF trial. Eur. J. Heart Fail. 2021, 23, 661–674. [CrossRef]

20. Tang, Y.; Zhu, W.; Cheng, M.; Chen, L.; Zhang, J.; Sun, T.; Kishore, R.; Phillips, M.I.; Losordo, D.; Qin, G. Hypoxic Preconditioning
Enhances the Benefit of Cardiac Progenitor Cell Therapy for Treatment of Myocardial Infarction by Inducing CXCR4 Expression.
Circ. Res. 2009, 104, 1209–1216. [CrossRef]

21. Yan, F.; Yao, Y.; Chen, L.; Li, Y.; Sheng, Z.; Ma, G. Hypoxic Preconditioning Improves Survival of Cardiac Progenitor Cells: Role of
Stromal Cell Derived Factor-1α–CXCR4 Axis. PLoS ONE 2012, 7, e37948. [CrossRef] [PubMed]

22. Hernandez, I.; Baio, J.M.; Tsay, E.; Martinez, A.F.; Fuentes, T.I.; Bailey, L.L.; Hasaniya, N.W.; Kearns-Jonker, M. Short-term hypoxia
improves early cardiac progenitor cell function in vitro. Am. J. Stem Cells 2018, 7, 1–17.

23. Trac, D.; Maxwell, J.T.; Brown, M.E.; Xu, C.; Davis, M.E. Aggregation of Child Cardiac Progenitor Cells Into Spheres Activates
Notch Signaling and Improves Treatment of Right Ventricular Heart Failure. Circ. Res. 2019, 124, 526–538. [CrossRef] [PubMed]

24. Gunasekaran, M.; Mishra, R.; Saha, P.; Morales, D.; Cheng, W.-C.; Jayaraman, A.R.; Hoffman, J.R.; Davidson, L.; Chen, L.; Shah,
A.M.; et al. Comparative efficacy and mechanism of action of cardiac progenitor cells after cardiac injury. iScience 2022, 25, 104656.
[CrossRef] [PubMed]

25. Fuentes, T.I.; Appleby, N.; Tsay, E.; Martinez, J.J.; Bailey, L.; Hasaniya, N.; Kearns-Jonker, M. Human Neonatal Cardiovascular
Progenitors: Unlocking the Secret to Regenerative Ability. PLoS ONE 2013, 8, e77464. [CrossRef]

26. Mishra, R.; Vijayan, K.; Colletti, E.J.; Harrington, D.A.; Matthiesen, T.S.; Simpson, D.; Goh, S.K.; Walker, B.L.; Almeida-Porada, G.;
Wang, D.; et al. Characterization and Functionality of Cardiac Progenitor Cells in Congenital Heart Patients. Circulation 2011, 123,
364–373. [CrossRef]

27. Zheng, G.X.Y.; Terry, J.M.; Belgrader, P.; Ryvkin, P.; Bent, Z.W.; Wilson, R.; Ziraldo, S.B.; Wheeler, T.D.; McDermott, G.P.; Zhu,
J.; et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 2017, 8, 14049. [CrossRef]

28. Hao, Y.; Hao, S.; Andersen-Nissen, E.; Mauck, W.M., 3rd; Zheng, S.; Butler, A.; Lee, M.J.; Wilk, A.J.; Darby, C.; Zager, M.; et al.
Integrated analysis of multimodal single-cell data. Cell 2021, 184, 3573–3587.e29. [CrossRef]

29. Wolf, F.A.; Angerer, P.; Theis, F.J. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 2018, 19, 15.
[CrossRef]

30. Wolock, S.L.; Lopez, R.; Klein, A.M. Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data.
Cell Syst. 2019, 8, 281–291.e9. [CrossRef]

31. Hafemeister, C.; Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative
binomial regression. Genome Biol. 2019, 20, 296. [CrossRef] [PubMed]

32. Ianevski, A.; Giri, A.K.; Aittokallio, T. Fully-automated and ultra-fast cell-type identification using specific marker combinations
from single-cell transcriptomic data. Nat. Commun. 2022, 13, 1246. [CrossRef] [PubMed]

33. Levine, J.H.; Simonds, E.F.; Bendall, S.C.; Davis, K.L.; Amir, E.-A.D.; Tadmor, M.D.; Litvin, O.; Fienberg, H.G.; Jager, A.; Zunder,
E.R.; et al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell 2015, 162,
184–197. [CrossRef] [PubMed]

34. Haghverdi, L.; Lun, A.T.L.; Morgan, M.D.; Marioni, J.C. Batch effects in single-cell RNA-sequencing data are corrected by
matching mutual nearest neighbors. Nat. Biotechnol. 2018, 36, 421–427. [CrossRef]

35. Traag, V.A.; Waltman, L.; Van Eck, N.J. From Louvain to Leiden: Guaranteeing well-connected communities. Sci. Rep. 2019, 9, 5233.
[CrossRef]

36. Cao, J.; Spielmann, M.; Qiu, X.; Huang, X.; Ibrahim, D.M.; Hill, A.J.; Zhang, F.; Mundlos, S.; Christiansen, L.; Steemers, F.J.; et al.
The single-cell transcriptional landscape of mammalian organogenesis. Nature 2019, 566, 496–502. [CrossRef]

37. Qiu, X.; Mao, Q.; Tang, Y.; Wang, L.; Chawla, R.; Pliner, H.A.; Trapnell, C. Reversed graph embedding resolves complex single-cell
trajectories. Nat. Methods 2017, 14, 979–982. [CrossRef]

38. Trapnell, C.; Cacchiarelli, D.; Grimsby, J.; Pokharel, P.; Li, S.; Morse, M.A.; Lennon, N.J.; Livak, K.J.; Mikkelsen, T.S.; Rinn, J.L. The dynamics
and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 2014, 32, 381–386. [CrossRef]

39. Bausch-Fluck, D.; Hofmann, A.; Bock, T.K.C.; Frei, A.P.; Cerciello, F.; Jacobs, A.; Moest, H.; Omasits, U.; Gundry, R.L.; Yoon,
C.; et al. A Mass Spectrometric-Derived Cell Surface Protein Atlas. PLoS ONE 2015, 10, e0121314. [CrossRef]

http://doi.org/10.1038/s41467-019-13880-1
http://doi.org/10.1007/s00246-022-02872-6
http://doi.org/10.1126/scitranslmed.aau1168
http://doi.org/10.1253/circj.CJ-09-0923
http://doi.org/10.1002/ejhf.2178
http://doi.org/10.1161/CIRCRESAHA.109.197723
http://doi.org/10.1371/journal.pone.0037948
http://www.ncbi.nlm.nih.gov/pubmed/22815687
http://doi.org/10.1161/CIRCRESAHA.118.313845
http://www.ncbi.nlm.nih.gov/pubmed/30590978
http://doi.org/10.1016/j.isci.2022.104656
http://www.ncbi.nlm.nih.gov/pubmed/35847554
http://doi.org/10.1371/journal.pone.0077464
http://doi.org/10.1161/CIRCULATIONAHA.110.971622
http://doi.org/10.1038/ncomms14049
http://doi.org/10.1016/j.cell.2021.04.048
http://doi.org/10.1186/s13059-017-1382-0
http://doi.org/10.1016/j.cels.2018.11.005
http://doi.org/10.1186/s13059-019-1874-1
http://www.ncbi.nlm.nih.gov/pubmed/31870423
http://doi.org/10.1038/s41467-022-28803-w
http://www.ncbi.nlm.nih.gov/pubmed/35273156
http://doi.org/10.1016/j.cell.2015.05.047
http://www.ncbi.nlm.nih.gov/pubmed/26095251
http://doi.org/10.1038/nbt.4091
http://doi.org/10.1038/s41598-019-41695-z
http://doi.org/10.1038/s41586-019-0969-x
http://doi.org/10.1038/nmeth.4402
http://doi.org/10.1038/nbt.2859
http://doi.org/10.1371/journal.pone.0121314


J. Cardiovasc. Dev. Dis. 2022, 9, 374 13 of 13

40. Bouzeghrane, F.; Reinhardt, D.; Reudelhuber, T.L.; Thibault, G. Enhanced expression of fibrillin-1, a constituent of the myocardial
extracellular matrix in fibrosis. Am. J. Physiol. Circ. Physiol. 2005, 289, H982–H991. [CrossRef]

41. Ding, Y.; Wang, Y.; Zhang, W.; Jia, Q.; Wang, X.; Li, Y.; Lv, S.; Zhang, J. Roles of Biomarkers in Myocardial Fibrosis. Aging Dis.
2020, 11, 1157–1174. [CrossRef] [PubMed]

42. Kahounová, Z.; Kurfurstova, D.; Bouchal, J.; Kharaishvili, G.; Navrátil, J.; Remšík, J.; Šimečková, S.; Študent, V.; Kozubík, A.;
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