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Abstract: Mercury (Hg) is a ubiquitous global contaminant with important public health 

implications. Mercury is released from a variety of anthropogenic, industrial processes, 

enters the earth's atmosphere and is re-deposited onto the earth’s surface in rainfall. Much of 

this Hg enters the oceans which cover the majority of the earth’s surface. In the marine 

environment, inorganic Hg is converted to the most toxic form of the element, 

methylmercury, and biomagnified through the trophic levels of the food web. The bottlenose 

dolphin (Tursiops truncatus) is the apex predator in many estuarine and coastal ecosystems. 

Due to their long life span and trophic position, bottlenose dolphins bioaccumulate high 

concentrations of contaminants including Hg, thus making them an important sentinel 

species for ecosystem and public health. Bottlenose dolphins in Florida bioaccumulate high 

concentrations of Hg in their blood, skin and internal organs. The concentrations of Hg in 

blood and skin of bottlenose dolphins of the Indian River Lagoon, FL (IRL) are among the 

highest reported world-wide. In previous studies, we demonstrated associations between 

concentrations of total Hg in the blood and skin of IRL dolphins and markers of endocrine, 

renal, hepatic, hematologic and immune system dysfunction. The predominant manifestation 

of exposure to mercury in humans is neurotoxicity. During the 1950s and 1960s, residents 

of Minamata bay, Japan were exposed to high concentrations of methyl mercury as the 

result of ingestion of fish and shellfish that had become contaminated in this infamous 
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environmental disaster. Affected adults had severe motor and sensory abnormalities often 

leading to death. Methyl mercury crosses the placenta during pregnancy. Children exposed 

in utero were born with multiple congenital anomalies and also suffered from neurologic 

disorders. Significantly, local cats that consumed Hg contaminated fish developed severe 

signs of neurotoxicity which led to their subsequent description as the “dancing cats of 

Minamata bay”. Unfortunately, the cause of these strange manifestations in cats was not 

recognized in time to prevent hundreds of additional cases from occurring. More recent 

studies have shown that exposure to mercury as a result of seafood consumption during 

pregnancy may result in multiple cognitive and neurodevelopmental effects in children. 

The levels of mercury found in bottlenose dolphins and the health effects we identified 

alerted us to the possibility of an important public health hazard. The IRL occupies  

40 percent of the east coast of Florida and is bordered by counties with approximately  

2.5 million human inhabitants. Therefore, we hypothesized that local inhabitants in 

communities bordering the IRL could be at risk of exposure to Hg from the consumption of 

fish and shellfish. We measured hair Hg in 135 local residents and found a mean 

concentration of 1.53 µg/g which was higher than that from previous studies of sport 

fishermen and coastal residents in other states. Over 50% of participants had a hair Hg 

concentration which exceeded the U.S. EPA exposure guideline. Hair Hg concentration 

was directly related to the frequency of seafood consumption and to the proportion of fish 

and shellfish obtained from local recreational sources. This study clearly exemplifies the 

importance of an animal sentinel in identifying a public health hazard and is virtually 

unique in “closing the loop” between animal and human health. 

Keywords: animal sentinels; bottlenose dolphins; epidemiology; fish; marine mammals; 

mercury; one health 

 

1. Introduction 

Mercury (Hg) is a ubiquitous global contaminant with important public health implications. 

Elemental and particulate-bound ionic forms of mercury are released into the environment from 

multiple industrial processes such as metal production, waste incineration, mining and the burning of 

coal for energy as well as natural phenomena such as volcanic eruptions [1]. Inorganic Hg enters the 

atmosphere, is transported globally and is re-deposited onto the earth’s surface in rainfall and by dry 

deposition [2]. Much of this re-deposited Hg enters the marine environment, primarily in the oceans, 

which cover 71 percent of the earth’s surface. Inorganic Hg is converted to methylmercury (MeHg)  

in aquatic sediments by the action of multiple anaerobic species of sulfate-reducing bacteria [3].  

Thus the sulfate concentration and composition of bacterial communities in marine sediments are 

important predictors of mercury methylation rates [4]. Methylmercury, in turn, is taken up from 

sediments by phytoplankton and biomagnified through fish species within food webs, reaching the 

highest levels in the apex predators within an ecosystem. Estuarine ecosystems, including the 
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Everglades and much of southern Florida, are hydro-geological sinks for Hg due to their 

biogeochemistry, concentrations of sulfates in sediments, pH and patterns of rainfall deposition [5]. 

2. Mercury Bioaccumulation in Dolphins 

The Atlantic bottlenose dolphin (Tursiops truncatus) is an apex predator in many marine ecosystems. 

They inhabit estuarine, coastal, and offshore waters along the Atlantic coast of the United States while 

related species e.g., the striped dolphin (Stenella coeruleoalba) occupy the same ecologic niche in 

other coastal waters such as the Mediterranean Sea. Due to their long life span and trophic position as 

apex predators, bottlenose dolphins bioaccumulate high concentrations of organic and inorganic 

contaminants including Hg, thus making them an important sentinel species for ecosystem and public 

health [6–8]. 

It has long been recognized that deceased, stranded bottlenose dolphins from U.S. coastal waters 

contain high levels of Hg in skin, liver, kidney and muscle [9–13]. Similar observations have been 

made in coastal dolphins of various species in other hemispheres [14–17]. However, relatively few 

studies have measured Hg in healthy, free-ranging individuals. The exceptions are from capture-release 

health assessments conducted on the east and west coasts of Florida [18–21]. These studies were 

conducted to establish baseline values for a suite of trace elements in populations from the Indian 

River Lagoon (IRL) and Sarasota Bay, Florida. At both sites, high levels of total mercury (THg) were 

reported in blood and skin obtained at the time of examination (Table 1). Dolphins captured between 

2003 and 2005 in the IRL, a 165 mile estuary along Florida’s east-central coast, had mean concentrations 

of THg of 658 ± 519 μg/L wet weight in blood [18], and 7.0 ± 5.9 μg/g dry weight in skin [19].  

These concentrations were more than four times higher than those found in a comparison population of 

bottlenose dolphins sampled in Charleston harbor, SC during the same time frame. Similar findings 

were reported in bottlenose dolphins from the west coast of Florida where the concentration of THg in 

blood was 570 ± 434 μg/L [20]. Approximately 73 percent of THg in the skin of dolphins from the 

IRL was MeHg [19], while in Sarasota Bay dolphins 96% of the THg in blood was reported to be 

MeHg [20]. 

Table 1. Reported concentrations of total mercury in blood and skin from bottlenose dolphins.  

Study Site Years 
Total Mercury Concentration Mean ± SD 

Reference 
Blood (μg/L ± SD) Skin (μg/g ± SD) 

Indian River Lagoon, FL 2003–2005 658 ± 519.0 (n = 75) 7.0 ± 5.9 (n = 75) [18,19] 

Charleston, SC 2003–2005 147 ± 88.0 (n = 74) 1.7 ± 0.9 (n = 74) [18,19] 

Sarasota Bay, FL 2003–2005 570.3 ± 433.5 (n = 55) 2.1 ± 1.7 (n = 54) [20] 

Sarasota Bay, FL 2002–2004 512 ± 363 (n = 51) 2.13 ± 1.54 (n = 40) [21] 

Italy, Aquaria 2001 139 ± 220 (n = 4) - [22] 

National Aquarium, Baltimore, MD 2011 63.9 ± 34.0 (n = 7) - [23] 

Subsequently, mean concentrations of THg in the liver of stranded IRL dolphins were reported to be 

10 fold higher than those found in stranded dolphins from South Carolina between 2000 and 2008 [13]. 

Further, a highly significant correlation was found between skin and liver concentrations of THg in 

stranded dolphins from the IRL, documenting the usefulness of skin, a relatively accessible tissue in 

live animals [13]. The concentration of THg found in wild Florida dolphins was approximately one 
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order of magnitude greater than that found in dolphins in aquaria in Maryland and Italy, where the 

concentration of THg in the fish diets were correspondingly lower [22,23]. The levels of THg in blood 

and skin of Florida bottlenose dolphins are among the highest recorded in free-living marine mammals 

worldwide. Collectively, these studies demonstrate that dolphins bioaccumulate high concentrations of 

Hg in a variety of tissues as a result of biomagnification through trophic levels of the food chain. 

3. The Indian River Lagoon, Florida 

The Indian River Lagoon is a biodiverse estuary that occupies approximately 40% percent of the 

east coast of Florida, spanning a distance of more than 250 km. The estuary has a narrow, linear shape 

which dictates that dolphins essentially move along a north-south axis [24]. Bottlenose dolphins in the 

IRL maintain strong site fidelity and have limited home ranges as shown by longitudinal photo-identification 

studies of individual animals [25]. The estuary contains three major basins, and can be divided into  

six segments based on unique hydrodynamic and geographic features. The IRL is connected to the 

Atlantic Ocean by five inlets and one man-made canal, resulting in low rates of water turnover.  

The shallow depth and the limited tidal exchange between the lagoon and the Atlantic Ocean results in 

minimal flushing and concentration of microbial and chemical agents in the ecosystem [24]. 

We recently demonstrated a north to south gradient in THg blood concentrations in bottlenose 

dolphins of the IRL by incorporating photo-identification data to assign individuals to geographic 

segments [24]. Intense residential and urban population development and agricultural activity along 

Florida’s east coast have resulted in increased freshwater inputs and altered water quality leading to 

decreased seagrass habitat and eutrophication [26,27]. The northernmost areas of the IRL are relatively 

pristine, while the southern segments are characterized by increased coastal development, greater 

human population density and a higher concentration of drainage canals from inland areas [24].  

These anthropogenic activities have impacted alkalinity, pH, and dissolved organic carbon concentrations 

which can alter sulfate levels in sediments [28]. Elevated sulfate concentrations in the Florida Everglades 

sediments increase the conversion rates of inorganic Hg to the methylated form which is bioaccumulated 

in fish [29]. 

We also examined temporal trends in THg concentrations in blood of IRL dolphins [24]. From 2003 

to 2012, the concentrations decreased significantly over time, consistent with decreases in THg in fish 

species in the U.S. [30] and in striped dolphins from the Mediterranean Sea [16]. However, although 

the linear trend in blood THg showed a significant decline between 2003 and 2012, most of the decline 

was attributable to a high concentration in 2003 (1012 μg/L wet weight), which was between 20 and  

58 percent lower and relatively stable between 2004 and 2012 [24]. The decline in Hg concentrations 

in fish is attributed to reduction of exposure from point sources and emissions. However, trends in fish 

in the southeastern United States between 1988 and 2005 (not including Florida) did not show the 

decline found elsewhere in the country [30]. Deposition patterns show increases in this region and may 

be due to a greater influence of global atmospheric Hg emissions, rather than local sources [30].  

This appears to be the case for the IRL, since there are very few point sources of industrial activity 

along the border of the lagoon. Rainfall deposition data also support this conclusion since over 50% of 

Hg in south Florida is due to long range global transport of gaseous Hg and deposition rates remain 

stable [31]. 
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4. Health Effects of Exposure to Mercury in Dolphins 

Given the evidence that dolphins bioaccumulate high concentrations of Hg in a variety of tissues,  

we explored the potential that this exposure may result in adverse patho-physiological effects on a 

variety of organ systems. The study population consisted of 56 bottlenose dolphins from the IRL and 

65 from Charleston Harbor, SC captured between 2003 and 2005 during the Bottlenose Dolphin Health 

and Risk Assessment (HERA) project, a multidisciplinary collaborative effort designed to evaluate the 

effects of environmental exposures on individual and population health [32]. We evaluated associations 

between THg and selenium concentrations in blood and skin and endocrine, hepatic, renal and 

hematological parameters using multiple linear regression models with adjustment for age in a pooled 

analysis [33]. Selenium plays a protective role in mitigating the toxic effects of Hg through a variety of 

mechanisms one of which is the formation of mercury-selenium complexes [34]. Recent research 

demonstrates that selenium may operate through multiple mechanisms including competition with Hg 

for biological targets, mobilization of mercury stores between organ systems and interactions in the 

liver and kidney where MeHg is transformed into inorganic Hg [35,36]. Blood THg concentrations 

were previously reported to be correlated with Se concentrations in IRL dolphins [18]. 

Increases in blood and skin THg concentrations were associated with a decrease in total thyroxine 

(T4) and triiodothyronine (T3), demonstrating an effect on endocrine function [32]. In contrast, 

adrenocorticotropic hormone (ACTH) increased with increasing concentrations of Hg in the blood and 

skin. No statistically significant associations were found for free T4, testosterone, aldosterone, cortisol, 

estradiol or progesterone. An effect on liver function was suggested by an increase in gamma-glutamyl 

transferase (GGT) with increasing THg concentrations in blood and skin; lactic dehydrogenase was 

positively correlated with skin THg. An effect on renal function was also found with an increase in 

blood urea nitrogen (BUN) and increasing concentrations of THg in blood and skin; however, no 

association was demonstrated for creatinine. With respect to hematological parameters, increases in 

THg in blood and skin were associated with decreases in the absolute numbers of lymphocytes, 

eosinophils and platelets and an increase in the absolute number of segmented neutrophils [33]. 

These results were consistent with previous reports. Associations between blood or skin Hg 

concentrations and thyroid hormones, liver enzymes and several hematologic parameters were 

described in a study of dolphins from Sarasota Bay, FL [20]. Pathologic changes in the liver consisting 

of periportal lipofuchsin deposits, fatty infiltration, central lobular necrosis and lymphocytic 

infiltration were described in dolphins from the west coast of Florida with high concentrations of Hg in 

liver [37]. In summary, the results suggest the potential for a deleterious effect of Hg on the endocrine, 

hepatic, renal and hematopoietic systems in highly exposed bottlenose dolphins. 

We also studied the effects of increased exposure to Hg on the immune system of bottlenose 

dolphins and found associations with both innate and acquired immunity, as well as with effects on 

immune cell populations and immune globulins [38]. Data from 142 dolphins collected during the 

HERA project from the IRL and Charleston Harbor, SC were analyzed by dividing Hg concentrations 

in blood and skin into tertiles in a pooled analysis, adjusted for age. Total globulins increased 

significantly across tertiles of blood Hg concentration due primarily to an increase in gamma globulin. 

Two measures of innate immunity, monocyte phagocytic activity and plasma lysozyme concentration, 

increased significantly with increasing concentration of blood Hg. Lymphocyte CD19 + (immature) 
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and CD21 + (mature) B cell markers were reduced significantly. Non-significant reductions in CD2 + 

and CD4 + helper T cell subpopulations were also observed. Antigen presenting cells expressing MHC 

class II molecules decreased significantly with increasing categories of Hg exposure. B and T cell 

lymphocyte proliferation were reduced in a stepwise, dose-dependent manner. Reductions in antibody 

concentration to common marine micro-organisms suggested that dolphins with high exposures to Hg 

may be more susceptible to infectious diseases [38]. Increased mortality from infectious disease 

associated with Hg exposure was also reported in a study of cetaceans from the United Kingdom [39]. 

Mean liver concentrations of mercury, selenium and zinc were significantly higher in harbor porpoises 

(Phocoena phocoena) that died of infectious diseases compared to healthy porpoises that died from 

trauma [39]. 

Mercury is also known to cause immune system effects in humans [40]. Occupational exposures to 

inorganic Hg were associated with alterations in B lymphocytes, T-helper cells, T-suppressor cells,  

and T-cell proliferation. These findings led to the hypothesis that exposure to Hg increases risk for 

infectious diseases in humans, subsequently supported by epidemiologic studies and laboratory based 

research. Correlations between exposure to Hg and a self-reported history of malaria infections were 

reported in Amazonian communities exposed through fish consumption in an area of alluvial gold 

mining activity [41]. These populations also had changes in the serum concentration of antinuclear 

antibodies (ANA) and antinucleolar antibodies (ANoA), biomarkers for autoimmune disease [42,43] 

and in their profiles of pro- and anti- inflammatory cytokines [43]. Mercury has also been shown to 

induce an autoimmune disease resembling lupus erythematosus in rodent models with increases in 

immunoglobulins IgG and IgE [44], compatible with electrophorectic patterns in exposed dolphins. 

5. Minamata Disease and Neurotoxicity of Methylmercury in Humans 

A variety of health effects have been described in humans following exposure to organic and inorganic 

Hg [40]. Principal among these is neurotoxicity, initially recognized through two well-documented 

episodes. Severe neurologic impairment induced by the consumption of fish and shellfish containing 

high levels of MeHg at Minamata Bay in Japan [45] was the initial harbinger of toxicity. In this well 

chronicled environmental disaster, waste water discharges containing MeHg, produced as a byproduct 

from the manufacture of acetaldehyde, were released from a chemical plant during the 1950s and 60s. 

These discharges led to widespread contamination of the watershed, with high levels of organic Hg in 

sediments, shellfish and fish [46]. Exposures to adults from consumption of seafood resulted in a 

syndrome known as “Minamata Disease” characterized by symptoms of severe neurotoxicity; lack of 

motor coordination, ataxia, muscle weakness, numbness, sensory disturbances, visual and hearing 

deficits, seizures and death [45]. The ingestion of highly contaminated seafood by pregnant women 

was followed by an epidemic of severe fetal abnormalities and neurotoxicity in their offspring. 

Methylmercury crosses the placenta and the blood brain barrier, resulting in high levels in the 

developing fetus [47]. These children exhibited congenital abnormalities such as microcephaly,  

and were born with various central nervous system symptoms including blindness, seizures and severe 

mental and physical developmental retardation [45]. A second large outbreak of neurotoxicity occurred 

in Iraq in 1971–1972 as the result of consumption of bread made from methylmercury treated grain [48]. 
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Subsequently, more subtle neurodevelopmental effects have been demonstrated in cohort studies of 

populations which rely heavily on the consumption of fish, shellfish and marine mammals as dietary 

staples. Developmental neurotoxicity in children exposed prenatally was shown in cohort studies of 

Faroese women who consumed a high proportion of their diet as seafood including meat from pilot 

whales [49]. In a second large cohort study conducted in the Seychelles, the results were less clear 

since the initial reports showed no association between maternal hair mercury and neurodevelopmental 

test performance [50]. However, more recently, mercury was shown to have a negative effect in this 

population when maternal fish consumption was taken into account in the analysis [51]. Similarly,  

in a smaller U.S. cohort, maternal fish consumption was shown to improve performance on tests of 

cognition in 6 months old children, while performance decreased with increased hair mercury 

concentrations [52]. In general, low level exposure to mercury during pregnancy is associated with 

decreased performance on tests of cognitive development and psychomotor performance in children 

exposed in utero but the relationships are complex because of the beneficial effects of maternal fish 

consumption [53,54]. Prenatal exposure can result in multiple cognitive and neurodevelopmental 

effects including deficits in memory, language, attention, visual acuity and fine motor skills [52,55].  

The prenatal exposure of children to MeHg derived from fish and seafood with resulting impaired 

neurodevelopment is an important public health concern of international significance [40,56]. 

6. The Dancing Cats of Minamata Bay 

The environmental disaster at Minamata bay included an animal sentinel, “the Dancing Cats of 

Minamata Bay”. Not since the iconic description of “The Canary in the Coal Mine”, has the concept of 

an early warning system for a human tragedy been so dramatically illustrated. Unfortunately, unlike 

the miners who heeded the signs of carbon monoxide poisoning and went to the surface, the residents 

of Minamata were unaware of the significance of events in the local cat population for at least  

six years [45]. Although the effects of Hg intoxication were amply demonstrated in the animals of the 

area, nothing was done to prevent or stop the human epidemic. 

Harada [45] provides a vivid description. “During the 1950s, people began to witness strange 

phenomena in and around Minamata Bay. For no apparent reason, fish rotated continuously and 

floated belly-up to the surface, shellfish opened and decomposed, and birds fell while in flight.  

The most shocking of all incidents was the frenzied death of cats. Cats suffered from excessive 

salivation and manifested general convulsions or violent rotational movements, were unable to walk 

straight, and often collapsed dead. Many jumped into the sea to drown, and eventually cats were no 

longer seen in the area.” In retrospect, the explanation for the ataxic cats accompanied by convulsions 

and death became clear. Local cats were fed fish and scraps of fish from the dinner tables of the 

residents of Minamata [46]. Cats also provided confirmatory evidence of the role of MeHg in the 

etiology of Minamata disease when laboratory analyses were later performed at Kumamoto University 

(Table 2) [57]. High concentrations of THg in liver, kidney, brain and hair were found in cats from 

Minamata compared to tissues from control cats obtained from a fishing village where no cases of 

Minamata disease had occurred [46,57]. 
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Table 2. Concentrations of total mercury (ppm) in fish and shellfish and tissues from cats 

and humans from Minamata Bay, Japan 1962. (Adapted from [57]) 

Fish and Shellfish Cats Humans 

Oyster 5.6 Control 0.9–3.66 Control <3.0 
Gray Mullet 10.6 Kidney 12.2–36.1 Kidney 3.1–144.0 

Clam 20.0 Liver 37–145.5 Liver 0.3–70.5 
China Fish 24.1 Brain 8–18.6 Brain 0.1–24.8 

Crab 35.7 Hair 21–70 Hair 96–705 

A similar incident, albeit of much smaller proportions, occurred in Ontario, Canada in the 1960s 

when a chloralkali plant released mercury into the river resulting in contamination of fish with MeHg.  

At least one cat that consumed fish from the river developed a neurological disorder and toxicological 

analysis of tissues from the cat confirmed Hg as the cause of the illness. Native Americans living in the 

vicinity who consumed fish had high levels of mercury in hair samples [58]. 

7. The Bottlenose Dolphin as a Sentinel for Human Exposure 

As described above, the Atlantic bottlenose dolphin is an apex predator in many marine ecosystems. 

Bottlenose dolphins in the IRL are long-lived, bioaccumulate high concentrations of organic and 

inorganic contaminants in blubber and other tissues and exhibit a relatively high degree of site fidelity, 

making them an excellent sentinel animal for the potential health effects of environmental 

contamination [8]. 

Human exposure to MeHg is primarily from the consumption of fish and shellfish [40]. While the 

general population of the U.S. consumes most of its fish from commercial sources with resulting 

relatively low levels of Hg in their tissues [59], sport fishermen and women appear to be a high risk 

group for accumulation of MeHg. Studies of recreational fishermen in several states [60–62] have 

demonstrated Hg concentrations in hair or blood above national averages and higher concentrations 

among those who ate locally caught sport fish more frequently. Coastal subpopulations often consume 

more fish and have higher concentrations of Hg in their tissues than the general population [63].  

In Florida, the average adult consumes approximately 46 g per day of seafood, considerably higher 

than the estimated 4.5 g per day for the general population in the United States [64]. 

The high concentrations of THg found in the blood and skin of bottlenose dolphins in the IRL 

alerted us to the possibility of exposure to humans in the same area. The lessons learned at Minamata 

Bay prompted us to undertake a study of Hg exposure among local residents along the IRL [65]. The IRL 

is bordered by Brevard, Indian River, St. Lucie Martin and Palm Beach counties with a total population 

of approximately 2.5 million full time residents. Therefore, we hypothesized that a substantial public 

health problem might exist if the residents of these counties consumed locally caught seafood from the IRL. 

We measured exposure to Hg among coastal residents living near the IRL to examine associations 

between the frequency, species and sources of seafood consumed by residents and their hair Hg 

concentration [65]. We enrolled residents of coastal counties bordering the IRL using an opportunistic 

sampling design. Participants provided demographic information and were queried regarding their 

consumption of fish and shellfish, the frequency and sources of their seafood consumption and the 

frequency of consumption of 12 common sportfish. Participants provided a hair sample for the 
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determination of THg. Hair has been validated as a reliable biomarker of Hg intake [66] and represents 

total intake over the prior three months, the same period used in the food frequency questionnaire. 

The mean THg concentration in hair for 135 residents was 1.53 µg/g. (Table 3) [65]. The U.S. EPA 

exposure guideline, which equates to a hair Hg concentration of 1.0 µg/g [67], was exceeded in 50% of 

participants. The hair Hg concentration among males (2.02 µg/g) was significantly higher than that for 

females (0.96 µg/g). However, the concentrations in women of all ages in this study were approximately 

five times higher than those from a randomly generated sample of U.S. women of childbearing age [68]. 

In addition, the concentrations of hair Hg in this study were higher than those reported from anglers 

and coastal resident populations in Wisconsin (0.86 µg/g), Louisiana (1.1 µg/g) Alabama (0.55 µg/g) 

and Canada (0.82 µg/g) [61,62,69,70]. 

Table 3. Concentrations of total mercury in hair (μg/g) among Florida residents, 2011–2012 

by demographic and fish consumption variables (Adapted from [65]).  

Participant Group n Mean ± SD Median
Percentile 

p-Value
75th 90th 95th 

All Participants 135 1.53 ± 1.89 1.01 1.86 3.16 5.01  

Sex       <0.01 

Male 73 2.02 ± 2.38 1.17 2.81 4.74 6.06  
Female 62 0.96 ± 0.74 0.74 1.38 1.98 2.60  

Total Seafood Consumption       <0.01 

≥Once per day 9 2.14 ± 1.86 2.96 3.21 - -  
Three times per week 66 1.95 ± 2.32 1.20 2.39 4.30 5.30  
Once per week 50 1.08 ± 1.16 0.73 1.41 2.02 2.84  
≤Once per month 10 0.49 ± 0.29 0.39 0.79 0.90 -  

IRL Seafood Consumption       0.11 

≥Three times per week 8 2.01 ± 1.47 1.19 3.02 - -  
Once per week 17 1.71 ± 1.41 1.14 3.07 3.69 -  
≤Once per month 110 1.47 ± 1.99 0.89 1.73 2.96 4.71  

Fish Sources       <0.01 

All locally caught 28 2.53 ± 3.20 1.21 3.14 5.36 12.3  

Most locally caught 17 2.46 ± 2.24 1.62 3.76 5.95 -  
Half locally caught 13 1.65 ± 1.06 1.15 2.71 3.44 -  
Most bought from store or restaurant 24 1.20 ± 0.71 1.14 1.73 2.31 2.52  
All bought from store or restaurant 52 0.85 ± 0.73 0.60 1.11 1.85 2.72  

Shellfish Sources       <0.01 

All locally caught 14 3.37 ± 4.50 1.20 5.63 12.14 -  
Most locally caught 10 2.54 ± 1.83 1.84 4.47 5.38 -  
Half locally caught 5 2.77 ± 1.15 2.72 3.68 - -  
Most bought from store or restaurant 19 1.10 ± 0.82 0.85 1.41 2.28 -  
All bought from store or restaurant 85 1.12 ± 1.00 0.75 1.60 2.74 3.08  

Hair Hg concentration was significantly associated with the frequency of total seafood 

consumption. Individuals who reported consuming seafood once a day or more were almost four times 

more likely to have a hair Hg concentration over the U.S. EPA reference dose, compared to those who 
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consumed seafood once a week or less. Hair Hg concentration was also significantly higher among 

individuals who obtained all or most of their seafood from local recreational sources [65]. 

Concentrations were highest among individuals who reported consuming seafood daily (2.14 µg/g) 

and decreased with lower categories of total consumption (Table 3). Individuals who consumed 

seafood from the IRL three times a week or more and those who reported that all fish and shellfish 

consumed were from local recreational sources had the highest hair Hg concentrations (2.01 µg/g and 

2.53 µg/g, respectively). Total hair Hg concentrations were significantly higher among individuals 

who consumed snapper, sea trout, cobia, and grouper once a week or more compared to those who ate 

these fish less than once a week [65]. A direct comparison of Hg contamination in fish consumed by 

dolphins and humans was not undertaken since IRL dolphins consume a majority of their diet as 

striped mullet, silver perch and spot [71]. 

8. Conclusions 

Our recent study of coastal residents in Florida [65] marks the first investigation to apply findings 

from bottlenose dolphins as a stimulus to explore the potential for similar risk among humans from the 

same geographical region. Thus, by applying the knowledge gained from the study of this marine 

mammal sentinel, we have “closed the loop” between animal and human health in a virtually unique 

manner. In the general area of animal sentinels for human disease of non-infectious origin, very few 

have linked the findings in the sentinel to a corresponding human exposure or health effect. One exception 

is the seminal study of mesothelioma in the dog [72] in which asbestos exposure in the dog was linked 

to occupational exposure or hobbies among the owners in most of the cases. 

Following publication of the paper describing Hg exposure in humans in Florida [65], the topic 

received considerable attention in the local media. There were more than 10 news stories on television, 

radio and in local newspapers. These publications helped to raise awareness of potential risks of 

consuming locally caught sportfish and shellfish, especially by pregnant women. Thus, we assume the 

animal sentinel had a positive effect on public health through risk communication with members of the 

local population. In a study conducted in Wisconsin, more than two thirds of the women who consumed 

sportfish were not aware that fish consumption guidelines had been issued to protect against MeHg [63]. 

We are currently evaluating knowledge, attitudes and practices regarding the hazards of fish consumption 

and exposure to Hg among pregnant women in Florida. This issue is timely in view of the fact that fish 

consumption is widely recommended as a means of reducing the risk of cardiovascular disease due to the 

high levels of n-3 polyunsaturated fatty acids present in the tissues of many species [73]. 

The current attention being devoted to Oceans and Human Health internationally [74] suggest that 

additional studies of marine mammal sentinels should be conducted in a wide range of species and 

locales. Multiple environmental challenges face the animals of the ocean and the humans who reside in 

the vicinity or may be impacted indirectly. Animal sentinels may be useful in evaluating risks to 

humans from climate change [75], harmful algal blooms [76], emerging chemical contaminants [77], 

oil spills [78] and multiple other contemporary threats to ecosystem and public health. 
  



Vet. Sci. 2015, 2 417 

 

Acknowledgments 

The authors thank the veterinarians, scientists, staff and volunteers who participated in the HERA 

project. Tissues from HERA project dolphins were collected under National Marine Fisheries Service 

Scientific Research Permits Nos. 998-1678 and 14352-03. 

Author Contributions 

All the authors included in this review article drafted the manuscript, which was revised by all 

authors. All authors read and approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a global pollutant: 

Sources, pathways, effects. Environ. Sci. Technol. 2013, 47, 4967–4983. 

2. Booth, S.; Zeller, D. Mercury, food webs, and marine mammals: Implications of diet and climate 

change for human health. Environ. Health Perspect. 2005, 113, 521–526. 

3. Hsu-Kim, H.; Kucharzky, K.H.; Zhang, T.; Deshusses, M.A. Mechanisms regulating mercury 

bioavailability for methylating microorganisms in the aquatic environment: A critical review. 

Environ. Sci. Technol. 2013, 47, 2441–2456. 

4. King, J.K.; Saunders, F.M.; Lee, R.F.; Jahnke, R.A. Coupling mercury methylation rates to sulfate 

reduction rates in marine sediments. Environ. Toxicol. Chem. 1999, 18, 1362–1369. 

5. Liu, G.L.; Cai, Y.; Philippi, T.; Kalla, P.; Scheidt, D.; Richards, J.; Scinto, L.; Appleby, C. 

Distribution of total and methylmercury in different ecosystem compartments in the Everglades: 

Implications for mercury bioaccumulation. Environ. Pollut. 2008, 153, 257−265. 

6. Reddy, M.L.; Reif, J.S.; Bachand, A.; Ridgeway, S.H. Opportunities for using navy marine 

mammals to explore associations between organochlorine contaminants and unfavorable effects 

on reproduction. Sci. Total. Environ. 2001, 274, 171–182. 

7. Wells, R.S.; Rhinehardt, H.L.; Hansen, L.J.; Sweeney, J.C.; Townsend, F.I.; Stone, R.; Casper, D.R.; 

Scott, M.D.; Hohn, A.A.; Rowles, T.K. Bottlenose dolphins as marine ecosystem sentinels: 

Developing a health monitoring system. EcoHealth 2004, 1, 246–254. 

8. Bossart, G.D. Marine mammals as sentinel species for oceans and human health. Vet. Pathol. 

2011, 48, 676–690. 

9. Kuehl, D.W.; Haebler, R. Organochlorine, organobromine, metal, and selenium residues in 

bottlenose dolphins (Tursiops trucatus) collected during an unusual mortality event in the Gulf of 

Mexico, 1990. Arch. Environ. Contam. Toxicol. 1995, 28, 494–499. 

10. Beck, K.M.; Fair, P.A.; McFee, W.; Wolf, D. Heavy metals in livers of bottlenose dolphins 

stranded along the South Carolina coast. Mar. Pollut. Bull. 1997, 34, 734–739. 



Vet. Sci. 2015, 2 418 

 

11. Meador, J.P.; Ernest, D.; Hohn, A.A.; Tilbury, K.; Gorzeleny, J.; Worthy, G.; Stein, J.E. 

Comparison of elements in bottlenose dolphins stranded on the beaches of Texas and Florida in 

the Gulf of Mexico over one-year period. Arch. Environ. Contam. Toxicol. 1999, 36, 87–98. 

12. Durden, W.N.; Stolen, M.K.; Adams D.H.; Stolen, E.D. Mercury and selenium concentrations in 

stranded bottlenose dolphins from the Indian River Lagoon system, Fl. Bull. Mar. Sci. 2007, 81, 

37–54. 

13. Stavros, H.C.; Stolen, M.; Durden, W.N.; McFee, W.; Bossart, G.D.; Fair, P.A. Correlation and 

toxicological inference of trace elements in tissues from stranded and free-ranging bottlenose 

dolphins (Tursiops truncatus). Chemosphere 2011, 11, 1649–1661. 

14. Cardellicchio, N.; Decataldo, A.; Di Leo, A.; Misino, A. Accumulation and tissue distribution of 

mercury and selenium in striped dolphins (Stenella coeruleoalba) from the Mediterranean Sea 

(southern Italy). Environ. Pollut. 2002, 116, 265–271. 

15. Roditi-Elasar, M.; Kerem, D.; Hornung, H.; Kress, N.; Shohan-Frider, E.; Goffman, O.; Spanier, E. 

Heavy metal levels in bottlenose and striped dolphins off the Mediterranean coast of Israel.  

Mar. Pollut. Bull. 2003, 46, 491–521. 

16. Borrel, A.; Aguilar, A.; Tornero, V.; Drago, M. Concentrations of mercury in tissues of striped 

dolphins suggest decline of pollution in Mediterranean open waters. Chemosphere 2014, 107,  

319–323. 

17. García-Alvarez, N.; Fernández, A.; Boada, L.D.; Zumbado, M.; Zaccaroni, A.; Arbelo, M.; Sierra, E.; 

Almunia J.; Luzardo, O.P. Mercury and selenium status of bottlenose dolphins (Tursiops truncatus): 

A study in stranded animals on the Canary Islands. Sci. Total Environ. 2015, 536, 489–498. 

18. Stavros, H.C.; Bossart, G.D.; Hulsey, T.C.; Fair, P.A. Trace element concentrations in blood of 

free-ranging bottlenose dolphins (Tursiops truncatus): Influence of age, sex and location. Mar. 

Pollut. Bull. 2008, 56, 348–379. 

19. Stavros, H.C.; Bossart, G.D.; Hulsey, T.C.; Fair, P.A. Trace element concentrations in skin of  

free-ranging bottlenose dolphins (Tursiops truncatus) from the southeast Atlantic coast. Sci. Total 

Environ. 2007, 388, 300–315. 

20. Woshner, V.; Knott, K.; Wells, R.; Willetto, C.; Swor, R.; O’Hara T. Mercury and selenium blood 

and epidermis of bottlenose dolphins (Tursiops truncatus) from Sarasota Bay, FL: Interaction and 

relevance to life history and hematologic parameters. EcoHealth 2008, 5, 360–370. 

21. Bryan, C.E.; Christopher, S.J.; Balmer, B.C.; Wells, R.S. Establishing baseline levels of trace 

elements in blood and skin of bottlenose dolphins in Sarasota Bay, Florida: Implications for  

non-invasive monitoring. Sci. Total. Environ. 2007, 388, 325–342. 

22. Nigro, M.; Campana, A.; Lanzillotta, E.; Ferrara, R. Mercury exposure and elimination rates in 

captive bottlenose dolphins. Mar. Pollut. Bull. 2002, 44, 1071–1075. 

23. Hong, Y.S.; Hull, P.; Rifkin, E.; Bouwer, E.J. Bioaccumulation and biomagnification of mercury 

and selenium in the Sarasota Bay ecosystem. Environ. Toxicol. Chem. 2013, 5, 1143–1152. 

24. Schaefer, A.M.; Titcomb, E.M.; Fair, P.A.; Stavros, H.C.; Mazzoil, M.; Bossart, G.D.; Reif, J.S. 

Mercury concentrations in Atlantic bottlenose dolphins (Tursiops truncatus) inhabiting the Indian 

River Lagoon, Florida: Patterns of spatial and temporal distribution. Mar. Poll. Bull. 2015, 97,  

544–547. 



Vet. Sci. 2015, 2 419 

 

25. Mazzoil, M.; McCulloch, S.D.; Murdoch, M.E.; Bechdel, S.E.; Howells, E.; Youngbluth, M.; 

Hansen, L.J.; Reif, J.S.; Bossart, G.D. Home ranges of bottlenose dolphins (Tursiops truncatus) in 

the Indian River Lagoon, Florida: Environmental correlates and implications for management 

strategies. EcoHealth 2008, 5, 278–288. 

26. Sigua, G.C.; Steward, J.S.; Tweedale, W.A. Water-quality monitoring and biological integrity 

assessment in the Indian River Lagoon, Florida: Status, trends, and loadings (1988–1994). 

Environ. Manag. 2000, 25,199–209. 

27. St. Sime, P. Lucie Estuary and Indian River Lagoon conceptual ecological model. Wetlands  

2005, 25, 898–907. 

28. Wiener, J.G.; Krabbenhoft, D.P.; Heinz, G.H.; Scheuhammer, A.M. Ecotoxicology of Mercury.  

In Handbook of Ecotoxicology, 2nd ed.; Hoffman, D.J., Rattner, D.A., Burton, G.A., Cains, J., Eds.; 

Lewis: Boca Raton, FL, USA, 2003; pp. 409–663. 

29. Gabriel, M.C.; Howard, N.; Osborne, T.Z. Fish mercury and surface water sulfate relationships in 

the Everglades protection area. Environ. Manag. 2014, 53, 583–593. 

30. Chalmers, A.T.; Argue, D.M.; Gay, D.A.; Brigham, M.E.; Schmitt, C.J.; Lorenz, D.L. Mercury trends 

in fish from rivers and lakes in the United States, 1969–2005. Environ. Monit. Assess. 2011,175, 

175–191. 

31. Guentzel, J.L.; Landing, W.M.; Gill, G.A.; Pollman, C.D. Processes influencing rainfall 

deposition of mercury in Florida. Environ. Sci. Technol. 2001, 35, 863–873. 

32. Fair, P.A.; Adams, J.D.; Zolman, E.; McCulloch, S.D.; Goldstein, J.D.; Murdoch, M.E.; Varela, R.; 

Hansen, L.; Townsend, F.; Kucklick, J.; et al. Protocols for Conducting Dolphin Capture-Release 

Health Assessment Studies; NOAA/National Ocean Service: Charleston, SC, USA, 2006. 

33. Schaefer, A.M.; Stavros, H.W.; Reif, J.S.; Fair, P.A.; Bossart, G.D. Effects of mercury on hepatic, 

renal, endocrine and hematological parameters in Atlantic bottlenose dolphins (Tursiops truncatus) 

along the eastern coast of Florida and South Carolina. Arch. Environ. Contam. 2011, 61, 688–695. 

34. Palmisano, F.; Cardellicchio, N.; Zambonin, P.G. Speciation of mercury in dolphin liver: A two-stage 

mechanism for the demethylation accumulation process and role of selenium. Mar. Environ. Res. 

1995, 40, 109–121. 

35. Khan, M.A.; Wang, F.Y. Mercury-selenium compounds and their toxicological significance: 

Toward a molecular understanding of the mercury-selenium antagonism. Environ. Toxicol. Chem. 

2009, 28, 1567–1577. 

36. Yang, D.Y.; Chen, Y.W.; Gunn, J.M.; Belzile, N. Selenium and mercury in organisms: 

Interactions and mechanisms. Environ. Rev. 2008, 16, 71–92. 

37. Rawson, A.J.; Patton, G.W.; Hofmann, S.; Pietra, G.G.; Johns, L. Liver abnormalities associated 

with chronic mercury accumulation in stranded Atlantic bottlenose dolphins. Ecotox. Environ. Saf. 

1993, 25, 41–47. 

38. Reif, J.S.; Schaefer, A.M.; Stavros, A.C.; Peden-Adams, M.M.; Romano, T.A.; Rice, C.D.; Fair, P.A.; 

Bossart, G.D. Bottlenose dolphins as sentinels for exposure to mercury: Effects on immune 

function. In Proceedings of the 18th Biennial Conference on the Biology of Marine Mammals, 

Quebec, QC, Canada, 12–16 October 2009. 



Vet. Sci. 2015, 2 420 

 

39. Bennett, P.M.; Jepson, P.D.; Law, R.J.; Jones, B.R.; Kuiken, T.; Baker, J.R.; Rogan, E.; Kirkwood, 

J.K. Exposure to heavy metals and infectious disease mortality in harbour porpoises from England 

and Wales. Environ. Pollut. 2001, 112, 33–40. 

40. National Research Council. Health effects of methylmercury. In Toxicology Effects of Methylmercury; 

National Academy Press: Washington, DC, USA, 2000; pp. 147–249. 

41. Crompton, P.; Ventura, A.M.; de Souza, J.M.; Santos, E.; Strickland, G.T.; Silbergeld, E. 

Assessment of mercury exposure and malaria in a Brazilian Amazon riverine community. 

Environ. Res. 2002, 90, 69–75. 

42. Nyland, J.F.; Fillion, M.; Barbosa, F; Shirley, D.L.; Chine, C.; Lemire, M.; Mergler, D.;  

Silbergeld, E.K. Biomarkers of methylmercury exposure immunotoxicity among fish consumers in 

Amazonian Brazil. Environ. Health Perspect. 2011, 119, 1733–1738. 

43. Gardner, R.M.; Nyland, J.F.; Silva, I.A.; Ventura, A.M.; de Souza, J.M.; Silbergeld, E.K.  

Mercury exposure, serum antinuclear/antinucleolar antibodies, and serum cytokine levels in mining 

populations in Amazonian Brazil: A cross-sectional study. Environ. Res. 2010, 110, 345–354. 

44. Pollard, K.M.; Hultman, P.; Kono. D.H. Immunology and genetics of induced systemic 

autoimmunity. Autoimmun Rev. 2005, 4, 282–288. 

45. Harada, M. Minamata disease: Methylmercury poisoning in Japan caused by environmental 

pollution. Crit. Rev. Toxicol. 1995, 25, 1–24. 

46. Tsuchiya, K. The discovery of the causal agent of Minamata disease. Am. J. Ind. Med. 1992, 21, 

275–280. 

47. Stern, A.H.; Smith, A.E. An assessment of the cord blood: maternal blood methylmercury ratio: 

Implications for risk assessment. Environ. Health Perspect. 2003, 111, 1465–1470. 

48. Bakir, F.; Damluji, S.F.; Amin-Zaki, L.; Murtadha, M.; Khalidi, A.; Al-Rawi, N.Y.; Tikriti, S.; 

Dhahir, H.I.; Clarkson, T.W.; Smith, J.C.; et al. Methylmercury poisoning in Iraq. Science 1973, 181, 

230–241. 

49. Grandjean, P.; Weihe, P.; White, R.F. Cognitive deficit in 7-year-old children with prenatal 

exposure to methylmercury. Neurotoxicol. Teratol. 1997, 19, 417–428. 

50. Davidson, P.W.; Myers, G.J.; Cox, C.; Axtell, C.; Shamlaye, C.; Sloane-Reeves, J.; Cernichiari, E.; 

Needham, L.; Choi, A.; Wang, Y.; et al. Effects of prenatal and postnatal methylmercury exposure 

from fish consumption on neurodevelopment: Outcomes at 66 months of age in the Seychelles 

Child Development Study. JAMA 1998, 280, 701–707. 

51. Strain, J.J.; Davidson, P.W.; Bonham. M.P.; Duffy, E.M.; Stokes-Riner, A.; Thurston, S.W.; 

Wallace, J.M.W.; Robson, P.J.; Shamlaye, C.F.; Georger, L.A.; et al. Associations of maternal  

long-chain polyunsaturated fatty acids, methyl mercury, and infant development in the Seychelles 

Child Development Nutrition Study. Neurotoxicology 2008, 29, 776–782. 

52. Oken, E.; Wright, R.O.; Kleinman, K.P.; Bellinger, D.; Amarasiriwardena, C.J.; Hu, H.;  

Rich-Edwards, J.W.; Gillman, M.W. Maternal fish consumption, hair mercury, and infant 

cognition in a U.S. cohort. Environ. Health Perspect. 2005, 10, 1376–1380. 

53. Grandjean, P.; Satoh, H.; Murata, K.; Eto, K. Adverse effects of methylmercury: Environmental 

health research implications. Environ. Health Perspect. 2010, 118, 1137–1145. 



Vet. Sci. 2015, 2 421 

 

54. Karagas, M.R.; Choi, A.L.; Oken, E.; Horvat, M.; Schoeny, R.; Kamai, E.; Cowell, W.;  

Grandjean, P.; Korrick, S. Evidence on the human health effects of low-level methylmercury 

exposure. Environ. Health Perspect. 2012, 120, 799–806. 

55. Daniels, J.L.; Longnecker, M.P.; Rowland, A.S.; Golding, J. Fish intake during pregnancy and 

early cognitive development of offspring. Epidemiology 2004, 4, 394–402. 

56. Mergler, D.; Anderson, H.A.; Chan, L.H.M.; Mahaffey, K.R.; Murray, M.; Sakamoto, M.; Stern, A.H. 

Methylmercury exposure and health effects in humans: A worldwide concern. Ambio 2007, 36, 3–11. 

57. Kitamura, S. Determination on mercury content in bodies of inhabitants, cats, fishes and shells in 

Minamata district and the mud of Minamata bay. In Minamata Disease; Kutsuna, M., Ed.;  

Study Group of Minamata Disease, Kumamoto University: Kumamoto, Japan, 1968; pp. 257–266. 

58. Takeuchi, T.; D’Itri, F.M.; Fischer, P.V.; Annett, C.S.; Okabe M. The outbreak of Minamata 

disease (methylmercury poisoning) in cats on northwestern Ontario’s reserves. Environ. Res. 

1977, 13, 215–225. 

59. Mahaffey, K.R.; Clickner, R.P.; Jeffries, R.A. Adult women’s blood mercury concentrations vary 

regionally in the United States: Association with patterns of fish consumption (NHANES 1999–2004). 

Environ. Health Perspect. 2009, 117, 47–53. 

60. Gobeille, A.K.; Morland, K.B.; Bopp, R.F.; Godbold, J.H.; Landrigan, P.J. Body burdens of 

mercury in lower Hudson River area anglers. Environ. Res. 2006, 10, 205–212. 

61. Knobeloch, L.; Gliori, G.; Anderson, H. Assessment of methylmercury exposure in Wisconsin. 

Environ. Res. 2007, 2, 205–210. 

62. Lincoln, R.A.; Shine, J.P.; Chesney, E.J.; Vorhees, D.J.; Grandjean, P.; Senn, D.B. Fish consumption 

and mercury exposure among Louisiana recreational anglers. Environ. Health Perspect. 2011, 2, 

245–251. 

63. Knobeloch, L.; Anderson, H.; Imma, P.; Petersa, D.; Smith, A. Fish consumption, advisory 

awareness, and hair mercury levels among women of childbearing age. Environ. Res. 2005, 97, 

220–227. 

64. Degner, R.L.; Adams, C.M.; Moss, S.D.; Mack, S.K. Per Capita Fish and Shellfish Consumption 

in Florida; Florida Agricultural Market Research Center, Institute of Food and Agricultural 

Sciences, University of Florida: Gainesville, FL, USA, 2004. 

65. Schaefer, A.M.; Jensen, E.; Bossart, G.D.; Reif, J.S. Hair mercury concentrations and fish 

consumption patterns in florida residents. Int. J. Environ. Res. Public Health 2014, 11, 6709–6726. 

66. Zareba, G.; Cernichiari, E.; Goldsmith, L.A.; Clarkson, T.W. Validity of methlymercury hair 

analysis; Mercury monitoring in human scalp/nude mouse model. J. Appl. Toxicol. 2008, 28, 535–542. 

67. Rice, D.C.; Schoeny, R.; Mahaffey, K. Methods and rationale for derivation of a reference dose 

for methylmercury by the U.S. EPA. Risk Anal. 2003, 23, 107–115. 

68. McDowell, M.A.; Dillon, C.F.; Osterloh, J.; Bolger, P.M.; Pellizzari, E.; Fernando, R.;  

de Montes Oca, R.; Schober, S.E.; Sinks, T.; Jones, R.L.; et al. Hair mercury levels in U.S. 

children and women of childbearing age: Reference range data from NHANES 1999–2000. 

Environ. Health Perspect. 2004, 112, 1165–1171. 

69. Kosatsky, T.; Przybysz, R.; Armstrong, B. Mercury exposure in Montrealers who eat St. 

Lawrence river sportfish. Environ. Res. 2000, 84, 36–43. 



Vet. Sci. 2015, 2 422 

 

70. Warner, K. Mercury Levels in Hair of Coastal Alabama Anglers and Residents. Report  

Oceana, Washington, DC, 2007. Available online: http://oceana.org/sites/default/files/reports/ 

Rodeo_Hair_Report_Final.pdf (accessed on 1 February 2014). 

71. Barros, N.B.; Odell, D.K. Food habits of bottlenose dolphins in the southeastern United States.  

In The Bottlenose Dolphin; Leatherwood, S., Reeves, R.R., Eds.; Academic Press: San Diego, 

CA, USA, 1990; pp. 309–328. 

72. Glickman, L.T.; Domanski, L.M.; Maguire, T.G.; Dubielzig, R.R.; Churg, A. Mesothelioma in pet 

dogs associated with exposure of their owners to asbestos. Environ. Res. 1983, 32, 305–313. 

73. Mahaffey, K.R.; Sunderland, E.M.; Chan, H.M.; Choi, A.L.; Grandjean, P.; Mariën, K.; Oken, E.; 

Sakamoto, M.; Schoeny, R.; Weihe, P.; et al. Balancing the benefits of n-3 polyunsaturated fatty 

acids and the risks of methylmercury exposure from fish consumption. Nutr. Rev. 2011, 69, 493–508. 

74. Fleming, L.E.; McDonough, N.; Austen, M.; Mee, L.; Moore, M.; Hess P.; Depledge, M.H.; White, 

M.; Philippart, K.; Bradbrook, P.; et al. Oceans and Human Health: A rising tide of challenges and 

opportunities for Europe. Mar. Environ. Res. 2014, 99, 16–19. 

75. Fury, C.A.; Reif, J.S. Incidence of poxvirus-like lesions in two estuarine dolphin populations in 

Australia: Links to flood events. Sci. Total Environ. 2012, 416, 536–540. 

76. Bossart, G.D.; Baden, D.G.; Ewing, R., Roberts, B.; Wright, S.D. Brevetoxicosis in manatees 

(Trichechus manatus latirostris) from the 1996 epizootic: Gross, histologic and immunohistochemical 

features. Toxicol. Pathol. 1998, 26, 276–282. 

77. Fair, P.A.; Adams, J.; Mitchum, G.; Hulsey, T.C.; Reif, J.S.; Houde, M.; Muir, D.; Wirth, E.; 

Wetzel, D.; Zolman, E.; et al. Contaminant blubber burdens in Atlantic bottlenose dolphins 

(Tursiops truncatus) from two southeast U.S. estuarine areas: Concentrations and patterns of 

PCBs, pesticides, PBDEs, PFCs, and PAHs. Sci. Total Environ. 2010, 408, 1577–1597. 

78. Schwacke, L.H.; Smith, C.R.; Townsend, F.I.; Wells, R.S.; Hart, L.B.; Balmer, B.C.; Collier, T.K.; 

de Guise, S.; Fry, M.M.; Guillette, L.J.; et al. Health of common bottlenose dolphins  

(Tursiops truncatus ) in Barataria Bay, Louisiana, following the deepwater horizon oil spill. 

Environ. Sci. Technol. 2014, 48, 93–103. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


