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Abstract: Background: This study aims to get an effective machine learning (ML) prediction model of
new-onset postoperative atrial fibrillation (POAF) following coronary artery bypass grafting (CABG)
and to highlight the most relevant clinical factors. Methods: Four ML algorithms were employed
to analyze 394 patients undergoing CABG, and their performances were compared: Multivariate
Adaptive Regression Spline, Neural Network, Random Forest, and Support Vector Machine. Each
algorithm was applied to the training data set to choose the most important features and to build
a predictive model. The better performance for each model was obtained by a hyperparameters
search, and the Receiver Operating Characteristic Area Under the Curve metric was selected to
choose the best model. The best instances of each model were fed with the test data set, and some
metrics were generated to assess the performance of the models on the unseen data set. A traditional
logistic regression was also performed to be compared with the machine learning models. Results:
Random Forest model showed the best performance, and the top five predictive features included
age, preoperative creatinine values, time of aortic cross-clamping, body surface area, and Logistic
Euro-Score. Conclusions: The use of ML for clinical predictions requires an accurate evaluation of
the models and their hyperparameters. Random Forest outperformed all other models in the clinical
prediction of POAF following CABG.

Keywords: machine learning; artificial intelligence; atrial fibrillation; postoperative CABG

1. Introduction

Atrial fibrillation is the most common supraventricular arrhythmia [1,2], and its
incidence is dramatically rising worldwide [3]. The number of people with atrial fibrillation
(AF) in Europe is expected to double to >17 million by 2060 due to aging populations [4].
Therefore, AF can be considered a 21st-century “cardiovascular disease global epidemic”
due to its dramatic medical, social, and economic burden [5–9].

The results after either interventional or pharmacological treatment are suboptimal
regarding stable-long-term patient freedom from atrial fibrillation [10–13].

The high incidence of AF recurrence after the treatment imposes a substantial extra
burden on the healthcare system due to increased morbidity, mortality, associated thera-
peutic interventions, and other costs such as patient visits, anticoagulation status, and side
effects from drug therapy [14]. Therefore, there is a general agreement amongst experts
that there is a pressing need to improve AF treatment [15].

Stroke and thromboembolism are the main complications of AF [16,17]. However, AF
can also be associated with heart failure, arterial hypertension, diabetes, and valve disease,
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posing a significant burden to patients, physicians, and healthcare systems [18,19]. Further-
more, surgery can also trigger AF, representing the so-called new-onset postoperative atrial
fibrillation (POAF), which complicates 20–40% of cardiac surgical procedures and 10–20%
of non-cardiac thoracic operations [5,7–11]. POAF is also the most common arrhythmia
after coronary artery bypass grafting (CABG) [20], and it significantly increases morbidity
as well as short and long-term mortality [21–24].

Risk factors for developing POAF after CABG have been identified in several works [25],
including general parameters of patients’ functional status (older age, low ejection fraction,
comorbidities such as chronic obstructive pulmonary disease and chronic renal dysfunc-
tion) as well as more specific parameters such as preoperative withdrawal of beta-blocker
drugs. However, in most of the available literature, only classical statistical methods have
been employed that assume linear relationships between variables and predicted outcomes.
They must specify interactions between variables a priori [26].

Recently machine learning (ML) algorithms have been applied in various fields of
healthcare [27], having the advantage of identifying non-linear associations between co-
variates and being able to predict and detect interactions between variables from observed
data [28]. Nonetheless, ML algorithms have also been used for predicting the risk of
developing POAF only in a few papers and in very small cohorts [29].

This study aims to develop an effective prediction model of POAF following CABG
operations and to highlight the most relevant patient and clinical features involved through
ML algorithms.

2. Materials and Methods
2.1. Data Source, Patients Selection, and Definitions

This retrospective study includes three hundred ninety-four patients undergoing
CABG at the Cardiothoracic Department (CTC) of Maastricht University Medical Center+
(MUMC+) between 2010 and 2017.

The study included patients above 18 years old undergoing first-time CABG. Patients
who had previous cardiac surgery were excluded, as well as those with documented AF or
who received anti-coagulant therapy within six months before CABG. No other exclusion
criteria were applied.

POAF was defined as an acute or new-onset episode with irregular RR-intervals in an
electrocardiogram (ECG) without a traceable p-wave for at least 10 s [30–32] and occurring
during the postoperative period in-hospital stay.

After excluding underlying medical comorbidities like electrolyte imbalance, amio-
darone was started (2.5–5 mg/kg IV over 20 min, then 15 mg/kg). Electrical cardioversion
was employed in case of a failed pharmacological attempt, POAF lasting over 48 h, or
hemodynamic instability.

2.2. Variables and Preliminary Analysis

Variables included demographic characteristics, laboratory data related to renal func-
tion, surgical parameters, and postoperative complications. The Logistic Euro-Score was
employed, which is largely used in cardiac surgery patients for individual risk prediction,
including the very high-risk patient.

A preliminary analysis was performed on variables with zero- and near-zero-variance
features (i.e., they had a single value or a handful of unique values that occurred with very
low frequencies) that may cause a model to fail or the fit to be unstable [33]. These variables
were merged into a single variable to bypass the abovementioned issue.

2.3. Data Pre-Processing

Before running ML procedures, some pre-processing steps were carried on.
The dataset was split in two at a 75:25 ratio, a training dataset (296 patients) was

used to feed the models, and a held-out test dataset (96 patients) was used to assess the
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performance of the models. The splitting process kept the postoperative AF/non-AF ratio
consistent between the datasets.

Numeric variables were centered (subtracted by mean), scaled (divided by standard
deviation), and normalized in the range 0 to 1. Categorical variables were one-hot-encoded
(each class was created in the un-coded variable). The prediction of missing preoperative
creatinine values (the only variable with missing values, 10.1%) was performed by the
k-nearest neighbors’ method.

2.4. Machine Learning Algorithms

Four ML algorithms were employed, and their performances were compared: Mul-
tivariate Adaptive Regression Spline (MARS), Neural Network (NN) with three hidden
layers, Random Forest (RF), and Support Vector Machine (SVM) with a radial basis kernel
function. After the built-in features selection, each algorithm was applied to the training
dataset to build the predictive model. The following functions were called to create the
models: “earth” with MARS, “mlpMl” with NN, “rf” with RF, and “svmRadial” with SVM.

A hyperparameters search was adopted to optimize each model for better performance,
and the Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) metric
was selected to choose the best model. The search consisted of two phases: a preliminary
step to detect a plausible set of values and a grid criteria step to fine-tune the editable
hyperparameters in the functions used.

The hyperparameters taken into account by the individual models were as follows:
with MARS, nprune (maximum number of terms (including the intercept) in the pruned
model) and degree (maximum degree of interaction); with NN, the size of the three hidden
layers; with RF, mtry (number of variables randomly sampled as candidates at each split);
with SVM, sigma (inverse kernel width) and cost (cost regularization parameter, it controls
the smoothness of the fitted function—higher values lead to less smooth functions).

A 10-fold cross-validation method was set during the training step as a resampling
method to validate each model. Furthermore, the importance of the variables was esti-
mated. An up-sampling technique (randomly replicated instances, with replacement, in
the minority class) was employed during the training step to address the class imbalance
in the training dataset. Moreover, ROC AUC, sensitivity, and specificity resampling result
differences between models were estimated.

Finally, each model’s best instances (according to the chosen metric, ROC AUC) were
fed with the held-out test dataset (the learning steps were never applied to this data). For
each prediction, a confusion matrix was generated. The following values were calculated:
accuracy (true positive and true negative cases divided by all cases), sensitivity or recall
(true positive cases divided by positive reference events), specificity (true negative cases
divided by negative reference events), precision or positive predicted value (true positive
divided by predicted positive events), negative predicted value (true negative divided by
predicted negative events), F1 value (harmonic mean of precision and recall values).

Lastly, all tested models’ ROC and Precision-Recall (PR) curves were processed. The
PR curve is typically employed for assessing model performances when the outcome class
is very unbalanced (for example, 1% vs. 99%). We adopted the PR curve even if the outcome
class of our study is not that overly unbalanced (10.2% POAF vs. 89.8% non-POAF).

Finally, as age is a well-known independent factor for AF initiation, the machine
learning algorithms were trained only on the age feature to predict POAF events. The
predictive power (ROC AUC) was compared with the models trained on the other features.

The analysis was carried out using R Core Team (2021) (R: A language and envi-
ronment for statistical computing, version 4.1.2. R Foundation for Statistical Computing,
Vienna, Austria); and by caret package, version 6.0–86 [33].

2.5. Traditional Logistic Regression

For comparison purposes only, the logistic regression was also calculated on the same
training data, and then the accuracy was verified on the test data.
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2.6. Statistical Significance

We assumed a statistically significant p-value < 0.05.

2.7. Generic

This work has involved various professionals, including surgeons and cardiologists
fully committed to diagnosing and treating AF, general physicians, data scientists, machine
learning researchers, and modeling experts [34–41].

3. Results
3.1. Pre-Processing

Table 1 summarizes demographic, clinical, and surgical data. The incidence of POAF
was 10.6% (42/394). The median age was 60 years (Q1, Q3 (54, 67)), and three hundred
thirty-four (84.8%) patients were male. Furthermore, patients with POAF were significantly
older (p < 0.001) and showed a higher operative risk score (p = 0.013).

After splitting the initial data set in two, the training dataset had 296 cases; the test
data set had 98 cases. Each dataset had the same initial value of POAF/non-POAF patient
ratio. In the supplementary material, Tables S1 and S2 report the descriptive statistics of
training and test datasets, respectively.

3.2. Machine Learning
3.2.1. Analysis of Single Models

Figure 1A–D shows the various iterations of the hyperparameter search performed
with MARS, NN, RF, and SVM models after the last run. The graphs report the variations of
the ROC AUC as a function of one or more parameters of each model. The maximum value
for the chosen metric (ROC AUC) was caught for each model, and the correspondent best
model was saved as follows: with MARS, nprune = 5 and degree = 4; with NN, layer1 = 7,
layer2 = 9, layer3 = 6; with RF, mtry = 1; with SVM, sigma = 0.002 and cost = 2.

Table 2 shows the obtained maximum values of ROC AUC, sensitivity, and specificity
resampling values for each model. The maximum ROC AUC value (0.95) was obtained by
using the SVM model, the maximum sensitivity value (1) by using the MARS, NN, and
SVM models, and the maximum specificity value (1) by using the NN model.

Table 3 shows the estimated differences between the metrics values reported in
Table 2 and the p-value (Bonferroni adjustment). ROC AUC does not show any significant
difference. At the same time, sensitivity yields a statistically significant value (0.50) with
(NN—RF) (p-value, 0.03), and specificity yields a statistically significant value (−0.19) with
(MARS—RF) (p-value, 0.05).

Figure 2 additionally shows confidence intervals of the only statistically
significant differences.

3.2.2. Features Selected by the Models

Relevant features selected by MARS, NN, RF, and SVM algorithms are displayed in
Figure 3A, Figure 3B, Figure 3C, and Figure 3D, respectively. The measures of importance
are scaled to have a maximum value of 100. With the MARS model, the top five features
were age (100.0%), Operation Year 2014 (64.4%), complications (36.1%), number of distal
anastomoses (36.1%), Logistic Euro-Score (36.1%).

Using the NN model, the top five features were age (100.0%), the number of distal
anastomoses (65.0%), use of double mammary artery (60.6%), the performance of T-graft
anastomosis (60.6%), and the Operation Year 2013 (50.4%).

Employing the RF model, the top five features were age (100.0%), preoperative creati-
nine values (86.1%), time of aortic cross-clamping (82.2%), body surface area (80.9%), and
Logistic Euro-Score (80.7%).

Finally, with the SVM model, the top five features were age (100.0%), the number of
distal anastomoses (65.0%), use of double mammary artery (60.6%), the performance of
T-graft anastomosis (60.5%), and Operation Year 2013 (50.4%).
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Table 1. Descriptive characteristics.

Overall No POAF POAF p

(n = 394) (n = 352) (n = 42)

Female/Male 60/334 (15.2/84.8) 53/299 (15.1/84.9) 7/35 (16.7/83.3) 0.962

Age 60.00 [54.00, 67.00] 59.00 [53.00, 66.00] 66.00 [59.25, 69.00] <0.001

BSA (m2) 2.00 [1.88, 2.12] 2.00 [1.88, 2.12] 2.03 [1.90, 2.13] 0.489

Hypertension 265 (67.3) 237 (67.3) 28 (66.7) 1

Type II DM 166 (42.1) 148 (42.0) 18 (42.9) 1

Hyperlipidemia 196 (49.7) 177 (50.3) 19 (45.2) 0.625

COPD 38 (9.6) 34 (9.7) 4 (9.5) 1

CKD 88 (22.3) 79 (22.4) 9 (21.04) 1

TIA/Stroke 22 (5.6) 19 (5.4) 3 (7.1) 0.718

PVD 54 (13.7) 49 (13.9) 5 (11.9) 1

Year 0.122
2010 10 (2.5) 9 (2.6) 1 (2.4)
2011 8 (2.0) 8 (2.3) 0 (0.0)
2012 22 (5.6) 20 (5.7) 2 (4.8)
2013 67 (17.0) 66 (18.8) 1 (2.4)
2014 99 (25.1) 87 (24.7) 12 (28.6)
2015 72 (18.3) 59 (16.8) 13 (31.0)
2016 76 (19.3) 67 (19.0) 9 (21.4)
2017 40 (10.2) 36 (10.2) 4 (9.5)

Preoperative
Creatinine * 85.00 [76.00, 96.00] 84.00 [75.00, 96.00] 87.00 [78.00, 97.00] 0.387

Euro-Score (Log) 1.55 [1.11, 2.66] 1.52 [1.07, 2.64] 1.66 [1.34, 3.39] 0.081

Status 0.363
Elective 151 (38.3) 134 (38.1) 17 (40.5)

Emergency 14 (3.6) 11 (3.1) 3 (7.1)
Urgency 229 (58.1) 207 (58.8) 22 952.4)

OR Risk 0.013
high 36 (9.1) 27 (7.7) 9 (21.4)
low 308 (78.2) 279 (79.3) 29 (69.0)

medium 50 (12.7) 46 (13.1) 4 (9.5)

CABG/OPCAB 372/22 (94.4/5.6) 333/19 (94.6/5.4) 39/3 (92.9/7.1) 0.912

Proximal Anastomoses 0.884
1 81 (20.6) 73 (20.7) 8 (19.0)
2 14 (3.6) 12 (3.4) 2 (4.8)

Distal Anastomoses 0.281
2 90 (22.8) 77 (21.9) 13 (31.0)
3 178 (45.2) 158 (44.9) 20 (47.6)
4 101 (25.6) 95 (27.0) 6 (14.3)
5 25 (6.3) 22 (6.2) 3 (7.1)

ECC Time (min) 81 [65, 100] 82 [64.25, 100] 75 [67.5, 87.5] 0.280

Clamping Time 59 [45, 74.25] 60 [44, 75] 57 [49.5, 69] 0.664

Complications 0.534
1 39 (9.9) 37 (10.5) 2 (4.8)
2 5 (1.3) 4 (1.1) 1 (2.4)
3 3 (0.8) 3 (0.9) 0 (0.0)

EC - - 2 (4.8)
FC - - 12 (28.5)

EC + FC - - 27 (64.3)
Values are expressed as n (%) with categorical variables or median (Q1, Q3) with continuous variables. Abbrevia-
tions: POAF: Postoperative Atrial Fibrillation; BSA: Body Surface Area; DM: Diabetes Mellitus; COPD: Chronic
Obstructive Pulmonary Disease; CKD: Chronic Kidney Disease; TIA: Transient Ischemic Attack; PVD: Peripheral
Vascular Disease; CABG: Coronary Artery Bypass Graft; OPCAB: Off-Pump Coronary Artery Bypass; BIMA:
Bilateral Internal Mammary Artery; OR: Operative Risk Score; ECC: Extra Corporeal Circulation; EC: Electric
Cardioversion; FC: Pharmacological Cardioversion. * Micromoles/L.
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(D) models after the last run, respectively. The graphs report the variations of the ROC AUC as a 
function of one or more parameters of each model. With the MARS model, the maximum ROC AUC 
value is obtained by degree and term hyperparameters equal to 4 and 5, respectively (A). With the 
NN model, the maximum ROC AUC value is obtained by layer1, layer2, and layer3 hyperparame-
ters equal to 7, 9, and 6, respectively (B). With the RF model, the maximum ROC AUC value is 
obtained by predictors hyperparameter numbers equal to 1 (C). With the SVM model, the maximum 
ROC AUC value is obtained by sigma and cost hyperparameters equal to 0.002 and 2, respectively 
(D). 

Table 2 shows the obtained maximum values of ROC AUC, sensitivity, and specific-
ity resampling values for each model. The maximum ROC AUC value (0.95) was obtained 
by using the SVM model, the maximum sensitivity value (1) by using the MARS, NN, and 
SVM models, and the maximum specificity value (1) by using the NN model. 

Table 2. Maximum ROC AUC, Sensitivity, and Specificity Values with each Model. 

 Max. 
ROC AUC  
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NN 0.94 
RF 0.78 

SVM 0.95 
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MARS 1 
NN 1 
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Figure 1. Iterations of hyperparameters search performed with MARS (A), NN (B), RF (C), and SVM
(D) models after the last run, respectively. The graphs report the variations of the ROC AUC as a
function of one or more parameters of each model. With the MARS model, the maximum ROC AUC
value is obtained by degree and term hyperparameters equal to 4 and 5, respectively (A). With the
NN model, the maximum ROC AUC value is obtained by layer1, layer2, and layer3 hyperparameters
equal to 7, 9, and 6, respectively (B). With the RF model, the maximum ROC AUC value is obtained
by predictors hyperparameter numbers equal to 1 (C). With the SVM model, the maximum ROC
AUC value is obtained by sigma and cost hyperparameters equal to 0.002 and 2, respectively (D).

Table 2. Maximum ROC AUC, Sensitivity, and Specificity Values with each Model.

Max.

ROC AUC
MARS 0.87

NN 0.94
RF 0.78

SVM 0.95

Sensitivity
MARS 1

NN 1
RF 0.67

SVM 1

Specificity
MARS 0.74

NN 1
RF 0.89

SVM 0.74
Abbreviations: ROC: Receiver Operating Characteristic; AUC: Area Under Curve; MARS: Multivariate Adaptive
Regression Spline; NN: Neural Network; RF: Random Forest; SVM: Support Vector Machine.
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Table 3. Estimated Differences Between Models.

ROC AUC p-Value Sensitivity p-Value Specificity p-Value

RF—SVM −0.06 0.42 −0.19 0.16 0.12 0.05
NN—SVM 0.10 1.00 0.31 0.35 −0.28 0.26
NN—RF 0.16 0.18 0.50 0.03 −0.40 0.06

MARS—SVM −0.02 1.00 0.07 1.00 −0.06 1.00
MARS—RF 0.05 1.00 0.26 0.26 −0.19 0.05
MARS—NN −0.11 0.52 −0.24 0.85 0.22 0.61

Abbreviations: ROC: Receiver Operating Characteristic; AUC: Area Under Curve; MARS: Multivariate Adaptive
Regression Spline; NN: Neural Network; RF: Random Forest; SVM: Support Vector Machine.
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Figure 2. Statistically significant estimated differences of the metrics values with confidence intervals
and a vertical line indicating the points with zero difference. The most statistically significant
difference in sensitivity and specificity is between the NN and RF and MARS and RF models.

3.2.3. Testing

After feeding the models with the test data set, the confusion matrices were calculated
from the predicted values (at 0.5 classification threshold) and the true outcome values.

Table 4 shows metrics values from the confusion matrices: accuracy, sensitivity (or
recall), specificity, precision (or positive predictive value), negative predictive value, and F1
values for each model. RF model reaches the maximum values for all parameters, but the
sensitivity for which the maximum value (0.70) is associated with the MARS model.
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Figure 3. Relevant features selected by single models: MARS (A). NN (B). RF (C). SVM (D). The
relevant features rank has to be interpreted from the top (most important) to the bottom (less
important). An acceptable cut-off value is 35%.

Table 4. Predicted vs. True Outcome Values Statistics (at 0.50 classification threshold).

Metrics MARS NN RF SVM

Accuracy [95% CI] 0.58 [0.48–0.68] 0.66 [0.56–0.76] 0.79 [0.69–0.86] 0.69 [0.59–0.78]
Sensitivity or Recall 0.70 0.60 0.60 0.60

Specificity 0.57 0.67 0.81 0.70
Precision or Positive

Predicted Value 0.16 0.17 0.26 0.19

Negative Predicted Value 0.94 0.94 0.95 0.94
F1 0.25 0.27 0.36 0.29

Abbreviations: MARS: Multivariate Adaptive Regression Spline; NN: Neural Network; RF: Random Forest; SVM:
Support Vector Machine; CI: Confidence Interval; F1: Harmonic mean between precision and recall.

To consider the information of which classification threshold results in a certain
point of the curves, we implemented a color scale in Figure 4A–D to show the ROC
curve and in Figure 5A–D to show the PR curves with MARS, NN, RF, and SVM models,
respectively. The color scale is a helpful tool to assess sensitivity variation as a function
of one minus specificity (ROC curve) and precision as a function of recall (PR curve)
for different classification threshold values. Typically, the metrics shown in Table 4 are
calculated at the 0.50 classification threshold. The value of 0.50 represents the cut-off to
decide if, during the prediction step, the patient outcome is classified to belong to one
class or another (in our study, POAF or not-POAF). Of course, the value of 0.50 is not the
only possible value. So the colored scale allows us to check how the metrics change as the
classification cut-off changes. For example, looking at Figure 4C (RF model), with a cut-off
(or threshold) of about 0.25 (yellow color), the sensitivity is about 0.9, and the false positive
rate is about 0.75. With a cut-off of about 0.7 (blue color), the sensitivity is about 0.2, and
the false positive rate is about 0.04. Ultimately, there is a trade-off between conflicting
sensitivity and false positive rate values, and these depend on the chosen cut-off value.
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With the test data set, the ROC and PR AUC values are with the MARS model, 0.70,
0.16; with the NN model, 0.70, 0.20; with the RF model, 0.78, 0.43; with the SVM model,
0.73, 0.25.

3.2.4. Age-Only Models vs. All-Feature Models

In Table 1, age is significantly higher in the POAF group compared to the non-POAF
group. Moreover, Figure 3A–D show that age is the most important feature (100%) selected
by all four models. To prove the features were significantly predictive of POAF, we trained
the models only on the age feature despite POAF’s strong age dependence. Prediction
ROC AUC comparison with the models trained on other features yielded the following
results (age only vs. all-feature models): MARS model, 0.51 vs. 0.70, p-value: 0.045; NN
model, 0.50 vs. 0.70, p-value: 0.025; RF model, 0.52 vs. 0.78, p-value: 0.031; SVM model,
0.50 vs. 0.76, p-value: 0.045.

3.3. Logistic Regression

The accuracy of the logistic regression model was 64% (95% CI (54%, 74%)), and the
ROC AUC value was 0.64 on the test (held-out) data set.

4. Discussion

This paper aimed to provide an effective prediction model of POAF following CABG
and highlight the most relevant patient and clinical features selected through ML ap-
proaches. The application of ML for clinical predictions requires an accurate evaluation of
the models and their hyperparameters before choosing the suitable model targeted for the
specific purpose.

One of the more exciting features of our work was that none of the models reached
the highest ROC, sensitivity, and specificity together. Indeed, the NN had the highest ROC
and sensitivity, while RF obtained the highest specificity. Given the unbalanced nature
of the dataset, PR curves were analyzed together with ROC curves, and the RF model
demonstrated better performance. The RF model showed that age (100.0%), preoperative
creatinine values (86.1%), time of aortic cross-clamping (82.2%), body surface area (80.9%),
Logistic Euro-Score (80.7%), and extracorporeal circulation time (65.7%) were the predictors
with a normalized contribution to the model greater than 40%.

Analyzing the confusion matrices of the test data, the RF model reaches the highest
values of the parameters of measurement of the prediction performance, except for the
sensitivity value (0.60), which is the same as the other models (the MARS model has a
slightly higher value). Furthermore, with the RF model, the sensitivity and specificity values
of the prediction are lower than the corresponding maximum values of the resampling,
reflecting that the RF model has learned to generalize better than the other models, also
considering the maximum value resampling of the ROC AUC.

The confusion matrices were calculated at the threshold value of 0.50, one of the
possible referring values. Therefore, the comparative evaluation of the performance of the
models cannot be based only on confusion matrices. Still, the evaluation of the ROC and
PR curves are necessary for an overall classification goodness measure.

The ROC AUC analysis performed with the test data showed that RF had the highest
values. Nevertheless, more than the ROC curve examination is required to represent the
goodness of the prediction fully. When data are unbalanced, it is recommendable using the
PR curve. As our data were moderately unbalanced, we used the PR curves to confirm the
ROC curves’ feature further.

Observing the graph of the PR curve for the RF model, for threshold values from
about 0.7 to 0.8, the precision is very high (equal to 1), but the recall is relatively low
(between 0.0 and 0.2). As soon as the threshold value is reduced (<0.6, >0.4), the precision
significantly lowers, remaining around 0.4. Nonetheless, in this setup, the recall value rises.
Further decreases in the threshold value (<0.4) improve recall but worsen precision until
the baseline value is reached for threshold values <0.2.
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Finally, we noted that the performance of the traditional logistic regression was lower
than that obtained with the RF model.

Clinical Considerations

Prediction models for incident AF have been employed to contribute to AF screening
by determining a risk category for each patient [42]. In particular, the CHARGE-AF
appeared most suitable for primary screening purposes [43]. Atrial fibrillation [AF] occurs
in 20% to 40% of patients after CABG [18,44–48]. Models have been developed to identify
patients at high risk for the development of AF after CABG [49]. Nonetheless, classical
statistical methods assume linear relationships between variables and predicted outcomes
leading to biased results.

In this project, we propose an artificial intelligence (AI)-based prediction model to
provide an effective prediction model of POAF following CABG and highlight the most
relevant patient and clinical features selected through ML approaches. This is the first
attempt to identify the best predictor model for future clinical application in larger popula-
tion cohorts. In addition, this is the first step that will lead to implementing such a model
for clinical inferences and designing a risk score to be used at the patient’s bedside.

Age is a well-known independent predictor of POAF [50,51]. This can be explained
by age-related structural changes, such as increased fibrosis and atrial dilatation [52] and
changes in atria’s electrophysiological properties, which predispose to the development of
AF [22]. Furthermore, related comorbidities in older patients may be responsible for the
increased incidence of POAF in the elderly [53]. The importance of Euro-Score confirms
this as a predictor, reflecting the severe status of the patients with associated cardiovascular
and non-cardiovascular morbidities [54].

In our model, extracorporeal circulation time (ECC) and cardiopulmonary bypass
time (CPB) are significantly related to POAF. CPB has been associated with an ischemia-
reperfusion injury-inducing a complex inflammatory response, which has been reported in
patients with AF. These range from inflammatory infiltrates in atrial biopsies to increased
concentrations of C-reactive protein, which form the substrate for the generation of ectopic
activity [55,56]. Nonetheless, it is still controversial whether CABG performed on the
beating heart without ECC and CC reduces the incidence of POAF [54].

The mechanism of how POAF is influenced by low renal function has yet to be fully
understood. Nonetheless, the increased incidence of hypertension, fluid overload, and
pathological activation of the intrarenal renin–angiotensin–aldosterone might explain this
association [57]. In addition, renal dysfunction was associated with both electrical and struc-
tural remodeling of LA, which might be the mechanism underlying the pathophysiology of
new-onset POAF [58].

Finally, body surface area was an independent risk factor for new-onset AF, confirming
previous reports [59,60]. Other studies have shown that BSA is only a risk factor for POAF
in older patients [61]. Increased left atrium stretch, diastolic dysfunction [62], and high
plasma volume secondary to obesity [63] have been proposed as mechanisms for the
vulnerability of the left atrium to the development of POAF.

5. Limitations

The study presents some inherent limitations that need to be highlighted.
First, the predictive models were not tested and validated on cohorts from other

centers. Second, the hyperparameters search was limited by available hardware. Third,
the small number of patients likely reduces the prediction capacity of the trained models.
However, we preferred testing our models on actual clinical data accepting a limited cohort.
Fourth, the initial data set might include only some AF predictive variables; more risk
factors can lead to more precise models. Nonetheless, this was the first attempt toward an
upcoming accurate score model based on ML. Finally, the relatively low level of ROC AUC
obtained could be due to the low number of cases or the available variables’ low prediction
capacity. Alternatively, it could be due to the limited refinement of the hyperparameters.
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However, this limitation is shared with many previously published papers employing
actual data.

In addition, the lack of ECG data represents a further limitation. We are working on
ECG-ML-reading procedures that will be the objective of a forthcoming paper. Finally,
we should have carried on external validation datasets to prove the generalizability of
the models.

Finally, we did not explore whether POAF persisted beyond the discharge from the
hospital. A machine learning analysis of who persists in POAF after CABG, despite rhythm
control, would be very interesting, and it is a call for further research.

6. Conclusions

Random Forest is best performed in the clinical prediction of postoperative atrial
fibrillation following coronary artery bypass grafting. The ML technique is promising for
more sophisticated and accurate AI-based risk score models in this setting.

Further research employing other ML methods and more observations is warranted to
yield more accurate ML predictive performance.
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