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Simple Summary: This study focused on the importance of accurately assessing ram sperm quality
for optimizing assisted reproductive technologies in sheep. Semen preservation can lead to sperm
damage due to various stressors, including osmotic, biochemical, and thermal factors. To address
this issue, the research aimed to determine the best time to evaluate ram sperm quality and identify
the factor causing changes in sperm quality during liquid storage. In Experiment 1, ejaculated sperm
were assessed for motility and functionality at different preservation times: 0, 3, 6, and 24 h. Both
motility and functionality improved after 6 h. Experiment 2 delved into the responsible factor by using
epididymal sperm. Results revealed that extender addition to the sperm caused altered motility at
0 and 24 h, and reduced functionality at 0 h. This suggests that the extender initially alters ram sperm,
leading to sublethal damage that becomes reversible after 3 to 6 h of semen preservation. Thus, ram
sperm require an adaptation period of 3 to 6 h to the extender before a precise quality assessment. This
finding has practical implications for reproduction centers, allowing better workflow organization
and optimal expression of ram sperm attributes at the time of cervical artificial insemination.

Abstract: Accurate assessment of ram sperm quality is crucial to optimizing assisted reproductive
technologies in sheep. However, semen preservation can induce sperm due to osmotic, biochemical,
and thermal stress. Stabilizing sperm with a suitable cooling rate and adaptation period to the
extender could mitigate these effects for a more reliable evaluation. This study aimed to determine:
(1) the best time to assess ram sperm quality, and (2) the factor responsible for the altered state of ram
sperm during the first hours of liquid storage. In Experiment 1, ejaculated sperm were diluted and
assessed for sperm motility and functionality at four preservation times: 0, 3, 6, and 24 h as sperm
damage control. Both sperm motility and functionality improved after 6 h. Experiment 2 investigated
the factor responsible for sperm quality change by testing the interactions of seminal plasma and
extender with sperm from epididymides independently and in combination. The evaluation of sperm
was performed as in Experiment 1. Sperm in groups containing the extender showed altered motility
at 0 and 24 h, and lower functionality at 0 h. Thus, we could assume that extender addition initially
alters ram sperm, causing sublethal damage that is reversible after 3 to 6 h of semen preservation. In
conclusion, ram sperm require an adaptation time of 3 to 6 h to the extender before an accurate quality
assessment can be conducted. This has practical implications for reproduction centers, enabling
better workflow organization and optimal expression of ram sperm attributes when cervical artificial
insemination is routinely performed.
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1. Introduction

Ovine livestock has notably increased benefits in recent decades due to the improve-
ments in reproductive performance and genetic gain achieved through the implementation
of assisted reproductive technologies (ART) such as semen preservation, estrus synchro-
nization, artificial insemination (AI), and in vitro embryo production, development, and
transfer [1,2]. The high efficiency of these techniques mainly depends on the quality of
the semen used [3], so it is important to perform a precise evaluation of sperm quality in
order to select males with good fertilizing potential, discarding those cases of infertility or
subfertility [4]. Unfortunately, predicting the potential fertility of a sperm sample is still
considered a utopian endeavor due to the inaccurate information provided by the sperm
laboratory assays and the unreliability of the fertility data used for establishing correla-
tions with the outcomes of in vitro tests [5]. Semen samples are generally processed after
collection to prolong the fertile lifespan of sperm by depressing or completely arresting
their metabolism using reduced storage temperatures in either a liquid or cryopreserved
state [6]. However, despite the large number of studies on the diluents used [7–9], cooling
and freezing protocols [10–12], and sperm storage concentration [13–15], the processing and
storage of ram semen can still induce sublethal damage to sperm that make them behave
very differently from fresh sperm [6]. During semen preservation, sperm are exposed
to artificial conditions leading to a certain degree of osmotic, biochemical, and thermal
stress [16,17]. These stressors compel sperm to adapt to a hostile environment by means
of conformational and metabolic changes, resulting in membrane redistribution, lipid
peroxidation, and altered ATP generation and motility [18]. Thus, the stabilization of sperm
with an adequate cooling rate coupled with a suitable adaptation period to the extender
would enable them to overcome the damaging effects of the different stress factors to which
they are subjected in semen preservation [19]. There are many studies on the impact of this
adaptation time on the cryoresistance of sperm from several species, such as dogs [20,21],
boars [22–24], bulls [25–28], bucks [29], and rams [30–34], with different outcomes. For
ram sperm, in general, an adaptation period of 2 to 8 h seems to be sufficient to ensure
greater post-thawing sperm quality [35,36], but we have also noticed that the adaptation
time to the extender during liquid storage influences sample quality. Our research group
has long observed that conducting sperm quality evaluations close to the collection time
gives inaccurate results, as quality improves over time. Although the composition of
the extender impacts sperm survival during cooled storage, INRA 96® contains a highly
protective fraction: native phosphocainate (NPPC) [37]. Nevertheless, there is no consensus
on the effect of seminal plasma on sperm function. On the one hand, some studies have
demonstrated the benefits of the removal of seminal plasma, deemed a sperm membrane
destabilizing factor by Barrier-Battut and colleagues [38], before liquid storage in several
species [39–42]. On the other hand, other authors have not seen any advantage of seminal
plasma removal during cooled preservation [43,44].

Thus, this study aimed to establish the best time to perform an optimal assessment
of the sperm quality in ram semen samples preserved at 15 ◦C for up to 6 h, as well as
to determine the factor responsible for the altered state of sperm during the first hours of
liquid storage using epididymal sperm to test interactions with the two possible factors in
an independent way: seminal plasma and extender.

2. Materials and Methods
2.1. Animals

A total of 16 healthy, mature, and proven fertile Assaf rams trained for semen col-
lection by artificial vagina (weekly semen collections, twice per week) participated in the
experiments. Rams were housed at the Animal Selection and Reproduction Center of



Vet. Sci. 2024, 11, 132 3 of 15

Junta de Castilla y León (CENSYRA, Villaquilambre, León, Spain), and fed a balanced diet
standardized for the species and age.

2.2. Study Design
2.2.1. Experiment 1: Establishment of a Stabilization Period for Ram Sperm

One ejaculate from 16 males was collected using an artificial vagina at 40 ◦C (IMV
Technologies, L’Aigle, France) with the aid of a female decoy during the reproductive
season. Semen tubes were initially placed in a tempered bath (30 ◦C) for quality evaluation,
which included: (i) ejaculate volume determination by using the graduation marks on
the collection tube, (ii) mass motility analysis on a subjective score from 0 to 5 under a
microscope (Leica DM LB, Meyer Instruments, Houston, TX, USA) at 40× magnification
and on a stage warmed at 37 ◦C, and (iii) sperm concentration assessment with a cell-
counting device (NucleoCounter SP-100, ChemoMetec, Allerod, Denmark). Only ejaculates
that met the minimum requirements of a volume of 0.5 mL, mass motility of 4, and
sperm concentration of 3 × 109 sperm/mL were used in this study and diluted in INRA
96® medium (NPPC-based extender containing potassium penicillin G, gentamicin, and
amphotericin B; IMV Technologies, L’Aigle, France) up to 1600 × 106 sperm/mL. High-
quality ejaculates were then transported to our laboratory at the University of León (about
a 10 min trip), with the arrival time representing the time of 0 h at which sperm quality is
classically assessed. At this point, samples were split into two equal aliquots and refrigerated
in a programmable bath (CC-K8, Huber, Germany). One aliquot of each sample was cooled
at −0.5 ◦C/min from 30 ◦C to 15 ◦C and preserved at 15 ◦C for 3 and 6 h. The other aliquot
was subjected to a cooling rate of −0.25 ◦C/min from 30 ◦C to 5 ◦C and stored at 5 ◦C for 24 h,
serving as positive damage control in our sperm preservation protocol (Figure 1).
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Experiment 2: Identification of the factor altering ram sperm quality through sperm quality evaluation
in four experimental groups: epididymal sperm (ES), epididymal sperm with seminal plasma
(ES + SP), epididymal sperm with INRA 96® (ES + E), and epididymal sperm with seminal plasma
and INRA 96® (ES + SP + E). Created with BioRender.com.

2.2.2. Experiment 2: Identification of the Factor Altering Ram Sperm Quality

During the breeding season, two ejaculates were collected from 5 males by using an
artificial vagina. Both ejaculates from each male were mixed and centrifuged at 4 ◦C for
15 min at 10,000× g. Seminal plasma was collected, checked for purity using phase-contrast
microscopy, and kept at −80 ◦C until use. Rams were slaughtered at the slaughterhouse
the week following the collection of seminal plasma. Their testicles were transported to our
laboratory in a portable refrigerator at 22 ◦C (CoolFreeze CF-25, Dometic Group, Stockholm,
Sweden). On arrival, about 30 min post-mortem, epididymides were dissected and cleared
of connective tissue and surface blood vessels to prevent blood contamination of the
samples. Sperm was then collected by making several incisions in the cauda epididymis
and removing the emerging fluid with a surgical blade. Epididymal sperm were split at
this moment into four aliquots to form four different experimental groups in order to test
interactions with seminal plasma and extender in an independent way, doubling each of
the tubes. The first experimental group contained only epididymal sperm (ES). The second
simulated a physiological ejaculate with the addition of 30% autologous seminal plasma
(v/v) to the epididymal sperm (ES + SP). The third one was generated with the dilution
of the epididymal sperm to obtain a concentration of 1600 × 106 sperm/mL in INRA 96®

(ES + E). The last experimental group was obtained with the addition of 30% autologous
seminal plasma and INRA 96® to the epididymal sperm until a final concentration of
1600 × 106 sperm/mL was achieved in an attempt to simulate an ejaculate processed in the
usual form (Experiment 1) (ES + SP + E). This represented the time of 0 h. Afterward, one
replicate of the samples was cooled in a programmable bath at a rate of −0.5 ◦C/min from
30 ◦C to 15 ◦C and stored at 15 ◦C for 3 and 6 h. The other set of samples was refrigerated at
−0.25 ◦C/min from 30 ◦C to 5 ◦C and stored at 5 ◦C for 24 h (Figure 1). Autologous seminal
plasma (from the same ram that provided the sperm) was used to minimize interference
with the results, as several authors have reported variations in seminal plasma composition
among species, among males of the same species, and even among ejaculates from the same
male [45–49].

2.3. Sperm Quality Evaluation
2.3.1. Sperm Motility and Kinetic Parameter Analysis with the CASA System

Sperm motility and kinetic parameters were assessed with Computer-Assisted Sperm
Analysis (CASA) using Sperm Class Analyzer® (SCA) software version 6.3.0.59 (Microptic
S.L., Barcelona, Spain). The system settings comprised recording 50 frames at 100 frames/s
and following the trajectory of particles in an area ranging from 20 to 70 µm2. Samples were
diluted up to 25 × 106 sperm/mL in a TES-Tris-Fructose medium with 1% clarified egg
yolk (320 mOsm/kg, pH 7.2) and pre-warmed for 5 min at 37 ◦C. A 5 µL drop from each
sample was then placed in a Makler chamber (depth of 10 µm; Sefi Medical Instruments,
Haifa, Israel) and analyzed on a warmed stage (37 ◦C) at 100× magnification with a
phase-contrast microscope (Eclipse E400, Nikon, Tokyo, Japan) and a BASLER acA1300-
200uc digital camera (Basler Vision Technologies, Ahrensburg, Germany). Four random
fields were captured and subsequently analyzed by removing non-sperm events. The
kinetic parameters obtained were curvilinear velocity (VCL, µm/s), linearity (LIN, %), and
amplitude of lateral sperm head displacement (ALH, µm). Total motility (TM), progressive
motility (PM), and fast progressive motility (FPM) were referred to as the proportion of
sperm with VCL > 15 µm/s, 45 µm/s, and 75 µm/s, respectively.

BioRender.com
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2.3.2. Sperm Functionality Analysis with Flow Cytometry

Samples in the different experimental groups were first washed with a brief centrifu-
gation spin for 15 s (MiniSpin plus, Eppendorf, Hamburg, Germany) in phosphate-buffered
saline (PBS) (300 mOsm/kg, pH 7.2) at a concentration of 2 × 106 sperm/mL. After the
supernatant was discarded, the sperm pellet was stained for 30 min in the dark, as de-
scribed by Riesco et al. [50]. Plasma membrane integrity was evaluated using the Zombie
Violet™ Fixable Viability Kit (BioLegend, San Diego, CA, USA) at 1:1000 in PBS. Sperm
apoptosis was determined with CellEvent™ Caspase-3/7 Green Detection Reagent (Ther-
moFisher, Waltham, MA, USA) at 4 µM in PBS. The content of reactive oxygen species was
evidenced with CellROX™ Deep Red Reagent (Invitrogen, Eugene, OR, USA) at 5 µM in
PBS. Afterward, a new wash was performed as described above to prevent overstaining,
and the cells were resuspended in 1 mL of PBS for analysis in a MACSQuant Analyzer 10
(Miltenyi Biotech, Bergisch Gladbach, Germany) equipped with violet, blue, and red lasers
operating at 405, 488, and 635 nm, respectively, and ten photomultiplier tubes. Detection of
violet, green, and red fluorescence was conducted on the V1 (excitation 405 nm, emission
450/50 nm), B1 (excitation 488 nm, emission 525/50 nm), and R1 channels (excitation
635 nm, emission 655–730 nm (655LP + split 730)). A total of 40,000 events were recorded
per sample at a flow rate of 200 to 300 cells/s. The analysis of the data was performed
with FlowJo™ version 10.8.1 (Ashland, Wilmington, DE, USA). The signal of the events
was plotted as the percentage of viable sperm (indicated by low-intensity Zombie Violet™
staining), apoptotic sperm (marked by CellEvent™ Caspase-3/7 positivity), and sperm
with high mitochondrial activity (identified through positive CellROX™).

2.4. Statistical Analysis

Statistical analyses of the data were conducted with the SAS/STAT® statistical package
version 9.1 (SAS Institute, Cary, NC, USA), while Prism 9 (GraphPad Software, San Diego,
CA, USA) was utilized for generating graphs. Variables were examined for normality,
and data with a normal distribution were analyzed with a mixed linear model (MIXED
procedure). Each experimental group included the same males. Results are reported as the
mean ± SEM (Standard Error of the Mean). Statistical significance was considered when
p < 0.05.

3. Results
3.1. Experiment 1: Establishment of a Stabilization Period for Ram Sperm
3.1.1. Sperm Motility and Kinetic Parameters

Regarding sperm motility measurements, both TM and PM were significantly in-
creased (p < 0.05) at 6 h in comparison to the 0 h, with no changes observed (p ≥ 0.05)
between the 0 and 24 h values (Figure 2A,B). On the other hand, FPM, VCL, LIN, and ALH
followed a similar distribution during the whole preservation protocol. All of them were
unchanged (p ≥ 0.05) after 6 h of storage at 15 ◦C, but they decreased (p < 0.05) after 24 h of
refrigeration at 5 ◦C (Figure 2C–F).

3.1.2. Sperm Functionality

The results of the sperm functionality analysis revealed that sperm viability increased
(p < 0.05) from 0 to 3 h of preservation and again after 6 h and decreased significantly
(p < 0.05) at 5 ◦C for 24 h, reaching minimum values (Figure 3A). Meanwhile, apoptosis
showed the lowest level (p < 0.05) at 3 h of storage at 15 ◦C, which was maintained for up
to 6 h. Contrarily, 24 h samples displayed the highest (p < 0.05) apoptosis (Figure 3B).
Mitochondrial activity demonstrated an opposite pattern to apoptosis, being highest
(p < 0.05) at 3 and 6 h and lowest (p < 0.05) at 24 h (Figure 3C).
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°C, 3 and 6 h at 15 °C, and 24 h at 5 °C. (A) Total motility (TM, %). (B) Progressive motility (PM, %). 
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Figure 2. Characteristics of motility and kinetics of ram sperm at four preservation times: 0 h at 30 ◦C,
3 and 6 h at 15 ◦C, and 24 h at 5 ◦C. (A) Total motility (TM, %). (B) Progressive motility (PM, %).
(C) Fast progressive motility (FPM, %). (D) Curvilinear velocity (VCL, µm/s). (E) Linearity (LIN, %).
(F) Amplitude of lateral head displacement (ALH, µm). Parameters were determined in the same
16 males at each preservation time. Distinct lowercase letters (a–c) denote significant differences
(p < 0.05) among the values recorded at different preservation times.
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3.2.1. Sperm Motility and Kinetic Parameters 

Figure 4 shows the motility and kinetic characteristics of ram sperm. TM was similar 
(p ≥ 0.05) in the different experimental groups along the preservation protocol at 15 °C for 
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Figure 3. Ram sperm functionality at the four preservation times: 0 h at 30 ◦C, 3 and 6 h at 15 ◦C, and
24 h at 5 ◦C. (A) Viable sperm (%) (Zombie Violet™). (B) Apoptotic sperm (%) (CellEvent™ Caspase-
3/7 Green). (C) Sperm with high mitochondrial activity (%) (CellROX™ Deep Red). Parameters were
determined in the same 16 males at each preservation time. Distinct lowercase letters (a–d) denote
significant differences (p < 0.05) among the values recorded at different preservation times.

3.2. Experiment 2: Identification of the Factor Altering Ram Sperm Quality
3.2.1. Sperm Motility and Kinetic Parameters

Figure 4 shows the motility and kinetic characteristics of ram sperm. TM was similar
(p ≥ 0.05) in the different experimental groups along the preservation protocol at 15 ◦C
for 6 h. However, this parameter was significantly higher (p < 0.05, lowercase letters) in
ES + E (blue bars) than in ES (grey bars) in the samples stored at 5 ◦C for 24 h (Figure 4A).
PM, VCL, and ALH exhibited significant differences across the experimental groups at 0 h,
with markedly lower values (p < 0.05, lowercase letters) in the two experimental groups
containing INRA 96® (ES + E and ES + SP + E, blue and purple bars, respectively) than
in ES (grey bars) (Figure 4B,D,F). The group that simulated the ejaculate (ES + SP + E,
purple bars) showed a significant increase (p < 0.05, uppercase letters) in ALH at 6 h
(Figure 4F). Nevertheless, PM, VCL, and ALH were significantly higher (p < 0.05, lowercase
letters) in both experimental groups with the extender (ES + E and ES + SP + E, blue and
purple bars, respectively) after 24 h of storage at 5 ◦C, coinciding with a decrease (p < 0.05,
uppercase letters) compared to the 0 h in the ES and ES + SP groups (grey and orange bars,
respectively) (Figure 4B,D,F). On the other hand, FPM was significantly lower (p < 0.05,
lowercase letters) in ES + E (blue bars) than in ES + SP (orange bars) at both 0 and 24 h
(Figure 4C). Finally, LIN progressively decreased in the ES + E group (blue bars) until
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6 h of storage at 15 ◦C, from there it was significantly lower (p < 0.05, uppercase letters)
(Figure 4E).
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Figure 4. Ram sperm motility and kinetic characteristics in the four experimental groups: epididymal
sperm alone (ES), epididymal sperm mixed with seminal plasma (ES + SP), epididymal sperm
combined with INRA 96® (ES + E), and epididymal sperm with both seminal plasma and INRA 96®

(ES + SP + E). (A) Total motility (TM, %). (B) Progressive motility (PM, %). (C) Fast progressive
motility (FPM, %). (D) Curvilinear velocity (VCL, µm/s). (E) Linearity (LIN, %). (F) Amplitude of
lateral head displacement (ALH, µm). The measurements were performed in the same 5 males in
each experimental group at different preservation times: 0 h at 30 ◦C, 3 and 6 h at 15 ◦C, and 24 h at
5 ◦C. Distinct lowercase letters (a–c) denote significant differences (p < 0.05) among the experimental
groups at each preservation time, while uppercase letters (A–C) highlight significant differences
(p < 0.05) among the values recorded at the preservation times within each experimental group.
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3.2.2. Sperm Functionality

The most remarkable results of the sperm functionality analysis among the different
experimental groups exhibited significantly lower (p < 0.05, lowercase letters) sperm viabil-
ity and mitochondrial activity and significantly higher (p < 0.05, lowercase letters) apoptosis
in both groups containing the extender (ES + E and ES + SP + E, blue and purple bars, re-
spectively) at 0 h. The evolution during the preservation of these two experimental groups
showed that sperm viability and mitochondrial activity increased (p < 0.05, uppercase
letters) and apoptosis decreased (p < 0.05, uppercase letters) after 6 h at 15 ◦C (Figure 5A–C).
Despite this, the ES + E group showed higher (p < 0.05, lowercase letters) apoptosis and
lower (p < 0.05, lowercase letters) mitochondrial activity than the experimental group
composed of just epididymal sperm (ES, grey bars) both after 6 and 24 h (Figure 5B,C).
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Figure 5. Ram sperm functionality in the four experimental groups: epididymal sperm alone (ES),
epididymal sperm mixed with seminal plasma (ES + SP), epididymal sperm combined with INRA 96®

(ES + E), and epididymal sperm with both seminal plasma and INRA 96® (ES + SP + E). (A) Viable
sperm (%) (Zombie Violet™). (B) Apoptotic sperm (%) (CellEvent™ Caspase-3/7 Green). (C) Sperm
with high mitochondrial activity (%) (CellROX™ Deep Red). The measurements were performed
in the same 5 males in each experimental group at different preservation times: 0 h at 30 ◦C, 3 and
6 h at 15 ◦C, and 24 h at 5 ◦C. Distinct lowercase letters (a, b) denote significant differences (p < 0.05)
among the experimental groups at each preservation time, while uppercase letters (A, B) highlight
significant differences (p < 0.05) among the values recorded at the preservation times within each
experimental group.

4. Discussion

Semen preservation is a critical ART that facilitates the transportation of sperm over
long distances and increases the number of females that can be inseminated per ejaculate,
ultimately accelerating genetic gain [51]. Ideally, semen preservation must preserve the



Vet. Sci. 2024, 11, 132 10 of 15

sperm’s ability to fertilize from ejaculation to use, which is usually assessed on the basis
of the results of several laboratory tests on sperm quality [52,53]. In the last decade, in-
creasingly sophisticated, highly quantitative, repeatable, and sensitive methods have been
developed to achieve more accurate sperm quality assessments in order to eliminate clear
cases of male infertility or subfertility and select ejaculates with high fertilizing potential
for use [4]. The most advanced laboratory assays include CASA system motility analysis
and a variety of fluorescent dyes for fluorescence microscopy and/or flow cytometry tech-
niques [54–56]. However, despite the use of these novel evaluation methods, our research
group has long observed that sperm quality assessment close to the collection time is inaccu-
rate, as quality improves over time. After collection, semen is diluted in different extenders
depending on the species, use, temperature, and storage duration required [53,57]. The
choice of an appropriate extender plays an essential role in minimizing the harmful effects
associated with semen preservation, as the diluent is responsible for protecting sperm from
osmotic and thermal shock by maintaining an adequate pH and providing buffering capac-
ity [18]. Conflicting results have been reported on the suitability of different extenders for
ram semen [58], although Tris and skimmed milk-based are the most commonly used [59].
INRA 96® employed in this work is the main diluent for the preservation of cooled ram
semen in Mediterranean countries [9], since NPPC (α, β, and κ caseins) was found to be the
most effective component for prolonging the fertile lifespan of cold-stored sperm by reduc-
ing the lipid loss from the sperm membrane [60,61]. For liquid preservation, ram semen is
progressively cooled after dilution from collection to storage temperature (15 ◦C or 5 ◦C).
The detrimental impact of cooling ungulate semen (particularly through a rapid decrease
from 30 ◦C to 5 ◦C) on sperm viability has been widely documented, being proportional to
the cooling rate and temperature range involved [62]. Although this adverse effect, referred
to as cold shock, predominantly occurs right after ejaculation since the cells become less
sensitive in the following hours [63], it was discarded in our preservation protocol as sperm
showed poorer quality in non-cooled samples (0 h) than in samples stored at 15 ◦C for 3 and
6 h. The 24 h preservation time at 5 ◦C was included only as a positive control for sperm
quality damage in ovine species based on previous findings of several studies [64–66]. In
line with the results of Yániz and colleagues in sheep [67], we recorded significantly lower
percentages of fast progressive and membrane-intact sperm, as well as reduced kinetic
parameters and mitochondrial activity and increased apoptosis at this time compared to the
0 h. In addition, the sperm quality assessments in Experiment 1 showed that sperm motility
in terms of TM and PM improved after 6 h, with non-significant differences from the values
recorded after 3 h of liquid storage. Regarding sperm functionality, viability also reached
its highest value after 6 h, while apoptosis and mitochondrial activity were already optimal
in the sperm preserved at 15 ◦C for 3 h. That is, while only two of the sperm motility and
kinetic parameters studied (TM and PM) manifested an improvement, on a functionality
level, the enhancement was observed in all parameters tested. This may have been due to
the staining protocol used for flow cytometry evaluation, which involved the high dilution
of sperm in a simple isotonic saline-based medium such as PBS. Harrison and colleagues
pointed out that the dilution effect, rather than reflecting sperm viability, might correspond
to an observational artefact. This is because live sperm tend to adhere to recipient surfaces
in a protein-free environment, leading to a scenario where sampling from a highly diluted
suspension inadvertently favors the selection of dead cells [68]. Although this tendency
could affect data at all times, Ashworth et al. [69] found that ejaculated ram sperm could
also perish after being washed from seminal plasma and subjected to significant dilution in
a basic saline solution by destabilizing their plasma membranes due to a decrease in protec-
tive factor concentration. Supporting this theory, studies have shown that the addition of
seminal plasma to highly diluted sperm notably enhances sperm viability in several species,
including rabbits [70], pigs [46,71], cattle [72], and sheep [73]. Thus, high dilution rates in
sperm functionality evaluation based on flow cytometry probably act as an osmotic stress
test, evidencing sublethal damage to ram sperm. Moreover, these sublethal disorders seem
to be reversible, as they were not detected after 3 to 6 h of semen preservation. Experiment
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2 was designed in order to identify the factor altering ram sperm quality during the first
hours of liquid storage. Therefore, we replicated Experiment 1 in ram epididymal sperm, i.e.,
in sperm that did not have any previous contact with seminal plasma and extender, and we
established four experimental groups to test the influence of each factor separately: (1) epi-
didymal sperm (ES), (2) epididymal sperm with seminal plasma (ES + SP), (3) epididymal
sperm with INRA 96® (ES + E), and (4) epididymal sperm with seminal plasma and INRA
96® (ES + SP + E) simulating the ejaculate from Experiment 1. Contrary to the observations
of Paul and colleagues [74], the supplementation of ram epididymal sperm with seminal
plasma did not improve the motility and kinetic parameters. Instead, the ES + SP group
showed similar results to the ES group, namely, a decrease in sperm quality over time
comparable to that suffered in Experiment 1 by the ejaculated sperm. Furthermore, the
sperm of the two experimental groups containing the extender were found to have lower
motility, kinetic parameters, and functionality at 0 h, which improved after 6 h at 15 ◦C. The
addition of the extender, individually or in combination with seminal plasma, resulted in
epididymal sperm behaving similarly to ejaculated sperm. According to the findings of this
second experiment and considering that the adaptation time of the present study started
when the samples were diluted (0 h), we assumed that extender addition could initially
act as an altering factor for ram sperm regardless of origin. As observed by Herold and
co-workers [75], the duration of adaptation time influences sperm stabilization intensity
and the ability to maintain homeostasis and tolerance to osmotic and thermal stress. Within
seminal plasma, a group of proteins known as Binder of Sperm (BSP) plays a crucial role
in promoting sperm capacitation, an essential process for fertilization [76,77]. However,
in the context of sperm storage, BSP proteins are harmful as they remove cholesterol and
phospholipids from the sperm membrane [78]. Plante et al. [79] demonstrated in boar,
stallion, and ram that casein micelles in milk and the low-density lipoprotein fraction (LDF)
of egg yolk bind to free BSP, reducing the efflux of cholesterol and phospholipid from
the sperm membrane during preservation. This binding process is characterized as fast,
specific, saturable, and stable even after semen freezing and thawing [80], and may have
occurred over the adaptation time to the extender in Experiment 1 and in the ES + SP + E
experimental group of Experiment 2. However, in this work, the ES + E group containing
only epididymal sperm and INRA 96® also needed an adaptation time to the extender
before presenting optimum sperm quality, confirming that the ram sperm stabilization
process is highly diluent-dependent. Thus, similarly to Anzar et al. [81] and Paul et al. [31]
suggestions for the post-thawing quality of cryopreserved bull and ram sperm in an egg
yolk-based extender, an extended adaptation time could also have stabilized ram sperm
membranes by facilitating their coating with NPPC in all experimental groups with the
extender. The latter, in turn, could have reversed the sublethal damage observed in ram
sperm when quality analysis was performed close to semen collection, especially by using
flow cytometry.

5. Conclusions

To summarize, ram sperm appear to require an adaptation time of 3 to 6 h to the
extender, considered to be the altering factor, before being subjected to an accurate sperm
quality assessment. This work paves the way for further investigations into ram sperm
physiology during preservation and manipulation processes. In the same way, our study
is interesting from a practical point of view, enabling better workflow organization in
reproduction centers and an optimal expression of ram sperm attributes when cervical
artificial insemination is routinely performed, linking in vitro tests and field fertility data.
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