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Abstract: The coronavirus disease (COVID)-19 has turned into a pandemic causing a global public
health crisis. While acute COVID-19 mainly affects the respiratory system and can cause acute
respiratory distress syndrome, an association with persistent inflammatory stress affecting different
organ systems has been elucidated in long COVID syndrome (LCS). Increased severity and mortality
rates have been reported due to cardiophysiological and metabolic systemic disorders as well as
multiorgan failure in COVID-19, additionally accompanied by chronic dyspnea and fatigue in LCS.
Hence, novel therapies have been tested to improve the outcomes of LCS of which one potential
candidate might be sodium–glucose cotransporter 2 (SGLT2) inhibitors. The aim of this narrative
review was to discuss rationales for investigating SGLT2 inhibitor therapy in people suffering from
LCS. In this regard, we discuss their potential positive effects—next to the well described “cardio-
renal-metabolic” conditions—with a focus on potential anti-inflammatory and beneficial systemic
effects in LCS. However, potential beneficial as well as potential disadvantageous effects of SGLT2
inhibitors on the prevalence and long-term outcomes of COVID-19 will need to be established in
ongoing research.

Keywords: coronavirus disease (COVID)-19; long COVID syndrome; sodium–glucose cotransporter
2 inhibitors; SGLT2 inhibitors; cytokine storm; cardiovascular disorders; long COVID and
cardiovascular sequelae

1. Introduction

The severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2) firstly
described in Wuhan, China in December 2019, was spreading all over the world resulting
in a global pandemic [1]. SARS-CoV-2 caused a tragic pandemic that resulted in more
than 772 million infections worldwide and more than 6.9 million cumulative deaths, as
registered in November 2023 [2]. Nevertheless, it is acknowledged that even in countries
with developed disease notification systems, the prevalence rates of this pandemic infec-
tion have been widely underestimated [3]. Coronavirus disease 2019 (COVID-19) mainly
affects the respiratory system causing acute respiratory distress syndrome; however, it
is also associated with different organ system failures such as cardiac complications, i.e.,
infection-associated myocarditis or malignant arrhythmias, or kidney disease, as well as
metabolic systemic disorders, i.e., electrolyte disturbances or multiorgan failure [1,4,5]. As
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the COVID-19 pandemic represents to date the greatest global health crisis, an effective,
rapid, and sensitive diagnostic assessment, followed by effective treatment and manage-
ment strategies, as well as preventing approaches, have been postulated to be successful
for pandemic management [6]. Current management and treatment strategies are primarily
based on preventive population-wide vaccination, followed by a combinational pharmaco-
logical treatment based on antiviral agents, polymerase inhibitors, proteinase inhibitors, or
additional steroids and supportive oxygen therapy [6–11].

Nevertheless, long COVID syndrome (LCS)—as an often debilitating illness post an
acute COVID-19 infection—is reported in at least 10% of SARS-CoV-2 infections [12]. In this
context, more than 200 variable COVID-19-associated symptoms have been identified af-
fecting multiple organ systems, mainly cardiovascular, respiratory, renal, neurological, and
immunomodulatory components, including immune system dysregulation and excessive
mast cell activation [12,13]. Persistent cardiopulmonary symptoms including chronic dysp-
nea and chest pain as well as autonomic manifestations, i.e., chronic fatigue, “brain fog”,
and postural orthostatic tachycardia associated with heightened anxiety and depression are
common findings in LCS altering the lives of millions of people worldwide [14,15]. A met-
analysis of previous studies demonstrated a certain association between epidemiological
characteristics and comorbidities and the subsequent risk of developing LCS [16]. Pre-
existing comorbidities, such as chronic obstructive pulmonary disease, diabetes, ischemic
heart disease, or immunosuppression have been reported as having a higher associated
risk of LCS [16]. Nevertheless, up to now, a combinational treatment is estimated to be
favorable for the treatment of COVID-19 [5,17], but no specific pharmacological treatment
is available in LCS to relieve LCS symptoms effectively [3]. The hormone melatonin, as an
activator of the nuclear factor erythroid-derived 2-linke 2 (NRF2) transcription factor, has
been identified to influence positively the intracellular antioxidative status reducing oxida-
tive stress [3]. However, this therapeutical approach requires further scientific evaluation
by appropriately designed trials. Since oxidative stress in endothelial cells is the previously
described first molecular pathophysiological disturbance in diabetes as well as in viral-
infected cells [18], causing capillary damage, local hypoxia, and potential chronic oxidative
stress, further therapeutic approaches in LCS might focus on these pathways. Next to the
potential role of melatonin in LCS addressing the NRF2 pathway [19–21], atorvastatin with
its pleiotropic effects improving endothelial function by decreasing vascular inflammation
and oxidative stress has been evaluated [22].

Due to the pathophysiological molecular parallels in diabetes as well as in viral-
infected cells, this narrative literature review discusses the potential role of sodium–glucose
cotransporter 2 (SGLT2) inhibition therapy in the context of LCS.

The use of SGLT2 inhibitors, firstly used in people with type 2 diabetes (T2D), has been
proven as an effective therapeutic approach for different types of heart failure, as defined in
the universal definition of heart failure (HF) in 2021 by the European Society of Cardiology
(ESC) [23]. Additionally, SGLT2 inhibitors are an established anti-hyperglycemic agent
for the treatment of T2D [24,25]. Next to their role as an antidiabetic agent improving
hyperglycemia in people with T2D, the SGLT2 inhibitors empagliflozin and dapagliflozin
revealed a reduction in the combined risk of hospitalization or cardiovascular death in
patients suffering from various types of HF with or without diabetes [26–28]. Additional
data revealed the beneficial therapeutic effects of SGLT2 inhibitor treatment in people with
chronic kidney disease (CKD) to delay disease progression and improve cardiovascular
benefits [28,29], as well as additional positive effects of SGLT2 inhibitor treatment due to
modest reductions in blood pressure and bodyweight [24,25,28].

Acute COVID-19 as well as LCS—in general and in the context of coexistent diseases
like T2D and metabolic syndrome—represent a multiorgan and multisystem disorder [3].
Especially, LCS might be characterized by an unpredictable relapsing–remitting inflamma-
tory response, entailing additionally activated inflammation sequelae, glucose homeostasis
disturbances, hemoglobin deoxygenation, or altered immune status, and activation of the
renin–angiotensin–aldosterone system (RAAS) [25,30].
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Therefore, this narrative literature review discusses the rationale for investigating
SGLT2 inhibitor therapy in the context of LCS.

2. Materials and Methods

For this narrative review, a non-systematic literature search was performed in the
PubMed database between January 2023 and November 2023, searching for studies, case
reports, and review articles in the context of SGLT2 inhibition therapy and LCS. Key articles
from these topics of research were included based on the writing group’s decision.

3. The Impact of SGLT2 Inhibitors in LCS-Associated Pathophysiological Mechanisms
3.1. COVID-19 and LCS

Gaining importance in the public health system, LCS or post-acute sequelae of COVID-
19 disease are characterized by persistent symptoms following SARS-CoV-2 infection [14].
The latest research in the United Kingdom (UK) estimated the number of affected patients
by LCS at 1 million [31]. While there was no universally accepted definition of this patho-
logical condition, the United Kingdom’s National Institute for Health and Care Excellence
(NICE) guidelines defined LCS as the following: persistence of symptoms beyond 4 weeks
after SARS-CoV-2 infection including two phases, such as ongoing symptomatic phase
(4–12 weeks) and post-COVID-19 syndrome (>12 weeks) [32,33]. Additionally, the recent
definition of LCS by the World Health Organization (WHO) includes a persistence of
symptoms beyond 3 months after previous SARS-CoV-2 infection lasting for more than
2 months without any explanation by another illness [34]. In this context, firstly, cardiopul-
monary symptoms, such as shortness of breath or intermittent chest pain presumably
based on abnormalities related to myocardial inflammation, remodeling, and arrhythmias,
and secondly, disturbed autonomic and neuropsychiatric manifestations, such as fatigue,
headaches, brain fog, or orthostatic disorders, are previously known manifestations [14,35].
Additionally, some LCS patients are disproportionately affected by their social determi-
nants of health (SDOH), due to socioeconomic and political factors as well as behavior
and psychosocial background [36]. Up to now, the pathophysiological background of the
persistent cardiophysiological and pulmonary abnormalities remains unclear to a certain
degree with significant dissociation between symptoms and objective parameters [14]. As
a vacillating symptom complex, LCS includes a variable range of associated disorders of
multiple organ systems [37], as displayed in Figure 1.
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The worldwide prevalence of LCS showed a large variation, ranging from 1% in a
Danish study [38] up to 35–77% in a German study [39,40]. Analyzing the circumstances of
these variable prevalences, several factors that contribute to the observed variability have
to be taken into consideration [14]: the complex interaction within persistent symptoms,
severity of acute illness, and the burden of comorbidities might be influenced by several
determinants, such as age, sex, timing of assessment, sociodemographic factors, pre-existing
health diseases, vaccination status, sample size, pro- or retrospective data assessment, as
well as source of enrollment, and type of statistical survey [14,41–43].

3.2. Estimated Underlying Conditions for Cardiovascular Disorders and LCS
3.2.1. Acute Phase of COVID-19 and Oxidative Stress

Previous research on post-COVID-19 manifestations have elucidated associations
between severe clinical illness in the acute phase and severe persistent long-term symptoms
in LCS patients [44]. Due to the variability of associated cardiac disorders and symptoms
in people with acute COVID-19 and LCS, a deeper discussion on the potential patho-
physiological mechanisms in these patients is required [14]. Acute COVID-19-associated
cardiophysiological disorders may be based on several pathophysiological pathways and
cascades, such as dysregulation of the RAAS system [45], direct cytotoxic injury [46], en-
dotheliitis, and thromboinflammation [33], as well as a dysregulated cytokine response by
an altered immune response [32]. In this context, the association between COVID-19 as an
endothelial disease and the affected organs, which are perfused by the capillary microcir-
culation, has to be emphasized [3]. The capillary microcirculation system is based on two
cell types, i.e., endothelial cells and pericytes, which express the angiotensin-converting
enzyme 2 (ACE-2) protein on their cell membrane, whereby acute SARS-CoV-2 infection
has been previously reported upon for its vascular endotheliitis and thrombogenicity in
small and large vessels [3,47]. In previous research, SARS-CoV-2 particles have been de-
tected by electron microscopy in the endothelium of different affected organs, such as
kidney, brain, heart, lung, and skin [48]. Although acute SARS-CoV-2 primarily affects the
pulmonary components, a systemic persistent pan-vascular COVID-19-related involvement
has been elucidated before [49,50]. In this context, acute and long-term SARS-CoV-2-related
direct or indirect impairment of the endothelial barrier and subsequently endotheliitis and
associated multiorgan failure have been reported previously [49]. Various mechanisms
contribute to developing endothelial dysfunction, such as hyperinflammation, cytokine
storming, cell injury, pyroptosis, persistent oxidative stress, glycocalyx disruption, reduced
nitric oxide bioavailability, and thrombogenicity [49].

Given these pathophysiological mechanisms, divergent study results were reported
with respect to the prevalence of acute SARS-CoV-2-associated “true” myocarditis. My-
ocarditis, defined as lymphocytic infiltration and myocyte necrosis, was only evident in
14% of the cases, as described by Basso et al., whereby Lindner et al. reported a high
prevalence of viral particles in the heart (59%) and their clinical relevance in a high per-
centage of the cases (41%) [14,51,52]. On the one hand, this may be due to acute ischemic
injury or myocarditis, or additionally caused by infection-associated microthrombosis as
reported before [14,53]. Elevated cytokine levels, such as interleukins, interferon (IFN)-γ,
or tumor necrosis factor (TNF)-α play an important role in the framework of cardiac dam-
age in SARS-CoV-2 infection with respect to the cytokine storm aggravating endothelial
dysfunction, hypercoagulation, and neutrophil infiltration [54,55]. Next to these mecha-
nisms, which display the persistence of acute-phase infection processes, specific pathways
representing cardiovascular damage in LCS must be given significant attention: firstly,
the persistence of viral reservoirs or secondly, molecular mimicry in the context of an
autoimmune response [49].

3.2.2. LCS-Related Cardiovascular and Cardiorespiratory Sequelae

According to the previously described acute effects of SARS-CoV-2 infection on the car-
diovascular system, several long-term cardiovascular effects in LCS have been reported [14].
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In previously hospitalized patients with COVID-19, excessive risk of major cardiovascu-
lar events and an increased risk of developing T2D after COVID-19 infection was re-
ported [14,56]. Furthermore, an increased rate of persistent myocardial inflammation (up
to 60%) based on cardiac magnetic resonance imaging (CMR) was seen in this group of
patients [57]. Physical inactivity, cytokine storm, unphysiological nutrition, and drugs (e.g.,
dexamethasone) are just a few reasons underpinning cardiorespiratory limitation post-acute
COVID-19, leading to reduction in peak oxygen consumption in these LCS patients [58,59].
Current research revealed persistent pulmonary impairment in previously hospitalized
COVID-19 subjects due to endothelial function impairment three months after the acute
phase of COVID-19 [50]. Additionally, numerous reports on LCS revealed imbalances in
the autonomic nervous system associated with persistent COVID-19 infection, such as
orthostatic hypotension, neurocardiogenic syncope, or postural orthostatic tachycardia
syndrome (POTS) [60–62].

Current scientific research for the specific treatment of LCS and cardiovascular dis-
orders is increasingly being pushed [14]. Individual LCS-associated cardiovascular dis-
turbances include various potential mechanisms such as genetic predispositions, endothe-
liopathy, obesity, and the role of cytokine storming based on altered immune status [14].
Nevertheless, LCS-associated cardiovascular disorders represent a high symptom burden
for many patients, whereby recent studies revealed a certain dissociation between subjec-
tive symptoms and objective clinical routine diagnostic measurements [14,58,63]. Therefore,
several predictors for non-recovery after hospital admission with COVID-19 within the first
6 months were identified: two or more cardiovascular or metabolic comorbidities, middle
age, female sex, or initially severe clinical course of COVID infection [63]. Furthermore,
subjects suffering from diabetes were estimated to be at an increased risk for LCS, particu-
larly due to pancreatic ß-cell dysfunction and aggravated insulin resistance by peripheral
tissue inflammation [64,65].

3.3. The Potential Impact of SGLT2 Inhibitors on LCS

In the clinical course and long-term outcomes of LCS, the severity of physical and
mental health impairment were closely related [63], so that an interdisciplinary multimodal
approach for an effective therapy is urgently needed. The clinical situation of affected LCS
patients creates an urgent demand for innovative drugs to treat their various complaints.
While drug development is known to be a very slow process, starting with identifying
promising candidates in preclinical animal models and a subsequent process to establish
an approved drug, elapsing generally more than ten years, it is an established strategy to
evaluate the effectiveness of existing approved drugs in the context of long COVID [66]. Up
to date, the potential impact of glucose-lowering agents, especially the SGLT2 inhibitors,
to potentially modify the symptoms of LCS remain unclear, whereby the current scientific
research so far revealed controversial results in acute COVID-19 [67].

3.3.1. Anti-Inflammatory and Beneficial Systemic Effects

SGLT2 inhibitors may have anti-inflammatory effects by various underlying mech-
anisms (Figure 2) potentially impacting the different multimodal components of LCS
management. Therefore, low-grade tissue inflammation as well as the systemic inflam-
matory response were shown to be diminished [67]. In this context, chronically increased
inflammatory levels as a predisposing fundamental of LCS might be altered positively by
the SGLT2 inhibitor empagliflozin, as reported previously [67,68]. Specifically, previous
research revealed the positive effects of SGLT2 inhibitors due to reduced inflammation
indicators, such as ferritin, interleukin-6 level, and C-reactive protein, and their accompany-
ing reduced risk of SARS-CoV-2-related prothrombogenic issues due to positive effects on
the vascular endothelium inflammatory processes [69]. In contrast, the recently published
data of the Austrian EMMY trial revealed favorable results with SGLT2 inhibitors for the
structural and functional cardiac remodeling in people suffering from an acute myocardial
infarction without a reduction in systemic inflammation [70].
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Increased fat utilization and the associated reduction in obesity-induced inflammation
as well as insulin resistance by M2 macrophage activation are reported to have beneficial
effects for the clinical outcomes of persistent COVID-19 [67,71]. While adipose tissue and
ectopic fat depots have been considered as a contributor for chronic exaggerated immune
activation, viral spread and cytokine amplification are known to be associated with poor
prognosis in patients with severe COVID-19 [72,73]. In addition to the proposed impact
of SGLT2 inhibitors on the chronic inflammatory cascades, several other effects might
beneficially influence the clinical course of LCS: selective reduction of interstitial volume
with almost stable blood volume, reduction of oxidative stress and sympathetic activity, en-
hanced cellular protection by lowering of cytoplasmic natrium and calcium concentrations,
alterations in cellular energy metabolism, and decreased cellular hypoxia [67,72,74,75].
Reduced lactate levels and stable maintenance of the cytosolic pH levels are previously
described positive effects of dapagliflozin to prevent the severe chronic course of COVID-19
infection and to reduce viral load and chronic inflammatory conditions [76]. Hence, further
research was initiated to evaluate the effects of dapagliflozin on respiratory failure in
patients with COVID-19 (DARE-19) as a multi-center trial (ClinicalTrials.gov identifier:
NCT04350593). In this context, Rossello et al. reported the safe and effective use of SGLT2
inhibitors in hospitalized patients with cardiometabolic risk factors during the COVID-19
pandemic without any significant efficacy in the acute infection phase in the DARE-19
trial [77]. However, the drug was well-tolerated and the observed data revealed no concerns
about volume depletion, increased risk of diabetic ketoacidosis (DKA), or acute kidney
injury [78]. Furthermore, the results of Li et al. demonstrated that a decrease in ACE expres-
sion and accompanying elevated levels of pro-inflammatory chemokines and cytokines in
acute COVID-19 patients as well as in SARS-CoV-2-infected cardiomyocytes were estimated
to play an important role in acute COVID-19-affected multiple organ dysfunction [79]. Re-
cent data implicated that the subsequent exacerbated inflammatory sequelae, such as
endothelial dysfunction, fibrosis, and oxidative stress mediated by SARS-CoV-2 infection,
are responsible for the acute COVID-19-associated adverse cardiorenal events [79]. By
improving the abnormal apelin-ACE2 signaling, SGLT2 inhibitors might represent a poten-
tial therapeutic approach in ameliorating the cardiorenal dysfunction in acute COVID-19
patients and serve as a potential effective LCS treatment option [79]. In addition, SGLT2
inhibition is reported to be associated with optimized myocardial substrate utilization,
positive skeletal muscle remodeling, positive effects on vascular function, and improved
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cardiac function and exercise capacity in HF in the context of LCS [65,80,81]. Hence, these
underlying conditions and further meta-analyses suggest the potential beneficial effects of
SGLT2 inhibitor treatment to reduce acute and long-term COVID-19 mortality risk in the
general population and in those with metabolic diseases [74,82,83]. In addition to this po-
tential new drug option, health care professionals should recommend lifestyle modification
such as regular physical exercise and smoking cessation to improve long-term management
in people with LCS [79].

3.3.2. Future Innovative Therapeutic Approaches

While LCS represents an emerging chronic illness affecting millions of people world-
wide, the scientific community spends a lot of effort in discovering potential effective
therapeutical drugs for LCS treatment [66]. In this context, the COVID-OUT trial revealed
a significant subsequent risk reduction of 41.3% in LCS for early outpatient COVID-19
treatment with metformin during a 10-month follow-up [66]. Alternative substances,
such as fluvoxamine and ivermectin, did not reveal significant benefits in the COVID-
OUT trial for LCS risk reduction [66]. Up to date, several initiated trials focusing on the
medical treatment options of LCS have been registered on clinicaltrials.gov, mainly fo-
cusing on autoantibody neutralization in LCS (BLOC trial, ClinicalTrials.gov identifier:
NCT05911009) or magnesium and vitamin D administration in LCS (ClinicalTrials.gov
identifier: NCT05630339). In the UK, the multi-center trial HEAL-COVID has been set up
to reveal the long-term consequences of COVID-19. The participants were randomized to
receive either atorvastatin (40 mg daily for 15 months), the oral anticoagulant apixaban
(2.5 mg twice daily for 2 weeks), or medical standard usual care [3]. Atorvastatin has been
reported for its favorable pleiotropic effects on the reduction of oxidative stress and vas-
cular inflammation contributing to preserved endothelial function [22]. Additionally, the
oral anticoagulant apixaban is being trialed as a prophylactic anticoagulant since the high
association between COVID-19 and consecutive thromboembolism and microangiopathy
has been proven beforehand [3,84]. Another drug worthy of study in the context of LCS
is an angiotensin receptor blocker, such as telmisartan, due to its ability to reestablish car-
diovascular homeostasis by regulating the RAAS [3,85]. Therefore, Cooper et al. reviewed
the association between LCS and cardiovascular complications and future implications for
pharmacological therapies [85].

Up to now, no registered trial is focusing SGLT2 inhibitor administration in LCS and
is evaluating the various previously reported anti-inflammatory and cardiorenal beneficial
systemic effects of SGLT2 inhibitors and their potential role in LCS risk reduction [28].
Due to the previously described various beneficial effects of SGLT2 inhibition [28], further
scientific effort will need to be established in ongoing LCS research.

4. Conclusions

Although orally administered SGLT2 inhibitors have been demonstrated to exhibit
several favorable effects in the clinical course of T2D and heart failure patients, their ra-
tionale has not yet been proven in well-designed randomized controlled trials nor for
patients suffering from LCS; however, especially for those living with LCS, this information
is crucial and urgently needed. In the absence of long-term data assessment in COVID-19,
the various anti-inflammatory and beneficial systemic effects of SGLT2 inhibitors might
contribute to playing a promising adjunctive therapy in LCS patients suffering from ongo-
ing systemic inflammation. Nevertheless, the possible risk of DKA associated with severe
metabolic disorders in COVID-19 in the acute phases might also be presumed for LCS due
to chronic inflammatory conditions. The existing data on the mode of action of SGLT2
inhibitors suggest that it might be worthwhile to investigate this pharmacological class
further in people with LCS.
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