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Abstract: This study aimed to evaluate the sealing quality of swine small intestine using different
laparoscopic radiofrequency vessel sealing devices (two 5 mm: RFVS-1 and -2; one 10 mm: RFVS-
3) and a harmonic scalpel (HS) compared to golden standard closure technique. The study was
divided into two arms. In study arm 1: n = 50 swine intestinal loops (10 per group) were transected
with each instrument and the loops in which the devices provided complete sealing, at the gross
inspection, were tested for maximum burst pressure (BP) and histological evaluation and compared
to an automatic linear stapler. After the BP tests, the devices that achieved significantly lower BP
values were excluded from the second arm. The RFVS-1 and -3 provided statistically significant
results and were used in study arm 2, to obtain full-thickness biopsies along the antimesenteric
border of the loop and were compared with hand-sewn intestinal closure (n = 30; 10 per group). The
biopsies were histologically evaluated for thermal injury and diagnostic features, and intestinal loops
tested for BP. RFVS-3 achieved comparable results (69.78 ± 4.23 mmHg, interquartile range (IQR) 5.8)
to stapler closing technique (71.09 ± 4.22 mmHg, IQR 4.38; p > 0.05), while the RFVS-1 resulted in
significantly (p < 0.05) lower BP (45.28 ± 15.23 mmHg, IQR 24.95) but over the physiological range,
conversely to RFVS-2 (20.16 ± 7.19 mmHg, IQR 12.02) and HS (not measurable). RFVS-3 resulted not
significantly different (p > 0.05) (45.09 ± 8.75 mmHg, IQR 10.48) than Suture (35.71 ± 17.51 mmHg,
IQR 23.77); RFVS-1 resulted significantly lower values (23.96 ± 10.63 mmHg, IQR 9.62; p < 0.05).
All biopsies were judged diagnostic. Data confirmed that RFVS-1 and -3 devices provided suitable
intestinal sealing, with BP pressures over the physiological range. Conversely, the HS and RFVS-2
should not be considered for intestinal sealing. RFVS devices could be employed to obtain small
intestine stump closure or full-thickness biopsies. However, further studies should be performed in
live animals to assess the role of the healing process.

Keywords: small intestine; vessel sealing device; radiofrequency vessel sealing device; harmonic
scalpel; full-thickness biopsy; burst pressure; leak pressure; swine

1. Introduction

Vessel-sealing devices (VSD) are routinely used in open and laparoscopic surgical
procedures to provide hemostasis and to dissect tissue structures and blood vessels [1].

Radiofrequency (RF)-powered devices, such as those controlled by an impedance-
based closed-loop feedback system, apply a combination of energy and mechanical pressure
to cause a physical denaturation and reconfiguration of cellular proteins, particularly

Vet. Sci. 2021, 8, 34. https://doi.org/10.3390/vetsci8020034 https://www.mdpi.com/journal/vetsci

https://www.mdpi.com/journal/vetsci
https://www.mdpi.com
https://orcid.org/0000-0003-4963-8673
https://orcid.org/0000-0001-8731-7219
https://orcid.org/0000-0002-1434-415X
https://orcid.org/0000-0002-2085-376X
https://doi.org/10.3390/vetsci8020034
https://doi.org/10.3390/vetsci8020034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/vetsci8020034
https://www.mdpi.com/journal/vetsci
https://www.mdpi.com/2306-7381/8/2/34?type=check_update&version=2


Vet. Sci. 2021, 8, 34 2 of 18

collagen and elastin, which upon cooling form a stable, leak-resistant, and hemostatic
tissue plug. RF and harmonic scalpel (HS) systems are capable of permanently sealing
blood vessels up to 5–7 mm in diameter, resulting in mechanical strengths comparable to
or even more significant than that achieved by other mechanical devices as sutures, staples,
and clips [2].

Off-label indications of energy-based devices were recently reviewed [3]. Studies
performed on human patients were additionally found to predominantly use bipolar RF
technology for parenchymal and ductal occlusion. A similar trend was seen among animal
studies with only a handful of papers examining bipolar RF energy use for intestinal
anastomosis. Although sutures and staples are the gold standard methods of intestinal
sealing, intestinal thermofusion has been described as an alternative method for intestinal
fusion and is used to seal intestines for transection [2,4–8] or anastomosis [2,9–17]. However,
there are significant incongruent data about the maximum burst pressure measurements
provided by the thermofusion. To our knowledge, no study has been performed evaluating
the application of vessel sealing devices to obtain full-thickness intestinal biopsies.

In the veterinary scenario, the peritoneal cavity contamination and technically de-
manding tasks (i.e., intra-abdominal suturing and knotting), during intestinal surgical
procedures, including intestinal biopsies, could limit a total laparoscopic approach. To
obviate to this complication, it has been described the laparoscopic-assisted procedures,
in which intestine manipulation, enterotomies, anastomosis, and full-thickness biopsies
were managed outside the abdominal cavity [18,19]. However, evaluating the possibility
of using total laparoscopic procedures in performing intestinal stumps or full-thickness
biopsies should have the advantage of minimizing surgical trauma while maintaining a
minimally invasive environment. Given the native use of radiofrequency vessel-sealing
(RFVS) and HS also for laparoscopic procedures, we decided to carry out a preliminary ex-
vivo study in a porcine model. The use of this model was justified by previous translational
studies [20], and for the wide availability, reduced costs, and reasonable ethical issues. For
these reasons, this study aimed, firstly, to evaluate the quality of sealing in swine small
intestine transection provided by different RF and HS vessel-sealing devices compared to
endoscopic stapler device. Next, we assessed the feasibility of full-thickness small intestinal
biopsies performed by vessel sealing devices that provided significant results in the first
part of the study. Based on the reported studies, we hypothesized that radiofrequency
vessel-sealing (RFVS) devices provide sealing of the small intestine comparable to gold
standard technique that they can be used to obtain safe and diagnostic intestinal biopsies.

2. Materials and Methods
2.1. Samples

Eighty (n = 80) jejunal samples, 20 cm long (diameter ~2 cm, thickness ~3 mm), were
harvested from four healthy female large white pigs, weighing 60 kg from slaughterhouse.
Because specimens were obtained from slaughtered animals, no approval was needed from
the Ethical Committee, according to the national law.

After the harvesting, the jejunum was sampled and stored in saline solution and
transported in a refrigerated box (4 ◦C) at Section of Veterinary Clinics and Animal Pro-
duction, University of Bari, Italy. Then, the samples were stored at room temperature
for 60 min. Experiments were performed ~90 min after harvesting. The samples were
randomly assigned to eight different groups of 10 each, according to a randomization list
obtained from a website (www.randomization.com).

2.2. Study Design

The study had two arms. In the first arm (study arm 1), fifty (n = 50) specimens
were transected with five different techniques along the short axis. The loops in which the
devices provided complete sealing, at the gross inspection, were tested for BP test. After
the BP tests, the devices that achieved significantly lower BP values were not employed
for the second arm study. In the second arm (study arm 2), thirty (n = 30) full-thickness
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biopsies were obtained from each specimen along the longitudinal axis of the loop with
three techniques (Figure 1).
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Figure 1. Study design. Eighty swine intestinal loops were randomly assigned to each experimental group (n = 10 each).
Group S, Stapler; Group HS, Harmonic Scalpel; Group RFVS-1, LigaSure 5-mm Dolphin tip; Group RFVS-2, ENSEAL;
Group RFVS-3, LigaSure Atlas 10-mm; BP, Burst Pressure. Group HS was not tested for maximum BP because it failed
closure in all specimens. Devices provided adequate sealing in study arm 1 passed to study arm 2.

2.3. Experimental Groups of Study Arm 1

In Group S (n = 10), a 45 mm endoscopic stapler (Endopath® ETS 45mm Articulating
Linear Cutter, ref. ATS45, Ethicon Endo-Surgery Inc., Cincinnati, OH., USA) was employed
with blue cartridge (3.5 mm titanium staples; Endopath ETS45 3.5MM, ref. TR45B, Ethicon
Endo-Surgery Inc., Cincinnati, OH, USA). In group HS (n = 10), a 5 mm laparoscopic
harmonic scalpel (Harmonic ACE+, ref. HAR36 Ethicon Endo-Surgery Inc., Cincinnati,
OH, USA) was used for jejunum transection. The power setting was level 5, which was
applied until complete transection was obtained. In group RFVS-1 (n = 10), transection
was obtained with a 5 mm radiofrequency vessel-sealing device (LigaSure™ Dolphin Tip
Laparoscopic Sealer/Divider, 37 cm, ref. LS1500, Medtronic Italia S.p.A., Milan, Italy) with
straight jaws. In the group RFVS-2 (n = 10), the jejunum was transected with a laparoscopic
5 mm radiofrequency vessel sealing device with curved jaws (Enseal® Trio Tissue Sealers,
ref. ETRIO335H, Ethicon Endo-Surgery Inc., Cincinnati, OH, USA). The instruments were
connected to the same dedicated generator as the HS instrument (Ethicon Gen11 Generator,
ref. Gen11, Ethicon Endo-Surgery Inc., Cincinnati, OH, USA). In the group RFVS-3 (n = 10)
the transection was performed with a 10 mm radiofrequency vessel sealing device with
straight jaws (LigaSure Atlas™ Tissue Fusion Laparoscopic Instrument, 37 cm, ref. LS1037,
Medtronic Italia S.p.A., Milan, Italy). The instruments used in the RFVS-1 and -3 groups
were connected to the same generator (ForceTriad™, Medtronic Italia S.p.A., Milan, Italy)
with a power setting at 3 bars. The number of times the instruments were applied to
achieve sealing and gross evaluation of sealing was recorded (Figure 2).
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2.4. Sample Constructs

Once the transection were performed, each specimen was stored in different boxes
containing saline solution and stored at room temperature for the time need to complete the
tests, and not exceeding 90 min. Accordingly, to the previous randomization list, a specimen
was selected for setting up the construct. Each construct consisted of connecting an infusion
set line inside the jejunal loop lumen for air administration. Then, a 4 mm polyethylene
cable tie was tightened on the tube line, taking care not to let air leak around the tube. The
air infusion line was connected to a three-way stopcock. An air pump (Airpump M103,
Croci s.p.a, Varese, Italy) was used to inflate the construct with a flow rate of 2.5 L/min
plugged to the stopcock. On the other plug of the stopcock, a digital manometer (GM510,
RGBS, Guangdong, China) was connected for continuous and maximum pressure recording
(Figure 3).
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2.5. Burst and Leak Pressures

The burst and leak pressures of each method were measured using the pressure
manometry. The air leaking was observed dipping the sealed site under water to see
bubbles. Maximum pressure was automatically recorded by the digital manometer when
air leaking or complete failing (burst) of sealed intestine occurred, and the manometer
recorded a pressure decrease. Maximum pressure in mmHg, air leaking, or failure of the
construct was recorded.
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2.6. Experimental Groups of Study Arm 2

In this part of the study, the devices that passed the sealing during the BP evaluation
were used to obtain full-thickness biopsies on the antimesenteric border of the intestinal
loops, and they were compared to full-thickness incisional biopsies. To obtain full-thickness
biopsies, the device jaws were applied on the antimesenteric border along the longitudinal
axis of the intestinal loop with the help of surgical forceps. Then, the instrument jaws
were clamped, and energy was activated at level 3 (3 bars) on the generator. Surgical
incision biopsies were obtained from the antimesenteric border of the intestinal loop
with Metzenbaum scissors (cold blade), and the wound was closed with seven sutures of
Gambee’s interrupted pattern performed with USP 4-0 polydioxanone suture with 13 mm
1⁄2 circle needle (PDS*II, Z924, Ethicon, Cincinnati, OH, USA).

The instrument activation and biopsy length numbers were recorded (Figure 4.)
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(A,D) Group Suture; (B,E) Group radiofrequency vessel-sealing (RFVS)-1; (C,F) Group RFVS-3.

The specimens were prepared as described for the study arm, applying another cable
tie at the opposite end to firmly close the specimen. After proper construct assembly, they
were tested for burst and leak pressures as described previously.

2.7. Histology

Tissues obtained from the transected intestinal tract (study arm 1) and biopsies (study
arm 2) were fixed in 10% neutral-buffered formalin at the time of initial collection, routinely
processed, embedded in paraffin, cut at 3–5 mm, and stained with hematoxylin and eosin.
For the histological evaluation, in study arm 1, in order to avoid the influence of pressure
tests on the sealed site, after performing the transection with each instrument, a portion of
the divided loop was destined for the BP test, while the opposite part for the histology. The
surgical biopsy specimens from study arm 2 were categorized as acceptable or unacceptable
diagnostic quality by a pathologist blinded to the procedure. For this study, the diagnostic
quality was defined according to a previous study [21], briefly, as a specimen in which≤25%
of the total section area was distorted/destroyed as an artifact of the biopsy technique.

2.8. Statistical Analysis

Statistical analysis was performed with available software (Minitab® 19 Statistical
Software, Suturentry, UK). Data were assessed for normality of distribution with the
Shapiro–Wilk test. Data were reported as the mean ± SD, and interquartile range (IQR). A
1-way ANOVA was used to compare results among groups. p-values < 0.05 were considered
significant. Power analysis was performed by a specific analysis software (G*Power 3.1,
Statistical Power Analyses, Dusseldorf, Germany). The sample size was calculated on the
basis of a pilot study considering an effect size of 2.70, alfa 0.05, and power of 95%. The
calculated sample size “a priori” for 1-way ANOVA test was n = 8. Thus, we included in
the study 10 samples in each experimental group.
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3. Results
3.1. Study Arm 1

In group HS, the instrument was activated to complete the transection for a mean of
3.4 ± 0.516 times, (IQR 1); in the group RFVS-1, the mean was 4.3 ± 0.483 (IQR 1); with
RFVS-2, the mean was 2.9 ± 0.316 (IQR 0); with RFVS-3, the mean was 2.3 ± 0.483 times
(IQR 1); with S, the mean was 1 ± 0 (IQR 0).

At gross evaluation, the sealing succeeded in 100% of samples in groups S, RFVS-1,
and RFVS-3, and 80% in RFVS-2. In the group HS, 100% of samples failed to seal, producing
a sample not evaluable for pressure testing. Thus, samples from this group were eliminated
from the study.

Maximum burst or leak pressure data are reported in Table 1. In the stapler group (S),
none of the constructs failed, but air leaking was constant at the staples (Figure 5).

Table 1. BP test in study arm 1.

BP (mmHg)

Group Mean St Dev IQR

HS * * *
RFVS-1 45.28 15.23 24.95
RFVS-2 20.16 7.19 12.02
RFVS-3 69.78 4.23 5.8

S 71.09 4.22 4.38
Group HS, Harmonic Scalpel; Group RFVS-1, LigaSure 5 mm Dolphin tip; Group RFVS-2, ENSEAL; Group
RFVS-3, LigaSure Atlas 10 mm; Group S, Stapler; BP, burst pressure. St Dev: standard deviation. IQR: interquartile
range. * missing data (BP test not performed).
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Figure 5. Representative image of Group S specimen during BP test. Air leaking was found at the
staples site (black arrow). No failure of the construct was noted.

The maximum pressure detected before leaking did not significantly differ (p > 0.05)
from that of group RFVS-3. Contrarily to Group S, all constructs burst at the maximum
pressure, such as in RFVS-1 (Figure 6).
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Figure 6. Representative image of RFVS-3 group specimen during BP test. Note sealing failure (black
arrow).

Maximum burst pressure in the RFVS-1 was significantly lower (p < 0.05) than the
RFVS-3 and group S, but significantly higher than the RFVS-2 group, which recorded the
significantly lowest values (p < 0.05). Figure 7 shows the related plot of BP.
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LigaSure 5 mm Dolphin tip; Group RFVS-2, ENSEAL; Group RFVS-3, LigaSure Atlas 10 mm; BP, Burst Pressure). Group HS
was not tested because of sealing failure in all samples. RFVS-1 was significantly lower (p < 0.05) than the RFVS-3 and S
groups, but significantly higher than the group RFVS-2, which recorded the significantly lowest values (p < 0.05). *: outlier.

3.2. Study Arm 2

In this part of the study, only RFVS-1 and RFVS-3 were employed in the experiment
because they did not fail in the previous arm of the study.

In both RFVS-1 and -3, the instruments were activated two times to complete the
biopsy. In the Suture group, air leaking was observed at maximum pressure (Figure 8).
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All specimens of groups RFVS-1 and RFVS-3 burst at maximum pressure (Figure 9).
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Figure 9. Representative image of RFVS-3 construct during BP test in study arm 2. The black arrow shows the failure site at
maximum pressure.

Table 2 summarizes the results of the burst pressure test. The group RFVS-1 resulted
in significantly lower BP values (p < 0.05). Otherwise, RFVS-3 and Suture group showed
comparable BP pressures (p > 0.05) (Figure 10).
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Table 2. BP test in study arm 2.

BP mmHg

Group Mean St Dev IQR

RFVS-1 23.96 10.63 9.62
RFVS-3 45.09 8.75 10.48
Suture 35.71 17.51 23.77

Group Suture, intestinal wound closed with suture; Group RFVS-1, LigaSure 5 mm Dolphin tip; Group RFVS-3,
LigaSure Atlas 10 mm; BP, burst pressure). St Dev: standard deviation. IQR: interquartile range.
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Figure 10. Boxplot of BP test. Mean maximum BP values for each group in Study arm 1. Group Suture; Group RFVS-1,
LigaSure 5 mm Dolphin tip; Group RFVS-3, LigaSure Atlas 10 mm; BP, burst pressure). The group RFVS-1 resulted in
significantly lower BP values (p < 0.05). Otherwise, RFVS-3 and the Suture group showed comparable BP pressures (p >
0.05). *: Outlier.

Lengths of biopsies are summarized in Table 3. In the group RFVS-1, significantly
smaller biopsies were obtained (p < 0.05). No significantly different biopsies sizes were
detected between the RFVS-3 and Suture groups.

Table 3. Biopsy length.

Biopsy Length (mm)

Group Mean St Dev IQR

RFVS-1 14.7 2.111 4.25
RFVS-3 21.5 1.65 3.25
Suture 23.1 4.04 5

Group Suture, intestinal wound closed with suture; Group RFVS-1, LigaSure 5 mm Dolphin tip; Group RFVS-3,
LigaSure Atlas 10 mm; BP, burst length in mm). St Dev: standard deviation. IQR: interquartile range.

Maximum BP pressure of RFVS-1 and -3 obtained from the evaluation of both arms
showed significantly lower values in biopsied constructs related to transection (p < 0.05)
(Table 4).
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Table 4. Comparison of maximum BP pressure in mmHg obtained in the two-study arm.

BP (mmHg)

Mean St Dev IQR

RFVS-1

Biopsy 23.96 10.63 9.62
Transection 45.28 15.23 24.95

RFVS-3

Biopsy 45.09 8.75 10.48
Transection 69.78 4.23 5.8

RFVS-1, LigaSure 5 mm Dolphin tip; Group RFVS-3, LigaSure Atlas 10 mm; BP, burst pressure). St Dev: standard
deviation. IQR: interquartile range.

3.3. Histology

Intestine samples from study arm 1 were examined histologically to determine the
efficacy of the seal (Figure 11).

Analysis of samples closed with the stapler was not examined because of the presence
of titanium staples, which made it impossible to perform adequate processing of the
samples. Furthermore, we considered staple removal not suitable to assess the quality of
closure. In group HS, the seals showed a lack of sealing, with complete separation of the
tissues, resulting only in the cut edge of the samples. The thermal and mechanical injury
was located nearby the closure site of all specimens obtained by RF devices. The tissue
appeared compressed and markedly elongated with modified architecture. The mucosal
architecture was obliterated, leaving a heat-induced coagulum with holes in the tissue and
no appreciable cellular architecture.

In RFVS-1 group, the seal showed compression, but incomplete closure of the lumen
and mucosal layer. Similar findings were noted in the RFVS-2 group. In the RFVS-3 group,
the lumen was completely closed, with the mucosal and muscular layers lying close to one
another. The mucosal layer appeared as a thin structure, suggesting the effectiveness of the
compression applied and success of the seal.

All of the biopsy samples obtained with the cold blade in study arm 2 were fully
diagnostic. Biopsies harvested in-group RFVS-1 and -3 had >25% of area section, which
was considered diagnostic by the pathologist. The thermal and mechanical injury was
located close to the cut side of the specimen, and in all specimens, the architecture of the
remaining area was classified as normal and fully diagnostic (Figure 12).
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Figure 11. Representative histological images obtained merging different fields of view at 4×magnification (E.E.). Sealed
edge from samples obtained in study arm 1. (A) RFVS-1; (B) RFVS-2; (C) RFVS-3; (D) HS. Yellow arrows show the sealed
site. Poor sealing of all layers in RFVS-1 and -2. Complete sealing of all layers, including the mucosa obtained with RFVS-3.
Incomplete sealing obtained with HS, resulting in complete inability to fuse the edge of the loop.
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Figure 12. Representative histological images obtained merging different fields of view at 4×magnification (E.E.). Cross
sectional slides from biopsies obtained in study arm 2. (A) Group Suture (biopsies obtained with cold blade); (B) RFVS-1;
(C) RFVS-3.

4. Discussion

In this study, we evaluated the quality of sealing of swine small intestine transection
provided by different RF and HS vessel sealing devices compared to the endoscopic stapler
device. After that, we evaluated the feasibility of full-thickness small intestinal biopsies by
vessel sealing devices that provided significant results in the first part of the study. Based
on the reported studies, we hypothesized that RFVS devices provide sealing of the small
intestine comparable to the gold standard techniques, and can be used to obtain safe and
diagnostic intestinal biopsies.

The strength of this tissue connection probably depends on tissue parameters, such as
protein content, tissue thickness, and perfusion, as well as process parameters, such as com-
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pressive pressure, fusion temperature, and duration of heating [17]. Bipolar radiofrequency-
induced thermofusion of intestinal tissue is based on a denaturing process of collagen type I,
elastin, and further collagens. While heating the tissue, the triple helical structure of collagen
type I monomers uncoils and transmutes into a random coiled mass of peptide chains [22].

At a gross evaluation, the sealing succeeded in 100% of samples in Group S, RFVS-1,
and RFVS-3; 80% in RFVS-2. In Group HS, 100% of samples failed to seal, producing a
sample that was not evaluable for pressure testing. Thus, samples from this group were
eliminated from the study. This finding was in contrast with the results obtained comparing
HS device with RFVS in tissue dissection and vessel sealing. In fact, it has been reported
that for the native indications as a vessel sealer and dissector, the HS showed similar results
to the RFVS devices [23]. We suppose that the different content in term of elastin and
collagen of the intestine compared to vessels could dramatically influence the HS ability to
intestine sealing.

The results of the first arm showed that in the HS group, the instrument had been
activated a mean of 3.4 times to complete the transection. In the group RFVS-1, the mean
was 4.3; with RFVS-2, the meanly was 2.9; with RFVS-3, the mean was 2.3′ and with S, the
mean was 1. In RFVS devices, only one cycle per bite was performed, and each activation
was applied after the previous one to complete the transection along the short axis of the
intestine. It has been described that the power level and the number of cycles applied at
the same bite (without advancing the jaws) can affect the maximum BP [4]. Thus, for this
reason, we decided to employ the maximum power level with a single activation. In any
case, the exact energy delivered cannot be calculated, because all RFVS devices employed
in this study had a feedback-controlled energy adjustment, which measures the tissue
impedance starting from the closure of the device and 200 times per second over the whole
sealing cycle. Based on these measurements, an algorithm within the generator adjusted
the output based on the changes of the tissue impedance. The output of the generator
can vary within the sealing cycle between 0 and 150 W [9]. No control of the cycle time
is obviously under the direct control of the surgeon. In contrast, HS devices sequentially
convert electrical energy into mechanical energy and then into thermal energy to facilitate
tissue sealing, but without the passage of electrical current through the tissue [24]. Thus,
with HS devices, the cycle time is directly under the surgeon’s control.

The use of smaller devices inevitably needs to be activated several times to complete
the transection, and obviously, some sealed tissue should be overlapped by consequent
activation. The length of the instrument’s jaws could also afflict the tissue sealing. In
our study, we employed devices that had a cut length from 12 mm in RFVS-1, 15 mm in
RFVS-2, 22 mm in RFVS-3, and 14.2 mm in the HS device, while the stapler had a length of
45 mm. Thus, the use of instruments of adequate cutting length could prevent double or
more activation on the same portion of tissue, avoiding excessive thermal effects on tissues
providing negative effects on the quality of sealing [4].

The compressive pressure deployed by the instrument’s jaws has been demonstrated
to influence the tissue sealing [2,17,22,25–27]. It has been established that the optimal
compression for the small intestine was in the 0.15–0.25 MPa range [3]. RFVS and HS
devices tested in this study had different compression pressure mechanisms, which were
assessed by the surgeon in HS and RFVS-2 devices. On the contrary, for RFVS-1 and -3,
as well as the stapler, the compression is controlled by the automatic clamping lock in the
instruments’ handle. Moreover, compression pressure has been shown to be not uniform
along the instruments’ jaws. Indeed, appropriate compression has been applied at the base
of the jaws and gradually diminished on the tip [25,27]. This phenomenon could explain
different sealing abilities among devices.

Although no direct temperature measurement was performed in this study among
the different devices, the thermal effects on the small intestine should be considered. The
RF devices were observed to generate a much lower tip temperature on activation when
compared to the HS (45.8 vs. 172.6 ◦C) [3,28]. It is likely that multiple factors, such
as thermal injury, the compression pressure not being controlled, and different sealing
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mechanisms, negatively affected the small intestine sealing provided by the HS instrument,
resulting in complete failure of sealing in our study. For this reason, we excluded the HS
group from BP evaluation.

Maximum burst or leak pressure was performed in RFVS devices compared to the
stapler in study arm 1. In our study, maximum BP results for RFVS-1 were 45.28 mmHg,
for RFVS-2 were 20.16 mmHg, for RFVS-3 were 69.78 mmHg, and for S were 71.09 mmHg.
In the group S, no constructs failed completely, but constant air leaking was noted at the
staples level. The maximum pressure detected before air leaking did not significantly
differ (p > 0.05) from the RFVS-3 group. Contrarily to the group S, all constructs burst
at maximum pressure, such as with RFVS-1. Maximum burst pressure in RFVS-1 was
significantly lower (p < 0.05) than in the RFVS-3 and S groups, but significantly higher
than in the RFVS-2 group, which recorded the significantly weakest values (p < 0.05). Our
results were in line with most published data. In fact, the maximum BP described ranged
from 39.8 to 60.28 mmHg [2,4,9].

In study arm 2, we evaluated the feasibility of obtaining small intestinal diagnostic
biopsies using RFVS devices compared to surgical biopsies collected with a cold blade
for intestinal wounds closed with a hand-sewn technique (Gambee’s interrupted suture
pattern).

To obtain an adequate biopsy sample, RFVS devices were activated two times to
complete the cut.

The group RFVS-1 resulted in significantly lower BP values (23.96 mmHg; p < 0.05).
Otherwise, RFVS-3 (45.09 mmHg) and Suture group (35.71 mmHg) showed comparable
BP pressures (p > 0.05). Interestingly, these values were significantly lower than maximum
BP pressure obtained in study arm 1 (p < 0.05). We suppose that the reduction in intestinal
diameter for obtaining a full-thickness biopsy dramatically reduced the BP compared to the
intestinal transection where the full intestinal diameter was maintained. This phenomenon
can be explained with Laplace’s law, according to which the wall of a distensible organ is
in balance if the distending force (intraluminal pressure) is balanced by the wall tension
(partly passive, the elasticity of the organ; partly active, generated by the contraction of
smooth muscle). The wall of the organ breaks if the developed wall tension is not sufficient
to support intraluminal pressure. If the radius of the intestine decreases, the wall tension
dramatically decreases, and intraluminal pressure breaks the organ at the sealing line (locus
minoris resistentiae). Similar to other hollow organs, such as vessels, in a long pliable tube,
the site of the largest diameter requires the least pressure to distend [14,29].

Another explanation could be related to the direction of the biopsy. In fact, the tension
lines on the wall of a hollow organ propagate perpendicular to the cutting line (hoop stress),
exerting a direct force. On the contrary, if the cutting line is carried out transversely, the
tension forces are parallel and are more influenced by longitudinal stress. Considering
the tested construct as a thin wall cylindrical tank, the hoop stress is equal to twice the
longitudinal stress. The cylindrical pressure would split on the wall instead of being pulled
apart (as it would under an axial load). In one study, the effect of the direction of small
intestine biopsies was studied [30]. The results of this study have shown that there is
no difference between the two directions, but the test performed was carried out only at
pressures of 15 and 25 mmHg, lacking the maximum BP values.

In un-anesthetized dogs, the mean resting pressure was reported as 6.8 ± 0.77 mmHg
in the proximal jejunum, 6.4 ± 0.63 mmHg in the middle jejunum, and 6.7 ± 0.54 mmHg
in the distal jejunum [31]. In human beings, during intestinal pressure waves, the pressure
may rise to maximum levels of 50 mmHg in the physiological setting [9,32–34], while
in dogs, the physiologic intraluminal pressures reach 25 mmHg during peristalsis [35].
Dogs with experimentally induced complete ileal obstruction had a maximum intraluminal
pressure of 44 mm Hg at 3 days after obstruction [36]. It has been shown that the intestine
motility is strongly reduced after intestinal surgery and the mean pressure decreased
to 6.1 ± 5.8 mmHg during anesthesia [37]. In our study, maximum BP of the sealed
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small intestine with RFVS-1 and -3 resulted in similar or even twofold higher values than
previously reported physiological data, as well as a stapler or hand-sewn closure.

Histological results of both study arms confirmed and strengthened the biomechanical
findings. Indeed, in study arm 1, the superiority of the RFVS-3 device was detected in terms
of quality of sealing when compared with the other devices employed in this study. In
particular, in the HS and RFVS-2 group, quality of sealing was considered not suitable and
poor, respectively. Adequate sealing, although lower than RFVS-3, has been appreciated
for the 5 mm device used in the RFVS-1 group. Although these two devices are based on
the same RF technology, the different force of clamping and power delivery could have
afflicted the sealing quality. In this study, we have not performed a quantitative measuring
of the extension of the thermal and mechanical injury, in the stumps obtained in study arm
1, limiting the evaluation to a qualitative analysis. However, it has been reported that the
thermal spread during the use of RF and HS devices varied in function of the instruments
employed, time of activation, the pressure of jaws on the tissue, and type of tissue sealed [3].
In fact, in a study performed on muscles for the evaluation of lateral thermal spread, RFVS
showed a rise of 25 ◦C at 1 mm from the device and were < 1.0 ◦C at 5 and 10 mm [38]. In
another study performed on artery segments, the RFVS showed lateral thermal spread at
3.8 mm and on vein segments at 3.4 mm [23]. In a study performed in a swine model of
small intestine thermofusion the mean lateral destruction of the tissue structures on each
side of the fusion line for RFVS device was 2.69 mm [2].

In study arm 2, as expected, the biopsies obtained with the cold blade were fully
diagnostic. In this study, biopsies harvested with the RF devices, provided a thermal and
mechanical injury located only at the sealing site. However, this artifact did not afflict most
of the samples and was restricted only at 25% of cross-sectional area. Indeed, the small
intestine architecture modification due to thermal and mechanical injury is impossible to
avoid given the nature of current RF resection technologies, and should be considered
as a limitation of RF devices. However, in this study, the diagnostic quality of samples
obtained was considered suitable for pathologic diagnosis purposes, so the modification
at the sealed site is expected with RF energy-based devices and surgeons should consider
harvesting samples of proper size.

Our study had some limitations. Firstly, the burst and leak pressures for this study
were directly determined after performing the transection or biopsy and the influence of
healing, and therefore, increased stability of the stump or biopsied tissue could not be
accounted for. Some studies have reported that the sealing strength of the early phase
rises significantly through time [5,6]. In fact, anastomoses performed by RF devices were
found to be macro- and microscopically intact seven days after surgery [5]. Elemen et al.
reported increasing BP when tested on post-operative day 7 [39]. Recently, in a swine
model of thermofused anastomosis [40], the percentage of intact anastomoses, after 2 weeks
from surgery, was 73.3–93.3%, according to the different setting modes of the RFVS device
applied. Moreover, the authors demonstrated that collagen fibers that were accumulated
in the frame and filled in the gap between the two extremities of the muscle layer were
considered as the main mechanical factors for the safety of anastomoses. Another study
evaluated the survivable anastomotic resection of the small intestine using an RFVS device,
resulting in immediately watertight and intact seals with undisturbed healing, complete
with granulation tissue, newly synthesized collagen in the submucosa of joined intestine,
and reepithelialization at seal borders. Furthermore, the treated animals displayed healthy
and normal intestinal passage 7 days postoperatively [41]. In a study of cecal thermofusion
with RFVS devices, the inflammatory cell infiltration, fibroblast growth, neoangiogenesis,
and collagen disposition were similar to the closure obtained with mechanical staplers, but
the ischemia levels were significantly higher in this group [6]. In a study performed on a
rabbit model of RFVS thermofusion of the cecum, the authors found that the sealed tissue
goes through an inflammatory process, progressively reabsorbing the necrotic material and
developing a stromal reaction with the formation of connective tissue, which replaces the
necrotic tissue [42]. However, the role of thermal spread and damage on the healing process
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after the intestinal thermofusion is still lacking strong evidence, and further experimental
studies should be performed to ensure the safeness of the proposed technique, before
suggesting the regular clinical use.

Another limitation of the present study includes the non-physiologic method of testing
and the use of cadaveric tissues that may hold sutures or behave differently from intestinal
tissues in living animals. Testing of the fresh cadaver control tissues was performed to
ensure that there had not been tissue breakdown and to enable the evaluation of the tissue
strength relative to results. In fact, it has been demonstrated that fresh porcine jejunal
segments may be used for determining intestinal leak pressure [43].

In study arm 2 we considered only the thermal effects, the quality of biopsies, and
BP of the biopsied intestinal loop, lacking in the evaluation of the stricture created by
the biopsy technique. We recognize it could represent a further limitation and we aim to
perform a specific study on this issue.

5. Conclusions

In conclusion, based on our results, we can speculate that only some RFVS devices
provide feasible sealing of the small intestine comparable to the stapler or hand-sewn
closure. In particular, RFVS-3 (10 mm RFVS device) resulted in similar BP values to gold
standard closure techniques either in small intestine closure or in harvesting full-thickness
biopsies. While RFVS-1 (5 mm Dolphin tip RFVS device) achieved lower BP pressure, it
ensured values higher than physiological parameters. We also obtained, diagnostically,
biopsies that can easily be harvested without the need to suture. Because of the laparoscopic
native use of these instruments, further studies using a total laparoscopic procedure should
be investigated in vivo in an experimental animal model before vessel sealing devices can
be used for intestinal closure in clinical cases.
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