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Abstract: Cardiovascular malformations (CVMs) are the most common birth defect, 

occurring in 1%–5% of all live births. Although the genetic contribution to CVMs is well 

recognized, the genetic causes of human CVMs are identified infrequently. In addition, a 

failure of systematic deep phenotyping of CVMs, resulting from the complexity and 

heterogeneity of malformations, has obscured genotype-phenotype correlations and 
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contributed to a lack of understanding of disease mechanisms. To address these knowledge 

gaps, we have developed the Cytogenomics of Cardiovascular Malformations (CCVM) 

Consortium, a multi-site alliance of geneticists and cardiologists, contributing to a database 

registry of submicroscopic genetic copy number variants (CNVs) based on clinical 

chromosome microarray testing in individuals with CVMs using detailed classification 

schemes. Cardiac classification is performed using a modification to the National Birth 

Defects Prevention Study approach, and non-cardiac diagnoses are captured through ICD-9 

and ICD-10 codes. By combining a comprehensive approach to clinically relevant genetic 

analyses with precise phenotyping, the Consortium goal is to identify novel genomic regions 

that cause or increase susceptibility to CVMs and to correlate the findings with clinical 

phenotype. This registry will provide critical insights into genetic architecture, facilitate 

genotype-phenotype correlations, and provide a valuable resource for the medical community. 

Keywords: genetics; genomics; pediatrics; cardiovascular malformation; registry; chromosome 

microarray; copy number variation 

 

1. Introduction 

Chromosomal abnormalities account for 12%–14% of all live born cases and 20%–33% of fetal cases 

of congenital cardiovascular malformations (CVMs), indicating that the proper genetic control of cardiac 

development is essential for normal anatomic structure [1–4]. The complex development of the heart 

suggests the involvement of numerous genes in normal cardiac morphogenesis and, hence, numerous 

chromosomal loci [5]. In addition, syndromic CVMs can be quite difficult to distinguish from isolated 

CVMs, especially in early childhood [6,7]. Since early diagnosis of any genetic condition can inform 

clinicians in how best to optimize medical management, developmental intervention, and therapy, it 

becomes even more critical to more precisely delineate etiology. Additional benefits of a precise 

diagnosis include determination of prognosis and more accurate counseling about recurrence risk [8]. 

CVMs in humans commonly display incomplete penetrance and variable expressivity, with extensive 

allelic heterogeneity. This complex inheritance suggests a central contribution of as yet unidentified 

genetic modifiers. The high frequency of CVMs and their evident heterogeneity poses substantial 

problems in understanding the genetic causes underlying these common birth defects. However, by 

grouping CVMs that are mechanistically related, such as left ventricular outflow tract obstructive defects 

(LVOTO), heritability patterns can be identified [9–14]. These analyses have demonstrated that mild 

CVMs such as bicuspid aortic valve (BAV) may represent a forme fruste of severe CVMs, e.g., 

hypoplastic left heart syndrome (HLHS). Genetically mediated cardiac diseases that may not be present 

or ascertained at birth, e.g., BAV (present in ~2% of the population) or aortic dilation, are much more 

common than previously thought. When considering the etiology of CVMs, as opposed to the proportion 

of CVM cases that manifest as disease at birth, the incidence increases to approximately 5%. 

Increasingly sophisticated genetic analyses, including chromosome microarray analysis (CMA) and 

next generation sequencing, are improving the ability to identify genetic causation and susceptibility of 

CVMs. CMA can also be used to analyze regions of homozygosity, which may unmask an autosomal 
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recessive disorder. In addition, abnormalities in the parent of origin or imprinted chromosomal material 

(e.g., uniparental disomy) can contribute to CVMs and are detectable by current tests for copy number 

abnormalities [15,16]. CMA is standard of care testing for patients with developmental disability or 

multiple congenital anomalies and is considered first line testing for many patients with CVMs [17]. 

Copy number variation (CNV) refers to genetic deletions or duplications that are not identifiable by 

traditional chromosome analysis. These alterations may result from recombination within the genome, 

typically as a result of instability of regional genetic architecture, and vary in size. CNVs are more 

common than single nucleotide variants, and therefore generate important variation in the genome. 

CNVs are common, comprising approximately 12% of the genome of an individual and typically have 

no phenotypic consequence. However, CNVs containing dosage sensitive gene(s) result in phenotypic 

abnormalities due to alterations in gene expression, suggesting CNVs may represent major genetic 

modifiers in addition to their role in disease causation. The mechanisms of CNVs in disease have been 

the subject of recent reviews [18–21]. 

CNVs containing dosage sensitive genes are a well-described cause of genomic disorders associated 

with CVMs such as 22q11.2 deletion syndrome and Williams-Beuren syndrome, where TBX1 and ELN, 

respectively, are critical dosage sensitive genes involved in the pathogenesis of these syndromes. These 

recurrent CNVs are associated with highly penetrant CVMs when haploinsufficient. More recent studies 

support a role for rare recurrent CNVs in CVMs with extracardiac malformations, as well as isolated 

CVMs [22,23]. It is estimated that CNVs contribute to 3%–25% of CVMs associated with extracardiac 

abnormalities and 3%–10% of isolated CVMs reviewed in [24,25] and this may be a significant 

underestimate given the current lack of understanding surrounding the contribution of genetic modifiers 

to the genetic basis of CVM. 

Classification approaches for CVMs continue to present significant challenges for both clinicians and 

researchers. The Atlas of Congenital Cardiac Disease, based on Maude Abbott’s systematic catalogue 

of CVM gross pathology published in 1908 is the first classification system for clinical pediatric 

cardiology [26]. Subsequently, beginning in earnest in the 1950s, the rapid evolution of surgical 

intervention for CVMs defined a detailed clinical taxonomy that was based on anatomy and physiology [27]. 

Organizing malformations requires consideration of cause, and only recently, in the context of significant 

strides in our understanding of the genetic basis underlying CVMs, have there been efforts to reconcile 

etiologic factors in a clinically meaningful manner and integrate this information into the existing 

classification scheme [8,28]. As our understanding of cardiac morphogenesis improved, hypothetical 

classification paradigms were developed that took into account the developmental relationships of 

lesions (in addition to the anatomic relationships previously described) to increase confidence in 

grouping [29]. As the genetic basis of CVMs has emerged, it has become clear that this knowledge will 

challenge our clinical taxonomy in fundamental ways. The National Birth Defects Prevention Study 

(NBDPS) developed an exhaustive taxonomy that organizes CVMs in multiple ways, including the most 

specific definition of a single defect (the “splitting” approach) and the broadest groupings (the 

“clumping” approach), as well as intermediate levels that allow flexibility with the analysis of common 

associations [30]. A classification system that incorporates etiologic factors as well as careful clinical 

phenotyping is necessary for clinical and research advances alike, including the large scale multi-site 

efforts required to address the relatively small frequency of CVMs per center. 
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A goal of the registry is to collect and annotate cytogenetic and phenotypic findings in patients with 

CVMs in a comprehensive and standardized manner to promote an understanding of the genetic basis of 

cardiac disease. A lack of systematic deep phenotyping of CVMs, resulting from the complexity and 

heterogeneity of malformations, has obscured genotype-phenotype correlations and contributed to a lack 

of understanding of disease mechanisms. Defining critical genes within CNVs, establishing rare 

recurrent CNVs associated with CVMs, and defining cardiac phenotypes of genomic disorders are all 

important objectives of this Registry. The high frequency of CVMs, large number of genes playing a 

role in normal cardiac development, and incomplete penetrance of phenotypes suggests that large 

numbers of cases will be required to identify causes and determine associations and susceptibility factors. 

Given the established phenotypic variability associated with genetic causes of CVMs, it is necessary to 

use a detailed and etiology-centric classification system to leverage the information learned from these 

associations. The CCVM Registry is a cost-effective resource to identify novel loci associated with 

isolated or syndromic CVMs, establish genotype-phenotype correlations, and facilitate discovery of new 

candidate genes for normal and abnormal cardiac development. 

2. Experimental Section 

2.1. Registry Organization 

The CCVM Consortium is a collaborative group of 6 pediatric clinical centers, with different areas 

of expertise but common interests and broad experience in the genetics of CVMs, cytogenetics, pediatric 

cardiology, including specifically echocardiography, clinical genetics, and database/registry/biobank expertise.  

The Investigator Group encompasses clinical expertise in cardiology (Border, Garg, Hinton, with 

specialized imaging expertise by Border, Hinton), clinical genetics (Bleyl, Lalani, McBride, Ware), and 

cytogenetics (Lalani, Smolarek,); research expertise in human genetics (Bleyl, Bowles, Garg, Hinton, 

Lalani, McBride, Ware), cardiac development (Bleyl, Garg, Hinton, Ware), clinical research (Border, 

McBride); and database/registry/biobank experience (Bleyl, Bowles, Hinton, McBride, Ware).  

2.2. Study Population and Study Design 

This is a cohort study of abnormal CMA cases in patients for whom echocardiography has been 

performed. To be eligible for the study, a patient is required to have had an abnormal CMA result, 

defined as a result interpreted to be clinically significant, disease causing, or of unknown clinical 

significance. Patients with no CMA results or normal testing are excluded. Of note, an iterative search 

process is implemented such that patients with abnormal CMA in whom no echocardiogram has been 

performed will remain potentially eligible, thus capturing patients with later diagnoses. Patients with 

isolated abnormalities in cardiac rhythm will be excluded from this study. The Institutional Review 

Boards of all participating study sites have approved the Registry and data use agreements have been 

executed to allow sharing of limited datasets. 

2.3. Cytogenetic Data Elements 

As certified clinical diagnostic laboratories, cytogenetics laboratories at the 6 sites have standardized 

requirements for processing and tracking patient samples as well as analyzing, interpreting, and recording 
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analyses. Cytogenetic variables from each site have been standardized for collection (Table 1). Each 

patient sample is assigned a case number with a unique identifier, and the cytogenetic laboratory 

maintains a large database of case numbers, results, and clinical interpretation. A DNA repository of 

samples is maintained long term for auditing and regulatory compliance. Due to the high standards for 

regulatory compliance and clinical interpretation inherent in the operation of a clinical diagnostic 

laboratory, the analyses represent a very well validated dataset. CMA frequently uncovers novel 

submicroscopic abnormalities [23]. In some cases, results are confirmed by a second method, most often 

fluorescence in situ hybridization. In addition, in cases of uncertain significance, parental samples are 

obtained when available to determine whether the submicroscopic gain or loss is de novo, to aid 

interpretation of pathogenicity. Literature and database searches are also performed for better 

interpretation of the data. CMA analytic tools are routinely used for interpretation of novel variants. 

These interpretation results are maintained in the Registry. Table 1 shows variables collected with 

example results shown for 22q11.2 deletion syndrome. 

Table 1. Cytogenetic Data Elements. 

Variable Example 

Platform SNP 

Chromosome 22 

Cytolocation 22q11.21 

Position Beginning 17,074,487 

Position End 19,806,645 

Version HG18 

CNV Value 1 

Gain/Loss Loss 

Gene 

USP18, DGCR6, PRODH, DGCR2, DGCR14, TSSK2, GSC2, SLC25A1, CLTCL1, 

HIRA, MRPL40, UFD1L, CDC45L, CLDN5, SEPT5, GP1BB, TBX1, GNB1L, 

TXNRD2, COMT, ARVCF, DGCR8, TRMT2A, RANBP1, ZDHHC8, RTN4R, 

DGCR6L, GGTLC3, RIMBP3, ZNF74, SCARF2, MED15, PI4KA, SERPIND1, 

SNAP29, CRKL, LZTR1, THAP7, P2RX6, SLC7A4, BCRL2 

Inheritance De novo 

Size 2732158 bp 

Probes N/A 

Number of Probes 1,140,419 

Analysis arr 22q11.21(17,074,487 − 19,806,645) × 1  

Result 

Consistent with a single copy loss of genomic segment or heterozygous deletion of 

approximately 2.73 Mb on chromosome 22q11.21. This finding confirms the concurrent 

FISH analysis, which showed a 22q11.2 deletion associated with DiGeorge syndrome. 

The deleted 22q11.21 region overlaps with the region associated with the 22q11.2 

deletion syndrome (DiGeorge syndrome) and contains several disease genes including 

the TBX1 gene known to cause clinical phenotypes seen in patients with the syndrome. 

The deleted region is proximal to the SMARCB1 locus and no deletion of the 

SMARCB1 gene was detected in this assay. 
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2.4. Detailed Cardiac and Extra-Cardiac Phenotyping 

Comprehensive segmental anatomy is collected from echocardiograms performed for clinical care at 

each site. All primary echocardiogram data is evaluated directly at each site and classified to ensure 

exceptionally accurate phenotyping, which is an absolutely essential prerequisite for meaningful analysis 

and interpretation of genetic data. Non-cardiac medical diagnoses (e.g., dysmorphic features, developmental 

delay, neurologic findings) are recorded in the composite database using ICD-9 and now ICD-10 coding. 

Criteria established by the National Birth Defects Prevention Study (NBDPS) are being used to collect 

extensive phenotype information regarding the CVMs [30]. These criteria have been adapted to optimize 

capture of all cardiac defects that may be attributed to genetic causes, using the term “malformation” 

broadly with the assumption that the vast majority of cases of pediatric heart disease has a genetic basis 

(Table 2). Adaptations include the addition of other forms of pediatric heart disease, including rare 

developmental aberrations that were not included in the NBDPS scheme, such as arteriopathy, coronary 

artery abnormalities, and latent cardiovascular disease that is not present at birth but has been associated 

with genomic abnormalities, such as cardiomyopathy and aortopathy, all lesions that might now be 

considered ‘malformations’ in a genetic and pathogenesis sense if not strictly pathologic. Importantly, 

functional deficits of unclear significance are captured in addition to structural defects, e.g., left 

ventricular systolic dysfunction. In addition, subclinical CVMs are included, such as BAV. In light of 

added items, new associations are added. Finally, persistent fetal communications that may represent 

malformation are tracked when present beyond the first year of life, e.g., patent ductus arteriosus. In 

addition, there is a free text field allowing capture of additional items that are not systematically screened 

for but may be considered subclinical and abnormal, for example isolated left superior vena cava. As 

specified by the original NBDPS, each case was assigned a classification based on three axes: cardiac 

phenotype, cardiac complexity, and the presence and type of extracardiac malformations [30]. The 

CCVM modified classification scheme is shown in the case report form in Supplemental Table S1. 

Table 2. Basic Tenets of National Birth Defect Prevention Study (NBDPS) Classification and 

Cytogenomics of Cardiovasscular Malformations (CCVM) Consortium Modifications. 

The NBDPS describes each patient’s cardiovascular malformation (CVM) as a specific lesion and 
groups the lesion in fine, intermediate and coarse levels of detail to increase precision and allow 
flexibility in analyses [28] 

The NBDPS describes complexity of CVM and patterns of associated anomalies 

The CCVM Registry includes latent types of pediatric heart disease that have an established genetic 
etiology, including cardiomyopathy and aortopathy 

The CCVM Registry includes vasculopathies and coronary artery abnormalities 

The CCVM Registry includes subclinical CVMs, such as bicuspid aortic valve 

The CCVM Registry includes persistent fetal connections when present beyond one year of life, 
such as patent ductus arteriosus 

The CCVM Registry includes functional deficits that may identify emerging defects, such as left 
ventricular systolic dysfunction 

All echocardiographic reports are reviewed at a single center (IU) and CVM phenotype designation 

is made at that time. Due to differences in reporting across study sites, regular conference calls address 
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designation choices and studies of uncertain classification. A cardiologist will over-read 10% of  

studies, excluding straightforward lesions (e.g., isolated septal defects), and the central study site will  

address discrepancies. 

2.5. Data and Information Management 

Using Good Clinical Data Management principles and processes, as well as institutionally sanctioned 

standard operating procedures, the DCC ensures that data are valid, reliable and accurate leading to 

reproducible results. Demographic and cardiac indications/echocardiography results are recorded onto 

paper case report forms (CRFs) and sent to IU DCC for entry into a REDCap (Research Electronic Data 

Capture) database. Cytogenetic data are de-identified and transferred securely. The DCC is responsible 

for maintaining the existing database system, importing external data, programming data quality checks, 

query resolution, generation of reports, data exports and preparation for analysis. A detailed data 

management plan is be maintained to document all processes. A data use agreement outlines the proper 

use of the data and publication plans. 

The study complies with all Federal and local privacy laws and regulations, including the Department 

of Health and Human Services (HHS) Protection of Human Subjects Regulations (45 CFR part 46 and 

21 CFR parts 50) and The Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule. 

Phenotypic information is linked to the cytogenetic information and a unique identifier number will be 

assigned within the composite database. REDCap provides a secure, web-based application that is 

flexible and provides (1) an intuitive interface for data entry and real time validation rules at the time of 

entry; (2) HIPAA-compliant and 21 CFR Part 11-ready audit trails for tracking page views, data 

manipulation and export procedures; (3) record locking and electronic signature functions; (4) fine 

grained control of user rights to view/manipulate data; (5) a report builder for reporting, monitoring and 

querying patient records; and (6) automated export procedures for seamless data downloads [31]. 

3. Results and Discussion 

3.1. Study Population Enrollment 

The cohort is geographically, racially, and ethnically diverse which represents a strength for genetic 

studies. Current and projected enrollment is shown in Table 3. The Utah site is predicted to have fewer 

cases, but a higher proportion will be linked in large non-syndromic CVM families, due to the availability 

of extended family data from the Utah Population Database, a computerized data warehouse with an 

extensive set of genealogy data (~12 million records) linked to medical information. 

Table 3. Current and Projected Enrollment. 

Site Current Cases Yr1 Yr2 Yr3  

BCM 305 75 85 85  
CCHMC 174 55 60 60  

Nationwide 76 55 60 60  
Emory/CHOA 67 30 35 40  

Utah N/A 15 20 20  
Totals 622 230 260 265 1377 
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3.2. Genetic Descriptors 

As part of the Registry, we expect to capture known genetic syndromic diagnoses that are commonly 

associated with CVMs such as 22q11.2 deletion syndrome and its reciprocal duplication, 22q11.2 

duplication syndrome, and Williams-Beuren syndrome and its reciprocal duplication, 7q11.23 

duplication syndrome. In addition, trisomy 21 may be detected by CMA in infants in whom a diagnosis 

of Down syndrome was not suspected and CMA was performed. In order to determine the degree to 

which these common diagnoses made by CMA contribute to the registry, we performed manual review 

of the initial 291 records. The results are shown in Table 4. These data demonstrate that these well-described 

genetic syndromes do not comprise a majority of results for subjects with CVMs and abnormal CMA 

findings within the Registry. Epidemiologic data from the Baltimore Washington Infant Study indicated 

that approximately 76% of cases of CVMs were isolated, 12% resulted from aneuploidies such as trisomy 

13, 18, 21, and Turner syndrome, and 12% encompassed Mendelian disorders, clinical syndromes, 

genomic disorders, or other complex phenotypes suggestive of genetic syndromic conditions. Because 

we anticipate that the majority of patients with aneuploidies will not be diagnosed using CMA, the 

prevalence of the most common genetic syndromic conditions associated with CVMs in the Registry 

appears to approximate epidemiologic estimates. 

3.3. Cardiac Phenotyping 

A subset of the current cases identified as having CMA abnormalities have undergone cardiac 

classification. The results are shown in Figure 1, which shows the highest level subgrouping of CVMs. 

As expected, septal defects are the most common. The conotruncal and LVOTO categories are the next 

most common groups of defects, with approximately equivalent numbers. Heterotaxy CVM numbers are 

slightly higher than might be expected, perhaps reflecting the high prevalence of heterotaxy in Texas 

and the overrepresentation of cases from that region in the current Registry. Importantly, aortopathy, 

arteriopathy, and cardiomyopathy, all defects not captured by the NBDPS, are well represented in this 

cohort of patients with CMA abnormalities. 

Table 4. Prevalence of Common Genetic Syndromes with CVM in Registry Database. 

Genetic Syndrome N in Registry 1 % of Registry Cases 

22q11.2 deletion syndrome  
(DiGeorge, Velocardiofacial syndrome) 

19 6.5% 

22q11.2 duplication syndrome 3 1.0% 
Williams-Beuren syndrome  

(7q11.23 deletion) 
12 4.1% 

7q11.23 duplication syndrome 3 1.0% 
Trisomy 21 1 0.3% 

Total 38 13.0% 
1 Based on review of 291 cases. 
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Figure 1. Cardiac classification groups for CCVM registry. AVSD (atrioventricular septal 

defects); APVR (anomalous pulmonary venous return); LVOTO (left ventricular outflow 

tract obstruction); RVOTO (right ventricular outflow tract obstruction). 

As the clinical genetic testing paradigms for CVMs evolve, we expect to capture increasing numbers 

of isolated CVM subjects. It has been shown in a cohort of infants with CVMs that fewer patients were 

undergoing genetic testing than would be predicted to have syndromic disease based on epidemiologic 

data [10,32]. In addition, many patients who do undergo genetic testing have multiple, redundant tests 

resulting in cost inefficiencies [33,34]. While a conventional tiered approach to genetic testing is 

important, these studies have identified circumstances when broader testing may be indicated. Four of 

the six sites involved with the Registry have implemented institution-specific approach to infants with 

cyanotic CVMs, with standardized approaches for genetic testing and/or cardiovascular genetics 

consultation, increasing the comprehensive evaluation of infants with CVMs. Recent studies showing 

the diagnostic yield of CMA in isolated CVM cases provides rationale for clinical testing [24,35,36]. 

The CCVM Registry may provide a repository to determine the yield of testing within certain classes of 

CVMs, thereby providing an improved ability to implement genetic testing appropriately. 

3.4. Proof of Principle: Anticipated Outcomes 

3.4.1. Delineation of Cardiac Features for Well Characterized Genomic Disorders 

Because CVMs are the most common birth defects, many well-characterized genomic disorders have 

CVMs associated as part of the phenotype. In many cases, careful description of the CVMs associated 

with these disorders has been lacking, and for some genetic syndromes, no specific information exists 

about the type of heart defects identified. An anticipated and important function of the CCVM Registry 

will be to provide deep phenotyping of CVMs for a number of recurrent genomic disorders that have not 

been carefully studied. For example, we recently published a case series of eight patients with 7q11.23 

duplication and aortopathy [37]. The 7q11.23 microduplication syndrome is a genomic disorder with an 

emerging clinical phenotype including dysmorphic features, hypotonia, developmental delay with 

prominent speech delay, and autistic features. CVMs, most commonly patent ductus arteriosus, have 
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been reported in a subset of cases. We identified a series of eight pediatric patients and one adult with 

7q11.23 microduplication syndrome, all of whom had aortic dilation, the opposite vascular phenotype 

of the typical supravalvar aortic stenosis found in Williams-Beuren syndrome. The ascending aorta was 

most commonly involved, while dilation was less frequently identified at the aortic root and sinotubular 

junction. Inclusion and systematic evaluation of aorta dimensions, as part of the comprehensive 

phenotyping approach, allowed the identification of these patients. These initial patients were 

ascertained at a single institution, and CCVM Registry participation allowed the identification of 

additional subjects. The incidence of 7q11.23 duplication syndrome is estimated at 1/13,000 to 1/20,000 

births and therefore no single institution would be expected to have a large cohort of patients. This 

example indicates that the CCVM Registry is an important resource for better defining cardiac features 

in genetic syndromes that are still being characterized or for which cardiac features are less common. 

Importantly, in this example the findings led to a management recommendation for cardiovascular 

surveillance in patients with 7q11.23 microduplication syndrome. 

3.4.2. Identification of Novel Loci that Confer CVM Susceptibility 

The widespread use of CMA for diagnosis in patients with developmental disability or congenital 

anomalies has led to the identification of many new genomic disorders as well as CNVs of uncertain 

clinical significance. There are a large number of genes predicted to impact cardiac development and 

therefore we have hypothesized that some submicroscopic deletions or duplications associated with 

CVMs may be quite rare. Rare, recurrent CNVs associated with CVMs are important to identify because 

they allow further delineation of the clinical spectrum of disease, allow refinement of the critical region 

for specific phenotypic features, and provide a mechanism to identify novel candidate genes for CVMs. 

Recently, Lalani et al., undertook a large study of rare, recurrent CNVs associated with CVMs in patients 

with abnormal CMA findings and extracardiac anomalies [22] and identified 16 unique CNVs, 12 of 

which were novel loci, including 16q24.3 loss and 2q31.3–q32.1 loss. In addition, the study narrowed 

critical intervals in three well-recognized genomic disorders with CVMs. 

3.4.3. Identification of Novel Genes Causing CVMs 

Coarctation of the aorta (CoA) and HLHS, both LVOTO defects, have been reported in rare 

individuals with large terminal deletions of chromosome 15q26. However, no single gene important for 

left ventricular outflow tract development has been identified in this region. Clinical CMA testing 

through the Kleberg Laboratory at Baylor College of Medicine identified two half-siblings with CoA 

with a 2.2 Mb deletion on 15q26.2, inherited from their mother, who was mosaic for this deletion. This 

interval contains a single gene, MCTP2 (multiple C2-domains with two transmembrane regions 2). The 

CCVM Registry can be used to further investigate candidate genes identified in novel CNVs and/or to 

further narrow critical regions for loci previously associated with CVMs. These candidate genes can be 

further investigated using genetic and developmental approaches. In the case of MCTP2, gene-specific 

array screening in 146 individuals with non-syndromic LVOTO defects identified another individual 

with a de novo 41 kb intragenic duplication within MCTP2, predicted to result in premature truncation, 

p.F697X [38]. Alteration of Mctp2 gene expression in Xenopus laevis embryos by morpholino  

knockdown and mRNA overexpresssion resulted in failure of proper outflow tract development, 
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confirming the functional importance of this dosage sensitive gene for cardiogenesis and illustrating the 

importance of precise phenotyping. Our results identify MCTP2 as a novel genetic cause of CoA and 

related cardiac malformations. 

In addition, we identified a patient with unbalanced atrioventricular septal defect (AVSD) and 

hypoplastic left ventricle who harbored an ~0.3 Mb deletion on chromosome 3p14.1 [39]. The deletion 

encompassed the first four exons of FOXP1, a gene critical for normal heart development that represses 

cardiomyocyte proliferation and expression of Nkx2.5. Identification of this candidate gene led to 

sequence based approaches within patients with CVMs to determine whether single nucleotide variants 

in FOXP1 cause or increase susceptibility to CVMs. It should be noted that the CCVM Registry only 

captures patients with abnormal CMA, and thus no sequence-based interrogation has been performed. 

Sequencing FOXP1 in 82 patients with AVSD or HLHS led to the identification of two patients with a 

variant that showed abnormal transactivation in functional assays as well as alterations in cardiomyoblast 

proliferation, suggesting that haploinsufficiency of FOXP1 is associated with human CVMs. 

3.5. Approaches for Genetic Identification of CVMs 

There is a clear need presently for combining clinical genetic testing with deep phenotyping, and this 

need requires flexibility on both the genotype and phenotype spectrums due to substantial heterogeneity. 

In addition to careful cardiac phenotyping, there is a growing appreciation that extra-cardiac organ 

systems should be considered in all cases of CVMs, and there is a growing appreciation of central 

nervous system abnormalities that significantly impact both a patient’s medical status and his or her 

quality of life. A strength of this Registry is the careful cardiac phenotyping combined with the 

systematic collection of extracardiac findings, bolstering analyses focusing on the genetic underpinnings 

of these specific findings and associations. For example, we recently reported twins with progressive 

aortopathy, recurrent dissections and an ACTA2 mutation [40]. Interestingly, in addition to illustrating 

the potential for genotype-phenotype correlations that directly impact clinical care, this example also 

illustrates the potential use of non-cardiac findings to direct cardiac care. These twins were diagnosed 

with mydriasis years prior to their aortopathy being recognized, and because mydriasis is a manifestation 

of smooth muscle dysfunction this might prompt a heightened index of suspicion for aortopathy and 

therefore surveillance. These types of associations challenge previous system based models of disease 

and allow paradigms whereby genetic information is integrated into clinical practice. A limitation of the 

Registry is that it is currently focused only on CNVs as a mechanism for CVM causation and 

susceptibility. In its present form, it does not incorporate sequence based approaches to genetic 

diagnosis, and this is a clear need for future iterations. 

Patients with CVMs are managed clinically by pediatric cardiologists and pediatric cardiothoracic 

surgeons primarily, but several types of specialists are now routinely involved in the delivery of 

comprehensive care, importantly including increasing numbers of health care providers with specific 

expertise in cardiovascular genetics such as geneticists and genetic counselors [41,42]. Distinct 

nomenclature systems have been developed in both disciplines. For example, surgical paradigms of 

CVM have been systematically archived by the Society of Thoracic Surgeons (STS) by lesion [43] using 

an extreme reductionist approach to classification. The Pediatric Heart Network is a multi-site network 

that conducts clinical trials, and uses project specific phenotyping, but is charged with partnering with 
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the Pediatric Cardiovascular Genomic Consortium, a rapidly growing registry of CVM patients and 

biorepository of DNA that uses a variation of the Fyler classification scheme based on anatomy and 

physiology [44,45]. The CCVM Registry presented in this manuscript uses an inclusive approach to an 

etiology centric classification scheme. When considering cause, it is important to group lesions 

appropriately and avoid misclassification that may confound interpretation. Importantly, these 

approaches to phenotypic details are different, potentially confounding analyses. A central need in the 

field is for consensus regarding careful phenotyping, and this will be made more challenging by the 

emerging molecular taxonomy. Because the genetic basis of CVMs, and more broadly pediatric heart 

disease, is characterized by both phenotypic and genetic heterogeneity, with an anticipated central role 

for common major modifiers, a defined genetic understanding of CVMs will greatly inform complete 

phenotyping, potentially impacting diagnosis, prognosis and treatment decisions, as well as counseling 

for families. Therefore, it is crucial that the larger CVM community reconcile different approaches to 

careful phenotyping to fully leverage the potential of current large registries. 

Molecular taxonomies, defined by human genetics, are going to impact established clinical 

taxonomies and change approaches to care, resulting in the increased use of preventive and proactive 

strategies. The definition of a syndrome is less straightforward than in previous years, as single gene 

defects may result in apparently isolated CVMs in some individuals, and CVMs with extracardiac 

findings in others. Therefore, one specific opportunity lies in the ability to delineate both genetic 

modifiers and phenotypic variability, e.g., the same gene mutation resulting in varying CVMs in a given 

family or within a known syndrome [46,47]. Given the analytic challenges involved, recent 

recommendations from the American Heart Association state that Centers with Cardiovascular Genetics 

Centers should direct testing and interpretation and participate in subsequent management decisions, 

especially as exome testing becomes more common [48]. The most effective approaches for delivering 

cardiovascular genetics services have not been completely defined, and the composition of clinics and 

expertise can vary [49]. Coordinated and uniform practices in cardiovascular genetics will be increasingly 

important as the causes of heritable CVMs are identified, risk variants are defined, and personalized 

medicine efforts become mainstream [49]. To further these efforts, it is imperative that the field reconcile 

different ways of approaching both genetic and phenotypic schemes. The success of the Children’s 

Oncology Group has been attributed in large part to overcoming these very challenges. In addition, they 

have been successful at reconciling registries and compliance issues between study sites and using 

collective biospecimens [50,51] and may serve as an ideal model for pediatric heart disease. Ultimately, 

consensus on phenotyping between centers is necessary for national and international network, 

consortium and registry research efforts to fully realize their potential and truly impact patient care. 

4. Conclusions 

Identification of the genetic causes of CVMs has been challenging. Although the developmental basis 

for many cardiac defects has been investigated in model organisms, identification of genetic causes in 

human CVMs has been less successful. The current experimental framework for studying CVMs is 

clearly deficient. The attempt to translate bench (animal models) to bedside (identification of human 

mutations) has not been straightforward. This has led to the paradigm that CVMs are too heterogeneous 

and multifactorial in origin to genetically characterize except in rare familial cases, resulting in 
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stagnation of clinical and translational investigation and diagnostic test development. The development 

of the CCVM Consortium is an important step toward achieving the goal of identifying the genetic basis 

of CVMs. Using innovative technology, clinical expertise, and clinical diagnostic laboratory expertise, 

this alliance will determine the importance of structural genome variation in CVMs and enable the 

identification of novel loci, delineation of genetic syndromes, and genotype-phenotype analyses. In turn, 

this will facilitate the development of disease specific therapy, accurate diagnostic algorithms, effective 

management, and assignment of precise recurrence risk. 
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