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Simple Summary: Enterotoxigenic Escherichia coli (ETEC) is one of the most common bacterial causes
of diarrhea in children and farm animals. Zinc has received widespread attention for its roles in
the prevention and treatment of diarrhea. However, zinc is also essential for the pathogenesis of
ETEC. This study aimed to explore the accurate effect and mechanisms of marginal zinc deficiency on
ETEC k88 infection and host intestinal health. Using the newly developed marginal zinc deficiency
and ETEC k88 infection mouse model, we found that marginal zinc deficiency aggravated growth
impairment, diarrhea, intestinal morphology, intestinal permeability, and inflammation induced
by ETEC k88 infection. Consistently, intestinal ETEC k88 shedding was also higher in mice with
marginal zinc deficiency. However, marginal zinc deficiency failed to affect host zinc levels and
correspondingly the zinc-receptor GPR39 expression in the jejunum. In addition, marginal zinc
deficiency upregulated the relative expression of virulence genes involved in heat-labile and heat-
stable enterotoxins, motility, cellular adhesion, and biofilm formation in the cecum content of mice
with ETEC infection. These findings provide a new explanation for zinc treatment of ETEC infection.

Abstract: Zinc is both essential and inhibitory for the pathogenesis of enterotoxigenic Escherichia coli
(ETEC). However, the accurate effects and underlying mechanism of marginal zinc deficiency on
ETEC infection are not fully understood. Here, a marginal zinc-deficient mouse model was established
by feeding mice with a marginal zinc-deficient diet, and ETEC k88 was further administrated to mice
after antibiotic disruption of the normal microbiota. Marginal zinc deficiency aggravated growth
impairment, diarrhea, intestinal morphology, intestinal permeability, and inflammation induced by
ETEC k88 infection. In line with the above observations, marginal zinc deficiency also increased
the intestinal ETEC shedding, though the concentration of ETEC in the intestinal content was not
different or even decreased in the stool. Moreover, marginal zinc deficiency failed to change the host’s
zinc levels, as evidenced by the fact that the serum zinc levels and zinc-receptor GPR39 expression
in jejunum were not significantly different in mice with ETEC challenge. Finally, marginal zinc
deficiency upregulated the relative expression of virulence genes involved in heat-labile and heat-
stable enterotoxins, motility, cellular adhesion, and biofilm formation in the cecum content of mice
with ETEC infection. These findings demonstrated that marginal zinc deficiency likely regulates
ETEC infection through the virulence factors, whereas it is not correlated with host zinc levels.

Keywords: marginal zinc deficiency; enterotoxigenic Escherichia coli; intestinal barrier; inflammation;
virulence factors

1. Introduction

Diarrhea is one of the major health problems faced by humans and farm animals.
More than 200 million children’s diarrhea cases have been reported globally [1,2], and
more than 1,000,000 piglets have died from diarrhea in southern China [3]. Enterotoxigenic
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Escherichia coli (ETEC) is one of the most common bacterial causes of diarrhea in children
and piglets [4,5]. ETEC infection-induced acute watery diarrhea caused rapid dehydration
and was accompanied by gut barrier dysfunction and inflammation [6-8]. Two processes
are required to initiate the ETEC infection. The first process is the colonization of ETEC on
the intestinal epithelium mediated by colonization factors, mainly composed of fimbria and
fimbria-related extracellular filamentous protein polymers [9]. Secondly, various kinds of
enterotoxins, especially heat-labile (LT) and heat-stable enterotoxins (ST), are synthesized
and released into intestinal epithelia, which further disrupt the intestinal electrolyte balance
by stimulating water and electrolyte secretion into the intestinal lumen [10,11]. In addi-
tion, enterotoxins also elevate the relative expression of genes involved in inflammatory
cytokines, such as IL-18, in epithelial cells [12].

Zinc is a fundamental trace element and participates in various physiological pro-
cesses, including catalyzing enzyme activity, cellular proliferation, and differentiation. Zinc
deficiency is commonly associated with diarrhea. Zin deficiency has been estimated to
account for 4% of diarrhea cases and mortality in children in developing countries [13].
Zinc is recommended by the World Health Organization (WHO) and The United Nations
Children’s Fund for children below five years of age suffering with diarrhea [14]. These
recommendations were based on the positive effect of zinc on intestinal barrier, immune
response, and fluid transport [15-17]. Zinc can also improve growth performance and
immune status and reduce diarrhea incidences in weaning piglets [18]. However, accumu-
lating data have demonstrated that zinc is also essential for maintaining the pathogenic
phenotype of ETEC. ETEC k88 needs to compete with the host for zinc under a restricted
zinc environment, and inhibiting the zinc transporter results in ETEC growth perturba-
tion [19]. In addition, marginal zinc was more common than severe zinc deficiency; many
of the present studies regarding the relationship between ETEC and zinc deficiency have
only used zinc depletion models [11], whereas data addressing the influence of marginal
zinc deficiency on ETEC infection, host intestinal barrier, inflammation, and its mechanisms
are lacking. In this study, we established a mouse diarrhea model by oral gavage ETEC k88
and explored the effect and mechanism of marginal zinc deficiency on ETEC k88 infection
and host intestinal function.

2. Materials and Methods
2.1. Animals and Treatment

All studies on mice were approved by the Animal Care and Use Committee of the
College of Biological Engineering, Henan University of Technology (Ethic Approval Code:
Haut202110—-5). All experiments were performed following the National Research Coun-
cil’s Guide for the Care and Use of Laboratory Animals, Chinese Order No. 676 of the State
Council, date 1 March 2017. A total of 36 female Institute for Cancer Research (ICR) mice
(SPF grade) at 21 days old were purchased from Huafukang company (Beijing, China). All
mice were individually raised in a temperature- and humidity-controlled room (tempera-
ture 21 & 1 °C, humidity 50 & 10%), and an artificial lighting schedule was provided from
08:00 to 20:00. Mice had free access to water and food.

After 7 days of acclimation, all mice were randomly assigned to a marginal zinc-
deficient diet group (dZn), a marginal zinc-deficient diet and ETEC infection group (dZn +
ETEC), a diet with normal levels of zinc group (Zn), or a diet with normal levels of zinc
and ETEC infection group (Zn + ETEC) for 16 days, as a previous study showed serum and
tissue zinc deficiency in mice fed the zinc-deficient diet for 14 days [20]. dZn and dZn +
ETEC mice were both fed a marginal zinc-deficient diet, and Zn and Zn + ETEC mice were
both fed a diet with normal zinc levels (marginal zinc-deficient diet plus 30 mg/kg zinc
sulfate). The formulation and composition of the diets are shown in Table S1.

On day 12 of experimental diet feeding, mice were treated with streptomycin (0.5 g/L,
Shanghai yuanye Co., Shanghai, China) together with fructose (6.7%, Solarbio Science &
Technology Co., Beijing, China) in drinking water for 36 h to remove the gut commensal
bacteria, according to previous studies [21,22]. Food was removed 12 h before inoculation.
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All the mice were administered intraperitoneally with Cimetidine (50 mg/kg, Sigma,
St. Louis, MO, USA) 2-3 h prior to inoculation and then, were intragastrically gavaged
with DMEM medium alone or 10° colony-forming units (CFU) ETEC k88 resuspended in
DMEM medium. The concentration of ETEC was determined by the relationship between
OD value and CFU of ETEC. The serotype of ETEC was 0149:K91:K88ac.

2.2. Samples

The criteria of diarrhea and diarrhea score were performed according to the previous
study [22]. Briefly, the stool of mice was continuously monitored every 12 h, and mice
stools with normal appearance, color change, wet tail or mucosa, and liquid stools were
given scores of 0, 1, 2, and 3, respectively. The severity of diarrhea was determined by
dividing the sum of all diarrhea scores by the number of mice. Mice were euthanized and
sampled at 2 days post-infection after 8 h of fasting. The blood samples were collected and
centrifuged at 3500 g for 15 min, and the serum samples were stored at —80 °C.

The jejunum was separated from the dZn, dZn + ETEC, dZn, and Zn + ETEC groups,
and the middle part of the jejunum was carefully flushed with cold phosphate buffer and
collected in the tube with 4% paraformaldehyde (Solarbio, Beijing, China). The tissue
samples of jejunum and chyme samples of cecum were also collected and immediately
preserved in liquid nitrogen for 2 h and then transferred and stored at —80 °C.

2.3. Intestinal Morphology

The fixed jejunum tissue was dehydrated with different concentrations of ethanol
(100%, 95%, and 75%) and then embedded in paraffin wax. Transverse tissue samples
of 5 um were cut from the middle part of paraffin wax and were further stained with
hematoxylin and eosin.

Villus height, crypt depth, and villus height/crypt depth were determined as previ-
ously described [23]. Briefly, a total of 10 crypt-villi units per transverse tissue samples
were randomly measured; the villus height was calculated from the tip of the villus to
the base, and the crypt depth was measured from the valley between villi to the basal
membrane.

2.4. Inflammatory Cytokines

The serum inflammatory cytokines TNF-«, IL-6, and IL-1(3 were measured using
the mouse-specific ELISA kit. The methods were performed according to the standard
procedures of the protocol (Nanjing Jian Cheng Co., Ltd., Nanjing, China), with serum
samples being diluted through saline if the measurements were out of the detection range.
The thresholds of TNF-«, IL-6, and IL-13 were 1000 pg/mL, 600 pg/mL, and 200 pg/mL,
respectively.

2.5. Intestinal Permeability

The permeability of the intestine was assessed by determining the serum levels of
diamine oxidase (DAO), D-xylose, and endotoxin. The serum levels of DAO and D-xylose
were measured using the mouse-specific kit (Nanjing Jian Cheng Bioengineering Co., Ltd.,
Nanjing, China) and performed according to the standard procedures of the protocol. The
serum endotoxin level was determined by a limulus amebocyte lysate test (Xiamen Bioendo
Technology Co., Ltd., Xiamen, China) and performed according to the standard procedures
of the protocol. The serum levels of DAO, D-xylose, and endotoxin were calculated from
the standard curve. Serum samples were be diluted through saline if the measurement was
out of the detection range. The threshold of DAO, D-xylose, and endotoxin were 100 U/L,
60 nmol/mL, and 1.0 EU/mL, respectively.

2.6. Real-Time RT-PCR

All the primers used in this part were designed through primer BLAST from NCBI.
The primer information is shown in Table S2. The total RNA of jejunum samples was
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extracted by using the RNAiso plus reagents, and the complementary DNA (cDNA) was
further synthesized by using a reverse transcription kit (Vazyme, Nanjing, China). Real-
time quantitative PCR (RT-qPCR) of cDNA was performed on a CFX96 Real-Time PCR
Detection System (Analytik Jena, Jena, Germany) to quantify mRNA expression with a
universal SYBR Green JPCR Master Mix (Vazyme, Nanjing, China). The RT-qPCR condition
was shown as follows: 95 °C for 30 s, 40 cycles of 95 °C for 10 s, and 60 °C for 30 s, and
a melt curve analysis with 95 °C for 15 s, 60 °C for 60 s, and 95 °C for 15 s. GAPDH was
used as the internal control. The relative mRNA expression levels of jejunum samples of
the dZn, dZn + ETEC, dZn, and Zn + ETEC groups were calculated by the 2-42¢T method,
as previously described [24].

2.7. Stool ETEC Shedding and Tissue Burden

The ETEC in stool, cecum content, and jejunum was measured as previously de-
scribed [25]. Briefly, the fresh stool, cecum content, and jejunum of mice at day 2 post-
infection were collected and weighted in a sterile tube. All the samples were homogenized
in saline and plated on MacConkey agar through gradient dilution. After 24 h incubation
at 37 °C, colony-forming units (CFU) were counted. The concentration of Escherichia coli
was expressed as the log CFU per gram of stool or tissue.

2.8. ETEC Growth Curve

The ETEC growth curve under different levels of zinc was determined as described [26].
Briefly, the equal ODgqg value of ETEC resuspended in DMEM medium was added with
different amounts of zinc sulfate to make the final concentration of zinc 0, 15, 30, and
60 mg/L. The bacteria were cultured at 37 °C and shaken at 180 r/min. The ETEC was
continuously sampled at 0, 2, 4, 6, 8, 10, 12, 14, and 16 h and measured at ODgyy by an
ultraviolet spectrophotometer, and the timepoint of inoculation ETEC was regarded as 0 h.
The ETEC growth curve was determined by the ODgg value.

2.9. Zinc Content

The serum zinc concentration was measured using a serum zinc measurement kit (So-
larbio, Beijing, China), and the procedure was performed according to the kit’s instructions.
The zinc contents in the diets were measured using flame atomic absorption spectrometry
(ContrAA, Analytik Jena, Jena, Germany).

2.10. Virulence Factor Analysis

All primers used for virulence factor quantification are shown in Supplementary Table S3.
The relative expression of the virulence factor in cecum content was determined the same
as mRNA in the jejunum. Briefly, the total RNA of cecum content was obtained using the
RNAiso plus reagents, and cDNA was further synthesized using a reverse transcription kit
(Vazyme, Nanjing, China). qRT-PCR was performed to quantify mRNA expression with a
universal SYBR Green qPCR Master Mix (Vazyme, Nanjing, China). The relative mRNA
expression levels of the cecum content were calculated by the 22T method, and gapA
was taken as the internal control.

2.11. Data Analysis
Data are expressed as means + s.e.m. All data were analyzed by two-way ANOVA of

GraphPad Prism (8.0.2 version, San Diego, CA, USA), and means were compared using the
Student-Newman—Keuls test. p < 0.05 was considered statistically significant.

3. Results

3.1. Effect of Marginal Zinc Deficiency on Serum Zinc Concentration of Mice with
ETEC Challenge

To explore the role of marginal zinc deficiency in mice with ETEC challenge, mice
were fed a marginal zinc-deficient diet for 16 days and challenged with ETEC k88 at day
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14 after antibiotics treatment [22]. Daily zinc intakes were higher (p < 0.05) in the Zn and
Zn + ETEC groups compared with the dZn and dZn + ETEC groups (Figure 1a), though
the body weight and average feed intake were not significantly different (Figure S1). In
addition, the serum zinc levels were higher (p < 0.05) in the Zn group compared with
the dZn group, which demonstrated that the marginal zinc deficiency mouse model was
successfully established in the present study. It is noteworthy that marginal zinc deficiency
failed to change the zinc levels in mice with ETEC challenge, as the serum zinc levels were
not different (p > 0.05) between the dZn + ETEC and Zn + ETEC groups (Figure 1b).

P-Zn<0.0001 P-ETEC>0.9999 P-ZnxETEC>0.9999 P-Zn=0.0358 P-ETEC=0.1046 P-ZnxETEC=0.1257
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Figure 1. Effect of marginal zinc-deficiency on zinc intake and serum zinc levels of mice. (a) The zinc
intake and (b) serum zinc levels in dZn, dZn + ETEC, Zn, and Zn + ETEC groups. n = 9/group. Data
were expressed as means =+ s.e.m; different superscript lowercase letters within each group indicate
significantly different values (p < 0.05).

3.2. Marginal Zinc-Deficient Mice Have Greater Diarrhea Scores and Body Weight Losses after
ETEC Challenge

Marginal zinc deficiency has no significant effect (p > 0.05) on body weight losses
and diarrhea scores in mice without ETEC infection, whereas the body weight losses and
diarrhea scores increased in mice with ETEC challenge. Compared with the Zn + ETEC
group, dZn + ETEC mice showed higher (p < 0.05) body weight losses and diarrhea scores
at 40 and 48 h post-ETEC infection, though these indicators were not significantly different
(p > 0.05) between dZn and Zn groups (Figure 2a—c).

—o— dZn
-=- dZn+ETEC
—A— Zn

¥ Zn+ETEC

The change in body weight (%)

Time (hours post-challenge)
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Figure 2. Cont.
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Figure 2. Effect of marginal zinc deficiency on the clinical symptoms induced by ETEC infection.
(a) The effect of marginal zinc deficiency on the body weight change from 0 to 48 h after ETEC
challenge. (b,c) The effect of marginal zinc deficiency on the diarrhea scores at 24 and 48 h after
ETEC challenge. n = 9/group. Data were expressed as means = s.e.m; different superscript lowercase
letters within each group indicate significantly different values (p < 0.05).

3.3. Intestinal Morphology Was Altered in Marginal Zinc-Deficient Mice with ETEC Challenge

Intestinal morphology was analyzed by the villus morphology and histopathology in
the jejunum, the main tissue responsible for nutrients absorption. Compared with the Zn
group, the dZn group showed slight changes in the jejunum morphology, except for a lower
villus height (Figure 3). Conversely, marginal zinc deficiency aggravated the intestinal
morphology damage caused by ETEC infection. Compared with the Zn + ETEC group,
dZn + ETEC mice showed obvious bleeding points, impaired jejunum villus, and lower
villus height and villus height/crypt depth of the jejunum (Figure 3a—e).
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Figure 3. Effect of marginal zinc deficiency on the intestinal morphology of mice with ETEC infection.
(a) The effect of marginal zinc deficiency on the intestinal morphology of mice after ETEC challenge.
(b) The effect of marginal zinc deficiency on the jejunum with hematoxylineosin staining with
the magnification factor of 100x. (c—e) The effect of marginal zinc deficiency on the villus height,
crypt depth, and villus height/crypt depth. n = 9/treatment. Data were expressed as means +

s.e.m; different superscript lowercase letters within each group indicate significantly different values
(p < 0.05).
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3.4. Marginal Zinc Deficiency Decreased Host Defense against ETEC Infection Induced Disruption
of Intestinal Barrier and Permeability

The intestinal barrier and its permeability are vital for the host to fight against endoge-
nous and exogenous hazardous substances. Serum diamine oxidase (DAQO) and D-lactate
are often regarded as essential indicators of intestinal barrier function. Marginal zinc
deficiency has no significant effect (p > 0.05) on serum levels of DAO and D-lactate in
mice without ETEC challenge, whereas it increased (p < 0.05) the serum levels of DAO and
D-lactate in mice with ETEC challenge (Figure 4a,b). Endotoxin was mainly synthesized by
ETEC and released into a host intestinal epithelium [10]. The decreased serum endotoxin in
dZn + ETEC compared with Zn + ETEC (Figure 4c) also verified the disruption of intestinal
barrier function and permeability.

To further explore the role of marginal zinc deficiency on the intestinal function of
ETEC-challenged mice, the relative expression of mRNAs responsible for intestinal barrier
was analyzed. Compared with the Zn group, dZn mice showed no significant effect
(p > 0.05) on the relative expression of occludin, claudin-1, Zo-1, and Muc-2. However,
marginal zinc deficiency aggravated the intestinal barrier function injury caused by ETEC
infection, as dZn + ETEC group mice exhibited lower (p < 0.05) levels of occludin, claudin-1,
Zo-1, and Muc-2 compared with the Zn + ETEC group (Figure 5a—d).
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Figure 4. Effect of marginal zinc deficiency on the intestinal permeability of mice with ETEC infection.
The effect of marginal zinc deficiency on serum levels of (a) DAO, (b) D-Lactate, and (c) endotoxin
in serum of mice with ETEC challenge. n = 9/treatment. Data were expressed as means + s.e.m;

different superscript lowercase letters within each group indicate significantly different values
(p <0.05).
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Figure 5. Cont.
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Figure 5. Effect of marginal zinc deficiency on the relative expression of mRNAs involved in intestinal
barrier function of mice with ETEC infection. The effect of marginal zinc deficiency on the relative
expression of (a) occludin, (b) claudin-1, (c) Zo-1, and (d) Muc-2 in the jejunum of mice with ETEC
challenge. n = 9/treatment. Data were expressed as means + s.e.m; different superscript lowercase
letters within each group indicate significantly different values (p < 0.05).

3.5. Marginal Zinc Deficiency Aggravated Intestinal Inflammation in Mice with ETEC Challenge

In addition to the intestinal barrier and its permeability, marginal zinc deficiency also
induced a more powerful intestinal inflammatory reaction in mice with ETEC challenge.
Marginal zinc deficiency caused higher (p < 0.05) serum levels of inflammatory cytokines
(IL-1B, TNF-«, and IL-6) and intestinal mRNAs expression of inflammatory cytokines
(IL-1B, TNF-a, and IL-6) in the dZn + ETEC group compared with the Zn + ETEC group,
though no significant differences (p > 0.05) were found between the dZn and Zn groups
(Figure 6a—f).
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Figure 6. Effect of marginal zinc deficiency on the intestinal inflammation of mice with ETEC infection.
The effect of marginal zinc deficiency on serum levels of (a) IL-13, (b)TNF-«, and (c) IL-6 in serum
of mice with ETEC challenge. The effect of marginal zinc deficiency on the relative expression of
(d) IL-1B, ()TNF-a, and (f) IL-6 in jejunum of mice with ETEC challenge. n = 8/treatment. Data
were expressed as means =+ s.e.m; different superscript lowercase letters within each group indicate
significantly different values (p < 0.05).
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3.6. Marginal Zinc Deficiency Aggravated Intestinal Injury Was Associated with NF-xB

The G protein-coupled receptor 39 (GPR39) has been recognized as a critical zinc-
sensing receptor, which plays an essential role in intestinal barrier function [18]. Marginal
zinc deficiency downregulated (p < 0.05) the relative expression of GPR39 in the jejunum of
mice without ETEC challenge, whereas it had no significant effect in the jejunum of mice
with ETEC challenge (Figure 7a). Nuclear factor kappa-B (NF-«B), the key transcription
factor of pro-inflammatory genes, promotes immunity by controlling the expression of
genes involved in inflammation [27]. In this study, marginal zinc deficiency increased
(p < 0.05) the relative expression of NF-xB, though TLR-4 was not significantly different in
mice with ETEC infection (Figure 7b,c). Marginal zinc deficiency aggravating the intestinal
injury in mice was likely to be associated with NF-«B, but it did not correlate with the
zinc-receptor GPR39.

3.7. Marginal Zinc Deficiency Altered Anion Transporters in Mice with ETEC Challenge

Na*/H* exchange protein 3 (NHE3) and cystic fibrosis transmembrane conductance
regulator (CFTR) mediate the Na* absorption and anion secretion into the intestine, re-
spectively [28]. Marginal zinc deficiency alone has no significant effect on the relative
expression of NHE3 and CFTR in jejunum (Figure 8a,b). Compared with the Zn + ETEC
group, the dZn+ETEC group showed lower relative expression of NHE3, but higher
(p < 0.05) CFTR in the jejunum, implying that marginal zinc deficiency aggravated in-
testinal anion secretion and inhibited Na* absorption in mice with ETEC challenge.

3.8. Marginal Zinc Deficiency Increased the ETEC Shedding in the Jejunum of Mice with
ETEC Challenge

The enterotoxins LT and ST have been demonstrated to be the leading causes of
impaired intestinal barriers and anion transporters in response to ETEC infection [10].
ETEC in stool, cecum content, and jejunum were measured to reveal the role of marginal
zinc deficiency on ETEC shedding. Zinc deficiency has no significant effect (p > 0.05) on
the concentration of ETEC in stool, cecum content, and jejunum of mice without ETEC
challenge (Figure 9a—c). Consistently, marginal zinc deficiency also showed no significant
effect (p > 0.05) on the concentration of ETEC in the cecum content of mice with ETEC
infection, though the ETEC in stool was lower (p < 0.05) in the dZn + ETEC group compared
with the Zn + ETEC group. Surprisingly, marginal zinc deficiency significantly increased
(p < 0.05) the concentration of ETEC in the jejunum in mice with ETEC challenge (Figure 8c);
these results implied that the higher jejunum ETEC shedding in marginal zinc-deficient
mice is not likely to be associated with ETEC in intestinal content, though the ETEC growth
was inhibited in vitro by the same zinc levels as in vivo (Supplemental Figure S2).

3.9. Marginal Zinc Deficiency Enhanced Virulence Factors in Mice with ETEC Infection

To further explore the mechanism accounting for intestinal injury and ETEC shedding
in marginal zinc-deficient mice, mRNAs involved in LT, ST, motility, cellular adhesion,
biofilm formation, and quorum sensing were analyzed. Marginal zinc deficiency has no
significant effect (p > 0.05) on the relative expression of virulence genes in control mice.
However, marginal zinc deficiency significantly increased (p < 0.05) the relative expression
of genes involved in LT (eltA and eltB), ST (estB), motility (motA), cellular adhesion (faeG),
and biofilm formation (bssS) in mice with ETEC infection, though no significant differences
(p > 0.05) were found in the relative expression of genes involved in quorum sensing (/uxS)
(Figure 10a—h).
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Figure 7. Effect of marginal zinc deficiency on the relative expression of GPR39, TLR4, and NF-«B
in the jejunum. Marginal zinc deficiency altered the relative expression of mRNAs of (a) GPR39,
(b) TLR4, and (c) NF-B in the jejunum of mice with ETEC challenge. n = 9/treatment. Data were
expressed as means + s.e.m; different superscript lowercase letters within each group indicate
significantly different values (p < 0.05).
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Figure 8. Effect of marginal zinc deficiency on the relative expression of mRNAs involved in ion
absorption and secretion after ETEC infection. Marginal zinc deficiency altered the relative expression
of mRNAs of (a) NHE3 and (b) CFTR in the jejunum of mice with ETEC challenge. 1 = 9/treatment.
Data were expressed as means =+ s.e.m; different superscript lowercase letters within each group
indicate significantly different values (p < 0.05).
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Figure 9. Effect of marginal zinc deficiency on the ETEC shedding in the intestine. Marginal zinc
deficiency altered the ETEC content in (a) feces, (b) cecum content, and (c) jejunum in mice with ETEC
challenge. n = 9/treatment. Data were expressed as means + s.e.m; different superscript lowercase
letters within each group indicate significantly different values (p < 0.05).
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Figure 10. Effect of marginal zinc deficiency on the ETEC virulence in mice. Marginal zinc deficiency
altered the relative repression levels of virulence genes involved in (a,b) heat-labile toxins (eltA
and eltB), (c) heat-stable toxin (estB), (d) motility (motA), (e) cellular adhesion (faeG), (f,g) biofilm
formation (bssS and tnaA), and (h) quorum sensing (IuxS). n = 9/treatment. Data were expressed
as means + s.e.m; different superscript lowercase letters within each group indicate significantly
different values (p < 0.05).

4. Discussion

Zinc has received widespread attention for its role in the prevention, control, and
treatment of diarrhea in both children and farm animals. However, limited information
about the effect of zinc deficiency, especially marginal zinc deficiency, on ETEC k88 infection
bas been acquired. Here, a mouse diarrhea model was established by oral gavage ETEC
k88 after the gut commensal microbiota were disrupted by antibiotics, and a marginal
zinc-deficient mouse model was also established by feeding mice a marginal zinc-deficient
diet. Consistent with the symptoms of piglet diarrhea models [29,30], ETEC k88-infected
mice also exhibited more significant body weight losses, diarrhea scores, and intestinal
barrier damage and inflammatory reactions. In addition, marginal zinc-deficient mice
exhibited severe symptoms of serum zinc deficiency, which is in agreement with previous
studies on mice [31].

The intestinal epithelium functions as a barrier between the external environment
and the closely regulated internal milieu, and the increased intestinal permeability was
commonly associated with gut injury [32]. Zinc deficiency has been demonstrated to
decrease the ability of zinc absorbed into the host [6] and further induces intestinal tight
junction injury and inflammatory reaction [18,33]. In this study, marginal zinc deficiency
aggravated the intestinal injury, including decreased villus height, villus height/crypt
depth, and relative expression of genes responsible for tight junction and mucin protein,
whereas it increased intestinal permeability and pro-inflammatory cytokines. GPR39 is
a zinc-receptor, which is expressed ubiquitously throughout the gastrointestinal tract,
especially in intestinal epithelial cells. GPR39 has a dual role in promoting the proliferation
of intestinal epithelial cells and the expression of tight junctional proteins [34]. In accordance
with decreased zinc intake, marginal zinc deficiency also reduced serum zinc levels and
the relative expression of GPR39 in ETEC uninfected mice. Correspondingly, the relative
expression of GPR39 was not different between the dZn + ETEC and Zn + ETEC groups,
as serum zinc levels were not changed between these two groups. These observations
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suggested marginal zinc aggravated intestinal barrier dysfunction was not likely associated
with the host’s zinc levels.

Toll-like receptor 4 (TLR4) is the best-characterized pattern recognition transmem-
brane receptor, which can recognize many exogenous substances, such as endotoxin or
lipopolysaccharide (LPS) from Gram-negative bacteria, and then initiate inflammatory
response through the TLR4/NF-«B signaling pathway [35]. In this study, ETEC infec-
tion induced higher serum levels of endotoxin, correspondingly higher levels of serum
pro-inflammatory cytokines, and higher relative expressions of mRNAs involved in pro-
inflammatory cytokines in the jejunum, though the relative expression of TLR4 was not
different. Consistently, marginal zinc deficiency induced higher serum levels of endotoxin,
and thus higher serum pro-inflammatory cytokines, and the relative expression of intestinal
mRNAs accounted for pro-inflammatory cytokines.

The colonization of ETEC on the intestinal epithelium and subsequent enterotoxin
release are two vital processes in the pathogenesis of ETEC infection [10]. Consistent with
common pathogens of enteroaggregative Escherichia coli [26], ETEC k88 cultured in the
zinc-deficient medium exhibited higher growth speed and biomass in vitro, compared
with the zinc-supplemented group. Moreover, marginal zinc deficiency aggravated the
colonization of ETEC k88 on the intestinal epithelium, as evidenced by the result that ETEC
k88 shedding in the intestine was higher in the dZn + ETEC group compared with the Zn +
ETEC group. However, marginal zinc deficiency failed to affect the concentration of ETEC
in the cecum content and even decreased the concentration of ETEC k88 in the stool when
ETEC co-treated with zinc. The growth-promoting effect of zinc on ETEC k88 was likely
associated with its essential role in ETEC k88 growth. ETEC k88 commonly competes with
a host for zinc under a restricted zinc environment, and inhibiting the zinc transporter
results in ETEC k88 growth perturbation [19]. Consistently, zinc supplementation increased
the concentration of ETEC H10407 in stool under a zinc-restricted environment [6]. FaeG,
the major component of k88(+) fimbriae, contributes to the pathogen colonization of the
intestinal epithelium [36,37]. Our results showed that marginal zinc deficiency upregulated
the relative expression of FaeG in intestinal content, along with genes involved in cellular
motility and biofilm formation, which partly explains the increased intestinal ETEC colo-
nization in ETEC-infected mice. Enterotoxins, especially LT and ST, stimulated water and
electrolyte secretion in the intestinal lumen through Na*/H* exchange protein 3 (NHE3)
and the cystic fibrosis transmembrane conductance regulator (CFTR), thus leading to diar-
rhea [11,38]. Our results also showed that marginal zinc deficiency upregulated the relative
expression of eltA and eltB, responsible for LT, and estB, responsible for ST, in ETEC-infected
mice. In line with the elevated ST and LT, marginal zinc deficiency downregulated the
relative expression of intestinal NHE3, whereas it upregulated CTFR in ETEC-infected mice.
These findings might provide a new regulation mechanism of marginal zinc deficiency in
ETEC infection.

5. Conclusions

Taken together, the findings of this study demonstrated that marginal zinc deficiency
aggravated the growth impairment, intestinal morphology, barrier function, and inflamma-
tion induced by ETEC infection. The regulatory role of marginal zinc deficiency was highly
correlated with virulence factors of ETEC in vivo, but not with host zinc levels. Further
study is warranted to explore the potential mechanisms of marginal zinc deficiency in
virulence factors of ETEC k88 in farm animals.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /vetsci9090507 /s1, Figure S1: Zinc deficiency altered the body
weight, feed intake, and zinc intake of mice; Figure S2: Effect of zinc concentration on the growth
curve of ETEC k88; Table S1: Ingredients and composition of marginal zinc-deficient diet and normal
levels of zinc diet; Table S2: Primer set for real-time RT-PCR analysis; Table S3: Primer set for virulence
factors analysis.
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