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After assessing the levels of spread and severity of the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) infection, academic literature focused on the patho-
physiology of coronavirus disease 2019 (COVID-19) [1–3]. The Journal of Cardiovascular
Development and Disease has actively contributed to the growth of our knowledge in this
field, with articles spanning a range of topics from mechanisms and risk stratification to
therapeutic interventions [4–7].

It is well documented that SARS-CoV-2 infection may trigger a cascade of systemic
events affecting various organs and tissues [8,9]. Emerging data support that the lead-
ing actor in the pathogenesis of the complications of COVID-19 is a dysregulation of the
renin–angiotensin system (RAS) [10–12]. Related evidence from experimental and clinical
studies have been accrued [12] and the imbalance between angiotensin II (Ang II) and
Angiotensin1–7 (Ang1–7) caused by the interaction between SARS-CoV-2 (as mediated by the
binding of the Spike protein of the virus) and the angiotensin converting enzyme 2 (ACE2)
receptors exerts a pivotal role on the clinical picture and outcome of COVID-19 [10–13].
More specifically, SARS-CoV-2 entry into human cells is mediated by the efficient binding
of the Spike protein to ACE2 [14,15]. The ACE2 is a trans-membrane type I glycoprotein (ex-
pressed in almost all human tissues [16]) which uses a single extracellular catalytic domain
to cleave an amino acid from Ang II to form Ang1–7 [17]. The viral entry process consists of
three main steps [14,18]. In the first step, the N-terminal portion of the viral protein unit
S1 binds to a pocket of the ACE2 receptor [14]. In the second step, the protein cleavage
between the S1 and S2 units is operated by the receptor transmembrane protease serine 2
(TMPRSS2) which facilitates viral entry and downregulates surface ACE2 expression [19].
In the third step, the viral S2 unit undergoes a conformational rearrangement after the
cleavage of the viral protein by TMPRSS2, driving the fusion between the viral and cellular
membrane and promoting the entry of the virus into cell, release of its content, replication,
and infection [20].

The failure of the counter-regulatory RAS axis, characterized by the decrease in ACE2
expression and generation of the protective Ang1–7, is strictly implicated in the devel-
opment of severe forms of COVID-19 [10,11,13,14,21,22]. ACE2 internalization, down-
regulation, and malfunction, predominantly due to viral occupation, dysregulates the
protective RAS axis with increased generation and activity of Ang II and reduced formation
of Ang1–7 [10,11,13] (Figure 1). This has been corroborated by recent investigations support-
ing the evidence of the development of an “Ang II storm” [23] or “Ang II intoxication” [24]
during the SARS-CoV-2 infection [7,11–13,25,26]. Ramos and co-workers provided a new
assessment of available data, exploring COVID-19 as a molecular disease that causes nega-
tive regulation of ACE2 and RAS with microcirculatory changes responsible for the wide
variety of injury mechanisms observed in different organs as a result of the disease [23].
Similarly, Sfera and co-workers proposed a common pathophysiological denominator for
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COVID-19 [24]. They hypothesized that the outlook of COVID-19 is negatively correlated
with the intracellular accumulation of Ang II promoted by the viral blockade of its de-
grading enzyme receptors [24]. Notably, similar effects of COVID-19 vaccines have been
recently postulated [8,27]. Indeed, COVID-19 vaccines increase the endogenous synthesis
of SARS-CoV-2 Spike proteins. The free-floating Spike proteins synthetized by cells targeted
by vaccines and destroyed by the immune response may massively circulate in the blood
and systematically interact with ACE2 receptors, thereby promoting ACE2 internalization
and degradation [8,27]. In other words, these reactions might result in pathological features
which resemble those of SARS-CoV-2 infection [8,27].
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Figure 1. Schematic representation of the renin–angiotensin system (RAS, left side). The effects of
viral occupation (right side) on the failure of the counter-regulatory RAS axis are also depicted (see
text for details). ACE = angiotensin converting enzyme, ACE2 = angiotensin converting enzyme 2,
AT1 = angiotensin II receptor type 1, AT2 = angiotensin II receptor type 2, RAS = renin-angiotensin
system, SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2.

The reduced catalytic efficiency of ACE2 resulting from viral occupation and down-
regulation of these receptors may be particularly detrimental in patients with baseline
deficiency of ACE2 receptor activity [11,12]. Notably, phenotypes of ACE2 deficiency
include advanced age, some cardiovascular risk factors, and previous cardiovascular
events [9–12,28–37]. Aging is associated with declining levels of ACE2 expression in
experimental and human models [38–41]. Chen and co-workers analyzed GTEx and other
public data in 30 tissues across thousands of individuals and they found an age-dependent
decrease in ACE2 expression in all ethnic groups [40]. Furthermore, human and mouse data
analysis revealed that ACE2 expression is reduced in type 2 diabetes [40]. Similar results
have been also obtained in other reports showing that diabetes mellitus is associated with a
reduction in ACE2 expression and with Ang1–7-generating system downregulation [42,43].
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Hypertension is associated with RAS over-activation, increased angiotensin type 1
receptor (AT1R) stimulation by Ang II, and downregulation of ACE2 [44].

ACE2 deficiency is also documented in several experimental models of cardiovascular
complications, including congestive heart failure, myocardial ischemia and infarction, and
coronary artery disease [45–49]. For example, Kassiri and co-workers reported that loss of
ACE2 facilitates adverse post-myocardial ventricular remodeling through potentiation of
Ang II effects [48]. In their experimental analyses, myocardial infarction was associated
with a persistent increase in ACE2 protein in the infarct zone in wild-type mice, whereas
loss of ACE2 enhanced the susceptibility to myocardial infarction, with increased mortality,
infarct expansion, and adverse ventricular remodeling characterized by ventricular dilation
and systolic dysfunction [48]. In ACE2-deficient hearts, elevated myocardial levels of Ang
II and decreased levels of Ang1–7 in the infarct-related zone were associated with increased
production of reactive oxygen species [48]. Additionally, ACE2 deficiency leads to increased
matrix metalloproteinase (MMP) 2 and MMP9 levels with MMP2 activation in the infarct
and peri-infarct regions, as well as increased gelatinase activity leading to a disrupted
extracellular matrix structure after myocardial infarction. Moreover, loss of ACE2 was also
associated with increased neutrophilic infiltration in the infarct and peri-infarct regions,
resulting in upregulation of inflammatory cytokines [48].

However, ACE2 are not the exclusive angiotensinases in humans. Other angiotensi-
nases involved in the processing of Ang II to Ang1–7 may influence the detrimental inter-
actions between Spike proteins of SARS-CoV-2 and ACE2 receptors [50–53]. As recently
suggested, the relative activity of different angiotensinases (including ACE2, prolyl car-
boxypeptidases, and prolyl oligopeptidases) and their changes in the cardiovascular con-
tinuum disease, should be taken into consideration to fully understand the pathogenesis
of COVID-19. In other words, different mechanisms of Ang II cleavage and accumulation
may be involved in a unique pathophysiological mechanism explaining the risk of the
progression to severe forms of COVID-19 [8,12].

In conclusion, understanding the pathophysiology of COVID-19 influences the treat-
ment of these patients. Importantly, some hypotheses have been made on the potential
therapeutic approach of restoring the ACE2/Ang1–7 pathway.

Pharmacological modulation of RAS may be useful to enhance the blockade of the
transition from infection to severe forms of COVID-19 [25]. In a recent prospective study of
hypertensive patients with COVID-19, we documented that exposure to RAS modifiers was
associated with a significant reduction in the risk of in-hospital mortality compared to other
blood pressure-lowering strategies [7]. Exposure to ACE-inhibitors was not significantly
associated with a reduced risk of in-hospital mortality compared with patients who were
not treated with RAS modifiers [7]. Conversely, angiotensin receptor blockers users showed
a 59% lower risk of death (p = 0.016) even after allowance for several prognostic markers,
including age, oxygen saturation, occurrence of severe hypotension during hospitalization,
and lymphocyte count [7].

Moreover, the delivery of functional soluble ACE2 forms may trap the virus and stim-
ulate the RAS protective pathway [13]. Finally, ACE2 inhibitors may block or attenuate the
binding of SARS-CoV-2 Spike protein to the pocket of the ACE2 [13]. This pharmacological
approach could reduce viral internalization into ACE2-expressing cells [13]. However, phar-
macological inhibition of ACE2 may exert enzymatic activities with or without inactivation
of ACE2. The real challenge in the field of ACE inhibition is to modulate SARS-CoV-2
binding to ACE2 without blocking the protective conversion of Ang II into Ang1–7 [13].
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