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Abstract: DNA Alkylation is thought to be the reason for the efficacy of lomustine while 
carbamylation has been implicated as the cause for the side effects seen with lomustine 
treatment such as hepatotoxicity. In the alkylation study we show that lomustine and  
its metabolites form similar levels of the DNA adducts N7 hydroxyethylguanine and O6 
hydroxyethyldeoxyguanosine. In terms of carbamylation, lomustine showed greater extent 
of carbamylation in the canine hepatocytes and lymphoma cell lines. The DNA repair 
enzyme O6 methylguanine DNA methyltransferase (MGMT) causes resistance of tumor cells 
to bifunctional nitrosourea, like lomustine. There is no data available regarding MGMT 
expression/activity in canine cells or tissues. Our study shows that there is low MGMT activity 
in the canine lymphoid cell line 17–71 while the GL-1 cells did not show any detectable enzyme 
activity or mRNA expression. The MGMT enzyme activity measured in canine hepatocytes 
is about 250–350 fmol/mg protein as compared to about 90 fmol/mg protein in 17–71 cells. 
We also show that MGMT mRNA expression in 17–71 cells and canine hepatocytes positively 
correlates with its enzyme activity in these cells.
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1. Introduction 

It is known that alkylating agents such as nitrosoureas decompose at physiological conditions to yield 
alkylating and carbamylating intermediates [1], however the relative contribution of these events to the 
toxicity and therapeutic effects are unclear [2]. These compounds are electrophilic in nature and attack 
the nucleophilic sites on the DNA to form alkylated products [3]. The N7 position of guanine is the most 
reactive site [3,4] with all alkylating agents and hence about 70%–90% of the adducts are formed at this 
position [5,6]. However the relative mutagenicity and carcinogenicity of alkylating agents correlate with 
the reagents ability to bind to the oxygen sites [7,8]. Chloroethylating compounds like lomustine form 
adducts at the O6 position of guanine [5]. If not repaired, these adducts form DNA interstrand cross links [3] 
which may lead to double strand breaks and ultimately, apoptosis of the cell [9]. 

Decomposition of lomustine in aqueous medium produces chloroethyl carbonium ions which is an 
alkylating intermediate and also cyclohexyl isocyanate which is a carbamylating agent [10–12]. It is believed 
that the dominant role of carbamylating activity is in determining the toxicity of compounds which may 
be manifested as side effects [2]. The isocyanate intermediates formed by the breakdown of lomustine 
react with the lysine residues in protein leading to post translational modification of proteins [13]. This 
could result in partial or complete loss of protein function [14]. 

The DNA protective enzyme MGMT is known to play a critical role in the defense against alkylating 
compounds which produce the O6 alkylguanine lesion. Repair of the O6 alkylguanine adduct via MGMT 
is a rapid single step process in which the offending alkyl group is transferred to the cysteine residue of 
MGMT thereby restoring the affected DNA [5,15,16]. The MGMT level is highly variable among 
individuals and also among the various tissues in the same individual [17]. A long term study of MGMT 
in peripheral blood mononuclear cells (PBMC) from healthy human subjects showed that there is a  
7 fold variation in MGMT activity between subjects with very little change over time [18]. 

Due to its functional role in DNA repair, MGMT may have a significant impact on the outcome  
of cancer therapy with alkylating agents. Certain tumors that are high expressers of MGMT were found 
to be less sensitive to treatment with nitrosoureas while tumors that were deficient in MGMT or showed 
relatively low expression responded better to nitrosourea therapy [17]. MGMT levels in normal tissues 
may also have significant impact on the choice of therapy to be used. A dose limiting side effect of most 
nitrosourea compounds is myelotoxicity, and it is thought that this could be due to the low MGMT 
expression in bone marrow cells [16,19]. There is data indicating that MGMT expression is inducible 
(via transcriptional activation) by alkylating agents, X-ray or other DNA damaging agents [20]. Studies 
in rat liver cells have shown a 2–5 fold MGMT gene induction with maximum induction happening around 
24 to 48 h after exposure to X-ray or the alkylating agent, methylnitronitrosoguanidine (MNNG) [20,21]. 

In our previously published cytotoxicity study [22], lomustine and its metabolites showed similar 
degree of cell killing in the canine lymphoid cell lines 17–71 and GL-1, and canine hepatocytes. As alkylation 
is thought to be the main reason for the cytotoxic effects of these drugs [3], we wanted to investigate if 
the compounds have similar pattern of alkylation. It is believed that the concentration of an internal 
dosimeter such as DNA adducts is a more accurate measure of the amount of mutagen reaching the target 
site than the applied dose [7]. In a recent study published, it was shown that N7 hydroxyethyl guanine 
and O6 hydroxyethyldeoxyguanosine are some of the main DNA alkylation products formed after 
exposure to chloroethylating agents [23]. It is reported that the cis-4 and trans-4 metabolites of lomustine 
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may have reduced toxic effects relative to lomustine [24] and therefore the metabolites might have 
advantage over lomustine for clinical use [25]. Carbamylation of proteins is believed to contribute to the 
side effects seen with lomustine [2]. 

The aim of this study was to compare the alkylation and carbamylation potential of lomustine and its 
trans-4 and cis-4 metabolites in canine lymphoma cell lines and hepatocytes. The secondary aim was to 
evaluate the MGMT expression and enzyme activity in canine lymphoid cell lines and primary canine 
hepatocytes as we tried to correlate the MGMT levels with the cytotoxicity of lomustine and its metabolites 
in these cells and also the level of DNA adducts formed by these compounds. 

2. Materials and Methods 

2.1. DNA Adduct Detection Assay 

The O6 hydroxyethyldeoxyguanosine and N7 hydroxyethylguanine adducts were measured in canine 
lymphoid cell lines 17–71 and GL-1 [26,27] and primary canine hepatocytes (isolated from six dogs that 
were euthanized at the Champaign county animal control facility) after exposure to lomustine, trans-4 
and cis-4 by the LC/MS/MS method as mentioned below. The cell lines were grown and maintained at 
37 °C in 5% CO2, and cultures were passaged as necessary to maintain high cell viability (above 90%) 
in culture media Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal bovine 
serum (FBS) and 1% penicillin/streptomycin. 

2.1.1. Isolation of Canine Hepatocytes 

Isolation of canine hepatocytes was performed as previously described [28] with few modifications. Liver 
samples (25 gms) from freshly euthanized dogs were placed in PBS containing 1% penicillin/streptomycin, 
finely minced, washed a couple of times with PBS, and transferred into 100 mL of cold collagenase solution 
(Collagenase II, 300 units/mg, 500 ng/mL in hank’s balanced salt solution (HBSS)-Hepes buffer) and 
stirred for 10 min. At the end of incubation, 10 mL of FBS and 50 mL of ice cold HBSS were added. 
The suspension was filtered through a cell strainer (100 micron pore size) and the filtrate was centrifuged 
at 50 g for 5 min at 4 °C. The pellet was washed twice with PBS with 1% penicillin/streptomycin and 
centrifuged twice at 150 g for 2 min each and resuspended in 5 mL PBS. The cell suspension was layered 
over 15 mL cushion of 60% Percoll in PBS and centrifuged at 70 g at 4 °C for 5 min. The pellet was 
washed again with PBS and cell viability was determined by Trypan blue dye exclusion test. The cells 
were then suspended in DMEM (supplemented with 10% FBS and 1% penicillin/streptomycin) at a 
density of 0.6 million/mL and incubated at 37 °C for 48 h to acclimatize and form a monolayer. After 
48 h the media was replaced by hepatocyte maintenance media (Triangle Research, NC, USA). The 
maintenance media was changed every day. 

2.1.2. Sample Preparation 

For this experiment, 106 cells were used per sample. The cells were exposed to fresh media (hepatocyte 
maintenance media for the canine hepatocytes and DMEM supplemented with 10% FBS and 1% 
penicillin/streptomycin for the canine cell lines 17–71 and GL-1) containing varying concentrations of 
lomustine, trans-4 or cis-4 metabolites (300, 1000, 3000, 10,000 and 50,000 ng/mL) for 4 h. At the end 
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of 4 h, the DNA was isolated using Qiagen blood mini kit (Qiagen). The extracted DNA was lyophilized 
and concentrated to 100 μg and then digested as follows: per 50 �L DNA, 10 �L of 0.5 M Tris (pH 7.3), 
2 �L of 1 M MgCl2, 10 �L DNAse I (5 mg/mL, 2303 units/mg, Worthington), 10 �L of snake venom 
phosphatase (5 mg/mL, 36 units/mg, Worthington) and 4 �L of bacterial alkaline phosphatase (5 mg/mL, 
35 units/mg, Worthington) was added final volume adjusted to 150 �L with deionized water. The mixture 
was incubated overnight at 37 °C and then heated to 100 °C for 90 s to inactivate the enzymes. The 
samples were briefly centrifuged to sediment the proteins and the supernatant was analyzed by 
LC/MS/MS. For the cell lines, the experiment was done two separate times, with two technical replicates 
each. For the canine hepatocytes, the experiment was done once with duplicate samples. 

The 4 h time point for measuring adducts after drug exposure was based on a published study that 
looked at DNA alkylation products after exposure to lomustine and adducts were measured between  
1 and 6 h. The published results showed that the adducts were formed rapidly and were detected at 1 h 
after drug exposure [23]. In our initial experimentation, the 1 h samples showed very low adduct level at the 
10,000 ng and 50,000 ng concentrations and no adducts were detected at the lower drug concentrations. Even 
in the 4 h samples, the adducts were only detected at the 10,000 ng and 50,000 ng but the response was 
greater compared to the 1 h samples. Hence we chose to detect the adducts at 4 h. The N7 adduct was detected 
at the concentration of 10,000 ng/mL and above while the mutagenic adduct O6 hydroxyethyldeoxyguanosine 
was only detected at 50,000 ng/mL drug concentration. Therefore the 10,000 ng/mL and 50,000 ng/mL 
concentrations were used to compare the adducts formed by the three drugs. 

2.2. LC/MS/MS Method for Detection of DNA Adducts 

An LC/MS/MS method was developed to quantify the O6 hydroxyethyldeoxyguanosine and  
N7 hydroxyethylguanine adducts in the DNA samples. 

2.2.1. Standards Preparation 

Pure standards of O6 hydroxyethyldeoxyguanosine and N7 hydroxyethylguanine were purchased from 
Toronto research company (Toronto, ON, Canada). Deuterated O6 methylguanine (D3-O6 methylguanine) 
was used as internal standard (Sigma Aldrich, St. Louis, MO, USA). Standards were dissolved in 
methanol to prepare stock solutions. Standard curve range was 0.1–10 ng for each compound and 50 ng 
of internal standard was added to each sample. The final volume was adjusted to 150 μL with water. 

2.2.2. LC/MS/MS Conditions 

Samples were analyzed with the QTRAP 5500 LC/MS/MS system (AB Sciex, Foster City, CA, USA)
with the 1200 series HPLC system (Agilent Technologies, Santa Clara, CA, USA) including a degasser, 
an autosampler, and a binary pump. The LC separation was performed on an Agilent SB-Aq column
(4.6 mm × 50 mm, 5 μ) (Santa Clara, CA, USA) with mobile phase A (0.1% formic acid in water) and 
mobile phase B (0.1% formic acid in acetonitrile). The flow-rate was 0.35 mL/min. The linear gradient 
was as follows: 0–1 min, 100% A; 8–11 min, 25% A; 12–18 min, 100% A. 

The autosampler was set at 5 °C and the injection volume is 5 μL. Positive mass spectrometry was 
achieved with electrospray ionization (ESI). The ion spray voltage was 5500 V. The source temperature 
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was 400 °C. The curtain gas, ion source gas 1, and ion source gas 2 were 32, 65, and 50, respectively. 
Multiple reaction monitoring (MRM) was used to quantify O6 hydroxyethyldeoxyguanosine  
(m/z 312.2 àm/z 110.1), N7 hydroxyethylguanine (m/z 196.1 àm/z 110.1), and the internal standard 
deuterated O6 methylguanine (m/z 169.1 àm/z 70.1) (Figure 1). 

 

Figure 1. Graphs showing the N7 hydroxyethylguanine adduct formed after treatment with 
lomustine, trans-4-hydroxylomustine and cis-4-hydroxylomustine metabolites at 10,000 ng/mL 
(A) and 50,000 ng/mL (B) concentration in 17–71 and GL-1 cells and hepatocytes from  
6 dogs (n = 6). 

2.3. Carbamylation Assay 

Carbamylation was measured in primary hepatocytes harvested from six dogs euthanized at the 
Champaign county animal control facility (hepatocyte isolation procedure as mentioned above) and 
canine cell lines 17–71 and GL-1 after treatment with lomustine and its metabolites using Oxyselect™ 
carbamylation ELISA kit. 

Cells were counted and 106 cells were used per sample. The cells were exposed to fresh media (hepatocyte 
maintenance media for the canine hepatocytes and DMEM supplemented with 10% FBS and 1% 
penicillin/spreptomycin for the canine cell lines 17-71 and GL-1) containing varying concentrations of 
lomustine, trans-4 or cis-4 metabolites (300, 1000, 3000 and 10,000 ng/mL). Carbamylation was measured 
at 4 h after exposure to drugs as per the ELISA kit instructions. Carbamylation is a rapid process occurring 
within a few minutes and previously published studies have measured carbamylation at similar time 
points (2, 19). Initial experimentation did not show any carbamylation at 300, 1000 and 3000 ng/mL drug 
concentration. Thus 10,000 ng/mL concentration was used to compare the carbamylation effects of the 
three drugs. For the cell lines, the experiment was done two separate times, with two technical replicates 
each. For the canine hepatocytes, the experiment was done once with duplicate samples. 

2.4. MGMT mRNA Expression in 17–71 and GL-1 Cells and Canine Primary Hepatocytes 

The canine cell lines 17–71 and GL-1 were grown and maintained at 37 °C in 5% CO2, and cultures were 
passaged as necessary to maintain high cell viability (above 90%) in culture media DMEM supplemented 
with 10% FBS and 1% penicillin/streptomycin. For the MGMT gene induction study, MGMT gene 
expression was measured in canine cells at 6, 12, 24 and 48 h after exposure to varying concentrations 
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of lomustine (1000, 3000 and 12,000 ng/mL) to study MGMT induction. The cells were only treated 
with 12,000 ng/mL concentration of trans-4 and cis-4, based on the initial results obtained after lomustine 
treatment study. Untreated samples were used to measure basal MGMT mRNA expression in these cells. 
Hepatocytes were isolated from six dogs euthanized at the Champaign county animal control facility. 

MGMT mRNA Expression Assay

The total RNA from samples was extracted using RNeasy mini kit (Qiagen). Relative expression 
levels of the MGMT gene was carried out using Taqman Real-Time quantitative real-time polymerase 
chain reaction (RT-PCR (QPCR)) analysis on an ABI Prism 7500 thermal cycler. An ABI canine MGMT 
specific Taqman probe (cf02626419_m1) spanning the exon 1/2 junction was used for all analyses. 
HPRT-1 was used as internal reference for normalization (ABI Taqman probe cf02626258_m1). For this 
analysis, 1 μg aliquot of total RNA from a given sample was converted to cDNA using Superscript III first 
strand synthesis system (Life technologies, Carlsbad, CA, USA). The resulting cDNA was used in 
separate Taqman QPCR analyses, each including triplicate technical repeats. Expression comparisons 
was made between treated and untreated (control) samples and also between different cell types. The mRNA 
expression was measured two separate times in all samples (canine cell lines and hepatocytes) with two 
technical replicates each time. In order to ascertain that the Taqman assay is able to detect the gene 
expression correctly, MGMT gene expression was measured in three canine glioma cell lines J3T-Bg, 
SDT-3 and G06A. 

2.5. MGMT Enzyme Activity in 17–71 and GL-1 Cells and Canine Hepatocytes 

A fluorometric oligonucleotide assay was used for measuring MGMT enzyme activity [29]. The 
following 18 base pair (bp) 5'hexachlorofluoroscein phosphoramitide (HEX) labelled oligonucleaotide 
(oligo) containing O6-methylguanine lesion within a PvuII restriction site and its complementary oligo 
were custom made (Sigma Aldrich). 

Hex labeled oligo: 5'HEX-GCCCGGCCAGCTGCAGTT 
Complementary oligo:   3'-CGGGCCGGTCGACGTCAA 

 

 

G = O6 methylguanine  
Oligonucleotide strands were annealed to complementary strands in 10 mM Tris–HCl, 1 mM EDTA, 

33 mM NaCl, pH 8.0, by heating to 90 °C for 2 min to denature and cooling to room temperature overnight. 
The 17–71 and GL-1 cells and hepatocytes were maintained in culture media as mentioned above. Cells 
(106) were harvested and resuspended in serum-containing culture medium (DMEM), then centrifuged 
at 1500 g for 5 min. 

The cells were washed with 10 mL of PBS and recentrifuged, then resuspended in 0.5 mL assay buffer 
(50 mM Tris–HCl, 1 mM DTT, 0.5 mM EDTA, 5% glycerol, pH 8.0) and kept on ice. Protein from cells 
was extracted by pulse-sonication on ice five times for 5 seconds each, then centrifuged at 14,000 g at  
4 °C for 30 min. The total protein was quantitated by measuring absorbance at 595 nm using the  
Pierce bicinchoninic acid (BCA) kit reagent. To measure the MGMT activity the 200 fmols of HEX 
labeled oligo was incubated with cell protein (500 μg) at 37 °C for 2 h. The oligo was extracted by 

PvuII restriction site 
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phenol:chloroform:isoamyl alcohol (25:24:1) extraction and using sodium acetate and ethanol with 
tRNA (10 μg) as a carrier. This was vortex mixed for 5 s and then centrifuged at 12,000 g for 5 min at 
room temperature. The upper aqueous phase was transferred to a new tube and the purified oligo was digested 
with a restriction enzyme PvuII (Promega) for 2 h in a total reaction mixture of 20 μL following 
manufacturer’s instructions. PvuII cleaves the oligo at the O6-methylguanine lesion producing two short 
fragments (10 bp and 8 bp). After adding formamide loading buffer (10 μL), the samples were denatured 
by heating at 95 °C for 5 min. Sample solutions (15 μL) were applied to a pre-warmed 20% polyacrylamide 
gel containing 8 M urea in 1× Tris–borate EDTA (TBE) buffer and run at 50 mA for 15 min. Detection 
and quantitation of the fluorescent HEX labeled oligonucleotides was done by using a fluorescent 
imaging system (Typhoon 9410 Variable Mode Imager). 

The MGMT enzyme activity was quantified by comparing the intensity of the bands (18 bp) between 
the PvuII treated and PvuII nontreated (control) samples. The MGMT activity was calculated by comparing 
the intensity (density volume obtained from the fluorescent reader) of the top band (18 bp) in the samples 
with that in the controls. The density of the control band was considered as 100%. The deficit in intensity 
in the sample bands compared to the control bands represents the amount of cleavage which corresponds 
to the MGMT enzyme activity. For the cell lines and hepatocytes, the experiment was done with 
duplicate samples. 

For measuring the lower limit of detection (LOD) and limit of quantitation (LOQ) of the method, 
serial dilution of the HEX labelled oligo was made from 1–200 fmols in deionized water and the fluorescent 
intensity was measured and plotted against the oligo concentration. The lowest concentration showing  
3 times the fluorescent intensity compared to the blank sample was chosen as the LOD and the lowest 
concentration with CV less than or equal to 15% was chosen as the LOQ of the method.  

3. Statistical Analysis 

Statistical analysis was done using SPSS (IBM, Armonk, NY, USA). Descriptive statistics were 
produced for all continuous variables. Mean and standard deviation were calculated. Normality of data 
was assessed using the Shapiro-Wilks test. For alkylating and carbamylation assays, paired t-tests were 
performed to evaluate differences between technical repeats of each drug and one way ANOVA and 
Tukey’s post hoc test were performed to evaluate the between drug differences. Kruskal-Wallis one way 
ANOVA was used to compare the means of the drug treated and non-treated groups at different time 
points in the MGMT gene induction study. Correlation between MGMT mRNA expression and enzyme 
activity was evaluated by Pearson’s correlation. The p value was set at 0.05. 

4. Results 

There is no statistically significant difference in the levels of N7 hydroxyethylguanine and O6 
hydroxyethyldeoxyguanosine adducts formed by lomustine, trans-4 or cis-4. The N7 hydroxyethylguanine 
adduct was detected at similar level in 17–71, GL-1 and the hepatocytes from six dogs after exposure to 
lomustine, trans-4 and cis-4 at 10,000 ng/mL and 50,000 ng/mL concentration (Figure 1). However the 
mutagenic adduct O6 hydroxyethyldeoxyguanosine was detected at a significantly lower level in the 
hepatocytes (2–3 fold) as compared to the cell lines when treated with the three drugs at 50,000 ng/mL 
concentration (Figure 2). 
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Figure 2. Graph showing the O6 hydroxyethyldeoxyguanosine adduct formed after treatment 
with lomustine, trans-4-hydroxylomustine and cis-4-hydroxylomustine metabolites at 
50,000 ng/mL concentration in 17–71 and GL-1 cells and hepatocytes from six dogs (n = 6). 
* denotes statistical significance as compared to the 17–71 and GL-1 cells. p = 0.05. 

In the canine cell lines 17–71 and GL-1 and in the canine hepatocyte samples, lomustine caused 
significantly greater carbamylation as compared to its metabolites (Figure 3). Both the metabolites 
showed similar carbamylation levels. In all the six canine hepatocyte samples tested, the carbamylation 
caused by all the three drugs was 1.5–2 fold greater than that seen in 17–71 and GL-1 cells. Among the 
six dog hepatocyte samples, two dogs showed about 2 fold higher level of carbamylation compared to 
the others with lomustine, trans-4 and cis-4. 

 

Figure 3. Graphs showing the carbamylation induced by lomustine, trans-4-hydroxylomustine 
and cis-4-hydroxylomustine at 10,000 ng/mL concentration in 17–71 and GL-1 cells (A) and 
hepatocytes from six dogs (B). * indicates statistical significance compared to  
trans-4-hydroxylomustine and cis-4-hydroxylomustine. p = 0.05. 

GL-1 cells did not show any MGMT mRNA expression in untreated samples. When GL-1 samples 
were treated with lomustine, trans-4 and cis-4 at 1000, 3000 and 12,000 ng/mL and incubated for 12,  
24 and 48 h, still no MGMT mRNA expression was detected. In the 17–71 cells, a low basal level of 
MGMT expression was seen in the untreated samples (Figure 4). Upon treatment with various concentrations 
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of lomustine, trans-4 and cis-4 and incubated for different time points, no statistically significant 
difference was seen in any of the drug treated samples at any time point as compared to the vehicle 
control (Figures 4 and 5). 

 

Figure 4. Graph showing MGMT mRNA expression in 17–71 cells before (untreated)  
and after treatment with lomustine at 1000, 3000 and 12,000 ng/mL and incubated for 6, 12, 
24 and 48 h. 

 

Figure 5. Graph showing MGMT mRNA expression in 17–71 cells before (untreated) and 
after treatment with trans-4-hydroxylomustine and cis-4 hydroxylomustine at 12,000 ng/mL 
concentration and incubated for 6, 12, 24 and 48 h. 

The MGMT gene expression measured in the hepatocytes of the six dogs was 2-3 fold greater than  
that seen in the 17–71 cells (Figure 6). The variation in MGMT mRNA expression among the six dogs 
was low except for one dog which showed a lower MGMT level. Two of the glioma cell lines SDT-3 
and J3G-Bg showed high MGMT mRNA expression (see supplemental data). The results show that the 
Taqman qPCR assay is able to detect higher transcript levels of MGMT gene and that the previously 
measured low MGMT gene expressions in 17–71 cells are indeed true values. 
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Figure 6. Graphs showing the MGMT mRNA expression in canine lymphoma cell line  
17–71 cells and primary hepatocytes from six dogs. 

The LOD of the fluorometric MGMT enzyme activity assay was 5 fmols while the LOQ was 10 fmols 
(see supplemental data). For GL-1 and 17–71 cell line, using 100 μg and 200 μg of cell protein did not 
show any MGMT activity. In order to ascertain the functionality of the assay, human recombinant 
MGMT (Cayman chemicals) was used as a positive control. The results showed that with increasing 
concentration of MGMT, greater cleavage of the oligo was seen (see supplemental data). Thus the protein 
amount in the assay was increased to 500 μg and in the 17–71 samples showed visible cleavage of the 
oligo (Figure 7A). The GL-1 cell lines did not show any MGMT enzyme activity even when 500 μg cell 
protein was used for the assay. 

(A) (B) 

Figure 7. (A) MGMT activity in canine lymphoma cell line 17–71: lanes 1–3 represent 
replicate oligo samples treated with 500 �g cell protein from 17–71 cells. Lanes labeled “N” 
are untreated oligo samples (control). Upper and lower bands represent 18 bp substrate and 
10 bp cleavage product, respectively; (B) MGMT activity in primary hepatocytes obtained 
from six dogs: lanes 1–6 represent oligo samples treated with 500 �g cell protein from 
hepatocytes obtained from six dogs. Lanes labeled “N” are untreated oligo samples (control). 
Upper and lower bands represent 18 bp substrate and 10 bp cleavage product, respectively. 
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The MGMT activity in the 17–71 cells was about 90 fmols/mg protein (range 83–96 fmols/mg protein, 
SD 10.11). In the GL-1 cell line, as no MGMT gene expression was detected, consequently, MGMT 
enzyme activity was also absent. The enzyme activity measured in the hepatocytes was greater than in 
17–71 cells, proportional to the mRNA levels. The MGMT enzyme activity measured in canine 
hepatocytes is about 250–350 fmols/mg protein (Figures 7B and 8). There was good correlation between 
MGMT gene expression and enzyme activity in the 17–71 and the canine hepatocytes (Figure 9). 

 

Figure 8. Graph showing MGMT enzyme activity in the primary hepatocytes obtained from 
six dogs and in the canine lymphoma cell line 17–71. 

 

Figure 9. Graph showing correlation between MGMT gene expression and enzyme activity 
in canine lymphoma cell line 17–71 and the hepatocytes obtained from six dogs. Pearson’s 
correlation was 0.806 which was highly significant with p value of 0.028. (p value set at 0.05). 



Vet. Sci. 2015, 2 63
 
5. Discussion 

In our study we found no significant difference in the N7 hydroxyethylguanine and O6 
hydroxyethyldeoxyguanosine adduct level formed by lomustine, trans-4 and cis-4 which correlates with 
the similar cytotoxicity of these compounds. The mutagenic O6 adduct was higher in the canine cell lines 
17–71 and GL-1 as compared to the hepatocytes which may indicate either lower adduct formation or 
rapid repair in canine hepatocytes. Rapid repair may be a possibility since all the canine hepatocyte 
samples showed greater MGMT level. It can be speculated that as MGMT is a DNA repair enzyme, an 
enhanced repair of O6 adducts could contribute to the reduced sensitivity of hepatocytes to the alkylating 
action of lomustine and its metabolites. 

It should however be noted that we have only detected the levels of two individual adducts after drug 
exposure. The cell killing action of nitrosoureas may be orchestrated by the formation and cumulative 
action of multiple adducts that these drugs are capable of forming. Also, in case of chloroethylating 
agents like lomustine, cross linking of DNA is known to be harmful lesion that can lead to double stand 
breaks and ultimately apoptosis [13]. Thus in our alkylation study, measuring the two adducts can act 
only as a molecular dosimeter of therapeutic response and not a measure of the full extent of alkylation 
caused by the drugs. 

Carbamylation was measured in the canine lymphoma cell lines and hepatocytes by an ELISA kit. 
The assay measures the amount of CBL in the samples. Our results show that lomustine causes greater 
carbamylation as compared to its metabolites in canine cell lines and hepatocytes. All the three compounds 
caused greater carbamylation in hepatocytes as compared to the canine cell lines. Also hepatocyte samples 
from two dogs showed greater carbamylation following treatment with lomustine and its metabolites 
compared to the others. But it should be noted that all of the dog hepatocyte samples showed no 
cytotoxicity to lomustine or its metabolites up to six days of incubation. Hence it is unlikely that greater 
carbamylation in the hepatocytes in the two dogs would lead to cell death in our experiments, although 
it may be inhibiting various proteins in these cells. The same would also hold true for the cell lines 17–71 
and GL-1 where we see lower carbamylation but greater cytotoxicity after treatment with the drugs. 

Even though the hepatocyte samples showed greater carbamylation than the cell lines it is not known 
if this is of clinical relevance with regards to hepatotoxicity caused by lomustine since carbamylation 
levels have not been measured in dogs that show hepatotoxicity after lomustine treatment. Carbamylation 
of proteins may interfere with the proper functioning or replication of the cells which may not necessarily 
result in cell death. It has also been shown that nitrosoureas which form isocyanates are particularly able 
to inhibit the polymerization of purified brain tubulin in a dose dependent manner [30]. In a study where 
rats were given lomustine by oral gavage at 50 mg/kg dose, and sacrificed at different time points, the 
hepatocytes remained normal at early time points although the bile canaliculi became dilated and contained 
bile thrombi [31]. In another study in rats that were administered lomustine at 20 mg/kg, hepatocytes 
were not markedly altered with normal nuclei and cell organelles. The main alteration of the parenchymal 
cells occurred after the 6th day with modification of the cytoskeletal components and reduction in number 
of microtubules [32]. It is suggested that the isocyanates carbamylate tubulin in hepatocytes leading to 
mitotic spindle inhibition and G2 cell cycle arrest or may cause disruption of secretory functions such as 
bile secretion which in turn results in cholestasis and secondary hepatic injury [32,33]. Thus carbamylation 
of proteins may not necessarily manifest as immediate cell killing. 
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For the MGMT gene expression studies, HPRT-1 was used as an endogenous control. Before measuring 
the MGMT expression, we studied the suitability of HPRT-1 as endogenous control in the canine cell 
lines and liver samples based on the cycle number (cT). HPRT-1 was always measured within 0.5 cT. 
We understand that the most accurate way of testing HPRT-1 would be by using another endogenous 
control and that the cT values may be affected by pipetting errors. However, HPRT-1 has a high cT 
value (above 26), and so these errors would have minimal effect on the cT value. 

The canine lymphoma cell line 17–71 showed low MGMT mRNA expression and enzyme activity 
(about 90 fmols/mg protein). MGMT activity data from humans show that similar level of activity is 
seen in brain tissue (about 100 fmols/mg protein) which is one of the organs expressing the lowest level 
of MGMT activity in the body [17]. The GL-1 cells did not show any detectable MGMT mRNA expression 
or enzyme activity. It has been reported that while MGMT is expressed in all normal human cell types 
and tissues, 20%–30% of human tumor or more than 50% of virally transformed cell lines are completely 
deficient in MGMT expression [33,34]. It is not clear yet if the process of immortalization may be 
leading to loss of MGMT expression [35]. It is known that lack of expression is not due to deletion of 
the gene [36] and may possibly be an epigenetic event [37,38]. 

MGMT induction is known to result from transcriptional activation of the MGMT gene in response 
to DNA damage [39]. In our gene induction study, the 17–71 cells did not show any significant increase 
in gene expression after 48 h of exposure to lomustine and its metabolites, while the GL-1 cells still did 
not show any detectable gene expression at all. Time dependent expression of MGMT gene has been 
measured after exposure to different types of DNA damages including X-ray treatment and methylating 
agents, and the maximum induction (2–5 fold) was seen at 24 to 72 h [37]. A major limitation of our 
MGMT gene expression study is the lack of appropriate positive and negative controls. However we 
believe that this limitation may be offset by the multiple number of technical replicates used and 
independent experiments performed. 

The hepatocytes obtained from the six dogs showed a 2–3 fold greater MGMT mRNA expression as 
compared to the canine cell line 17–71. The MGMT enzyme activity measured in the hepatocytes is 
about 250–350 fmol/mg protein as compared to 90 fmol/mg protein in 17–71 cells. This indicates a positive 
correlation between the MGMT mRNA expression and the enzyme activity in the canine cell lines and 
the hepatocytes. In Figure 9, it can be noted that the positive correlation between MGMT gene expression 
and enzyme activity is due mostly to the point corresponding to the 17–71 cells. This data should be 
considered as preliminary and the correlation can be strengthened by studying the MGMT levels in more 
dogs/canine cells. Data from humans also suggest that MGMT activity corresponds with the MGMT 
protein and RNA level [17]. The average MGMT activity in human liver is reported to be around  
600 fmol/mg protein, however there is wide inter-individual variation [17,40]. In our MGMT activity 
assay in hepatocytes, there was over 70% enzymatic cleavage of the substrate oligo (Figure 7). This may 
indicate a sub-optimal enzyme-substrate ratio which could lead to a lower rate of reaction. It is suggested 
that enzyme reactions be conducted under initial rate conditions with total consumption of substrate less 
than 20% [41]. Hence it is possible that the MGMT activity measured in the canine hepatocytes in our 
study is lower than the actual values. 

In our previous study, we have shown that lomustine and its metabolites showed a time and concentration 
dependent toxicity in canine lymphoma cell lines 17–71 and GL-1 [22]. However the canine hepatocytes 
did not show any detectable cell killing even 6 days after exposure to the drugs. When the toxic O6 
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guanine adduct was measured in the cells after exposure to lomustine and the metabolites, the canine 
cell lines showed higher levels of the adduct as compared to the hepatocytes. It is known that MGMT 
directly repairs the O6 adducts in a rapid stoichiometric reaction. In our MGMT study, we saw that the 
hepatocytes had 2–3 fold greater enzyme activity compared to the 17–71 cell line. Correlating all this 
data together it is plausible that higher MGMT enzyme activity may be a reason for the lower levels of 
O6 adducts detected in the hepatocyte samples. The higher level of MGMT may cause repair of adducts, 
and hence contributing to the lower cytotoxicity of lomustine and its metabolites in hepatocytes. However 
this interpretation must be viewed with caution, as no significant difference in the O6 adduct levels 
between 17–71 cells and GL-1 cells was noted even though we were unable to detect any MGMT activity 
in the GL-1 cells. Also lomustine and its metabolites form multiple adducts at the O6 guanine position 
out of which we chose the O6 hydroxyethyldeoxyguanosine as a marker or indicator of the genotoxic 
potential of the compounds. It should be noted that MGMT is only one of the several ways in which 
alkylation damage in DNA is repaired by the cell. Other pathways such as base excision repair and 
mismatch repair are also known to repair damaged DNA depending on the stage and type of the damage. 
Thus it may also be possible that the lower O6 hydroxyethyldeoxyguanosine measured in the hepatocytes 
may be due to lower formation or a DNA repair mechanism other than MGMT. 

6. Conclusions 

In this study, we show that lomusine and its metabolites form similar levels of the DNA adducts N7 
hydroxyethylguanine and O6 hydroxyethyldeoxyguanosine which corresponds to the similar cytotoxicity 
of these compounds. In terms of carbamylation, lomustine showed greater carbamylation in the canine 
hepatocytes and lymphoma cell lines. Thus if carbamylation of proteins is indeed one of the reasons  
for the side effects of lomustine, then using the metabolites instead may be a better therapeutic option. 
Additionally, we also show that MGMT mRNA expression in 17–71 cells and canine hepatocytes correlates 
with the MGMT enzyme activity in these cells. 
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