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Simple Summary: A previous study by our research group demonstrated that casein phosphopeptide-
selenium (CPP-Se) chelate enhanced the immune system of dogs. In this study, after feeding CPP-Se
to dogs for 30 days, the leukocytes and cytokines were quantified together with the analysis of
blood gene expression and serum metabolites by RNA sequencing (RNA-Seq) and metabolomics,
respectively. Our findings indicate that the differentially expressed genes (DEGs) and differentially ex-
pressed metabolites (DEMs) were notably enriched in immunomodulatory and amino acid metabolic
pathways, respectively. These results showed that CPP-Se can enhance immunity by regulating
those genes and metabolites which are involved in immune-related pathways and also provided a
theoretical basis for the future use of CPP-Se in pet foods to enhance immunity.

Abstract: Casein phosphopeptide-selenium chelate (CPP-Se) is an organic compound produced by the
chelation of casein phosphopeptide with selenium. This compound showed the ability to modulate
canine immune response in our previous study; but its effect on the peripheral blood transcriptome
and serum metabolome was unknown. This study aims to reveal the potential mechanism behind the
immunomodulatory function of CPP-Se. We have identified 341 differentially expressed genes (DEGs)
in CPP-Se groups as compared to the control group which comprised 110 up-regulated and 231 down-
regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis found that
DEGs were mainly involved in immune-related signaling pathways. Moreover, the immune-related
DEGs and hub genes were identified. Similarly, metabolomics identified 53 differentially expressed
metabolites (DEMs) in the CPP-Se group, of which 17 were up-regulated and 36 were down-regulated.
The pathways mainly enriched by DEMs were primary bile acid biosynthesis, tryptophan metabolism,
and other amino acids metabolic pathways. Combined analysis of transcriptomic and metabolomic
data showed that the DEGs and DEMs were commonly enriched in fatty acid biosynthesis, pyrimidine
metabolism, glutathione metabolism, and glycerolipid metabolic pathways. Taken together, our
findings provided a theoretical basis for further understanding of the immunomodulatory function
of CPP-Se as well as a scientific reference for the future use of CPP-Se in pet foods as a dietary
supplement to modulate the immunity.

Keywords: casein phosphopeptide-selenium chelate (CPP-Se); transcriptome; metabolome;
immunomodulatory function

1. Introduction

Due to the intimate relationship between companion animals and humans, pets
are receiving more and more attention for their health problems. A critical cornerstone
for maintaining their health is to enhance their immunity, which is a natural and more
convenient way to combat pathogenic microorganisms. It has been proven that functional
bio-actives in foods can improve animals’ immunity. Casein phosphopeptide (CPP) is an
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active product of milk casein hydrolysis [1], which can improve calcium absorption from
the gastrointestinal tract [2], prevent bone loss [3], improve the fertilization rate in vitro [4,5]
and promote apoptosis of tumor cells [6]. Additionally, CPP has been proven to regulate the
immune function in a positive way across a variety of species. CPP can increase intestinal
IgA levels in piglets [7], serum IgG levels in pregnant sows [8], stimulate lymphocytes
proliferation and immunoglobulin production in rabbits [9], and promote the proliferation
of CD19+ cells and splenocytes in mice [10,11]. Selenium (Se) is also an essential substance
for the animal immune system and plays a vital role in immunomodulation. Studies have
found that Se enhances immunity in pigs, increases cytokines expression, and regulates the
gene expression of leukocytes [12,13]. Moreover, Se can also regulate the bovine’s cellular
immune response [14] and increase the genetic expression of immunomodulators in bulls’
Sertoli cells [15].

Blood is an important component of the immune system and contains a large quan-
tity of immune cells, including cytokines and immunoglobulins. As the blood circulates
throughout the body, these immunomodulators play an extremely important role in combat-
ing the invaded pathogens [16,17]. Peripheral blood mononuclear cells (PBMCs) undergo
gene expression and participate in the immune regulatory network of blood and are there-
fore the primary cells involved in immune response. Interestingly, nine organs, including
the brain, colon, heart, kidney, liver, lung, prostate, spleen, and stomach, share approx-
imately 80% of their transcriptome with PBMCs [18]; therefore, the rapid turnover rate
of PBMCs makes it possible that disease-related subtle changes within tissues may result
in a differential expression of genes in blood cells [19]. Consequently, the immunologi-
cal status of different organs and tissues as well as the general health status of the body
can be reflected in the genetic expression of peripheral blood [16,18]. Moreover, metabo-
lites detected by the metabolome can reflect the physiological and pathological status of
the organism [20]. Therefore, RNA sequencing (RNA-Seq) and metabolomic studies are
suitable methods for investigating the immune-related functions and health status of an
individual [21,22]. Currently, blood RNA-Seq and serum metabolomics have been used
to study disease mechanisms [23–25] and immunity [19,26–30], but there are only a few
reports available related to the use of multi-omics to explore the immune function in dogs.

Our previous study initially showed that CPP-Se can increase blood cytokine produc-
tion, lymphocyte proliferation and regulate the expression of immune-related genes [31].
In the present experiment, the changes in blood transcriptome and serum metabolites
were analyzed to further elucidate the potential mechanism of how CPP-Se regulates the
immune function.

2. Materials and Methods
2.1. Animals and Experimental Design

Twelve healthy, adult Beagle dogs (1.5 years old, mean 13 kg weight) were used in this
experiment and were divided into two groups i.e., a control and a treatment group. All
the animals were fed twice a day (9:00 am and 3:00 pm) with maintenance food (Jiangsu
Xietong Inc., Nanjing, China). Two hours after being fed the maintenance food, the control
and experimental groups were respectively fed 30 g of the control snack without CPP-Se
and 30 g of the test snack containing 0.03% CPP-Se (Chongqing Sweet Pet Products Co.,
Ltd., Chongqing, China). The dogs were acclimatized for 7 days with the snacks before the
start of the experiment and provided with water ad libitum during the 30-day experiment.

The CPP-Se was provided by the College of Food Science, South China Agricultural
University. All the procedures were approved by the Institutional Animal Care and Use
Committee of South China Agriculture University (Permit Number: SCAU-AEC-2010-0416).
The schematic diagram of the experimental design is shown in Figure 1.
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2.2. Hematology Routine and Serum Cytokines Concentration Detection

Canine peripheral blood was collected according to the previous method [31]. Briefly,
1 mL of blood was collected from the saphenous vein, and added to an EDTA-K2 antico-
agulation tube, gently mixed and stored at 4 ◦C for transport to the laboratory, followed
immediately by a routine blood analysis (Mindray, Shenzhen, China) to measure the blood
leukocyte. Serum was collected according to Zheng’s method [32]. Briefly, 2 mL of canine
peripheral blood was collected from the saphenous vein and added to a serum separator
tube which was left at room temperature for 1 h and then centrifuged at 3000 rpm for
10 min at 4 ◦C. The serum was then divided into 1.5 mL EP tubes and stored at −20 ◦C for
cytokines detection and metabolite analysis. The concentration of serum IL-4, IL-6, IgM,
IgG and IFN-γ was detected according to the instructions given with ELISA kits (FANKEL
Industrial Co., Ltd., Fankew, Shanghai, China).

2.3. RNA-Seq and Data Analysis
2.3.1. RNA Library Construction and Sequencing

After whole blood collection, the RNA was extracted by Trizol LS (Aidlab Biotechnolo-
gies, Beijing, China) reagent and assayed for integrity and total RNA concentration using
an Agilent 2100 bioanalyzer (Agilent, Santa Clara, CA, USA). The poly-A mRNAs were
enriched by Oligo (dT) magnetic beads and then the divalent cations were used to randomly
break mRNAs in an NEB fragmentation buffer, followed by library construction using the
NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB, Ipswich, MA, USA); index
codes were added to attribute sequences to each sample. After library construction, initial
quantification was performed using a Qubit 2.0 Fluorometer, followed by dilution of the
library to 1.5 ng/µL and the detection of the insert size of the library using an Agilent 2100
bioanalyzer. RT-qPCR was performed to accurately quantify the effective concentration
of the library to ensure the libraries’ quality. T RNA sequencing was then performed
by the Novogene Bioinformatics Institute (Novogene, Beijing, China) for the paired-end
sequencing on the Illumina NovaSeq 6000 platform (Illumina, Inc., San Diego, CA, USA).

2.3.2. Quality Control and Differentially Expressed Genes (DEGs) Identification

The raw data generated by RNA-Seq contain few sequencing junctions or low-quality
reads. Therefore, in order to obtain high-quality data for downstream analyses, reads
with junctions and containing N (N means the base information is uncertain) as well as
low-quality reads were filtered together with the calculation of Q20, Q30 and GC contents.
HISAT2 (v 2.0.5) was used to construct an index of the reference genome and clean reads
were aligned to the reference genome (https://ftp.ensembl.org/pub/release-100/fasta/
canis_lupus_familiaris/, accessed on 13 June 2022). The assembly of reads aligned to
the reference genome was prepared using StringTie (v 1.3.3b) [33]. Based on the gene
length and the number of reads mapped to this related gene, the FPKM of each gene was

https://ftp.ensembl.org/pub/release-100/fasta/canis_lupus_familiaris/
https://ftp.ensembl.org/pub/release-100/fasta/canis_lupus_familiaris/
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calculated. The heatmap was constructed using FPKM and the differential expression
between the two groups was analyzed using DESeq2 software (v 1.20.0). Genes with a
p-adj < 0.05 and |Fold Change| ≥ 1.5 were considered as DEGs. The RNA-Seq data were
deposited in the Gene Expression Omnibus (GEO) datasets on NCBI.

2.3.3. Functional Enrichment Analysis of DEGs

Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) enrich-
ment analysis of DEGs was performed using the clusterProfiler R package (v 3.8.1) [34] and
p < 0.05 was considered as significant.

2.4. Screening for Immune-Related Genes

Immune-related genes of DEGs were screened using the ImmPort database
(https://www.immport.org/home, accessed on 4 February 2023) and obtained from genes’
lists (immunologically relevant lists of genes curated with functions and Gene Ontology
terms) [35].

2.5. Protein–Protein Interaction (PPI) Network Construction and Hub Genes Analysis of DEGs

The PPI networks were constructed using the online String database (https://www.
string-db.org/, accessed on 4 February 2023) and an interaction with a combined score
of ≥ 0.4 was considered significant. Hub genes analysis was then performed using the
cyto-Hubba application (v 0.1) from Cytoscape (v 3.9.0) based on the degree method.
KEGG enrichment analysis of hub genes was performed using the DAVID online database
(https://david.ncifcrf.gov/conversion.jsp, accessed on 4 February 2023).

2.6. Untargeted Metabolomics and Data Analysis
2.6.1. Metabolites Extraction

100 µL of serum was resuspended with pre-chilled methanol (80%), incubated on ice
for 5 min and then centrifuged at 15,000× g for 20 min at 4 ◦C. The required amount of
supernatant was diluted with LC-MS grade water to a final concentration of 53% methanol.
The supernatant was then transferred to new EP tubes and then centrifuged at 15,000× g
for 20 min at 4 ◦C, and finally transferred to the LC-MS/MS system for analysis [36].

2.6.2. UHPLC-MS/MS Analysis

A Vanquish UHPLC system (Thermo Fisher, Waltham, MA, USA) connected to an
Orbitrap Q ExactiveTM HF mass spectrometer (Thermo Fisher, Waltham, MA, USA) was
used for UHPLC-MS/MS analysis. Serum was injected into a Hypersil Gold column using
a 12-min linear gradient at a flow rate of 0.2 mL/min. The eluents used were 0.1% FA
in water (eluent A) and methanol (eluent B) for the positive polarity mode and 5 mM
ammonium acetate (eluent A) and methanol (eluent B) for the negative polarity mode
(eluent B). The settings were as follows: (1) Spray voltage: 3.5 kV, (2) Capillary temperature:
320 ◦C, (3) Sheath gas flow rate: 35 psi and aux gas flow rate: 10 L/min, (4) S-lens RF level:
60, and (5) aux gas heater temperature: 350 ◦C.

2.6.3. Data Processing and Metabolite Identification

A Compound Discoverer 3.1 (Thermo Fisher, Waltham, MA, USA) was used to process
the raw data files and to perform peak alignment and selection as well as metabolite
quantitation. Peak intensities were then adjusted to reflect the total spectral intensity.
According to the additive ions, molecular ion peaks and fragmented ions, the normalized
data were used to predict the molecular formula of the metabolites. Subsequently, the
actual data, including qualitative and relative quantitative results, were obtained using
mzCloud (https://www.mzcloud.org/, accessed on 5 February 2023), mzVault, and the
MassList database.

https://www.immport.org/home
https://www.string-db.org/
https://www.string-db.org/
https://david.ncifcrf.gov/conversion.jsp
https://www.mzcloud.org/
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2.6.4. Data Analysis

The metabolites were annotated using the KEGG database (https://www.genome.
jp/kegg/pathway.html, accessed on 10 February 2023), HMDB database (https://hmdb.
ca/metabolites, accessed on 10 February 2023), and LIPIDMaps database (http://www.
lipidmaps.org/, accessed on 10 February 2023). Principal component analysis (PCA) and
partial least squares discriminant analysis (PLS-DA) were conducted using metaX [37].
Univariate analysis (t-test) was used to calculate the statistical significance. The metabolites
with VIP > 1 and p < 0.05 and |fold change|≥ 2 were considered as differentially expressed
metabolites (DEMs). The DEMs based on log2 (fold change) and -log10 (p-value) were
presented using volcano plots. The data were normalized using the z-scores of the DEMs
intensity area for clustering heat maps, and a pheatmap tool was used to decipher the
results. The correlation between DEMs was examined, and the R language was used
to assess the significance of the correlation (p < 0.05). The KEGG database was used to
assess the pathways enriched by the DEMs, and an enrichment of p < 0.05 was considered
as significant.

2.7. Combined Analysis of RNA-Seq and Metabolome Data

Correlations between RNA-seq and metabolomic data were assessed by Pearson
correlation analysis. According to the correlation coefficients, the interaction network
between DEMs and hub genes was plotted using Cytoscape. Moreover, the common
pathways between DEGs and DEMs were analyzed by an online MetaboAnalyst 5.0 tool
(https://www.metaboanalyst.ca, accessed on 15 February 2023).

2.8. Total RNA Extraction, cDNA Synthesis and RT-qPCR

Whole blood RNA was extracted with Trizol LS (Aidlab Biotechnologies, Beijing,
China) reagent. The Nano Pro 2010 (DHS Life Science and Technology, Tianjin, China) was
used to determine the concentration and quality of RNA. The cDNA was prepared with
ABScript III RT Master Mix kit (ABclonal, Wuhan, China) according to the manufacturer’s
instructions. The prepared cDNA was stored at −20 ◦C and RT-qPCR was performed
using 2× Universal SYBR Green Fast qPCR Mix (ABclonal, Wuhan, China) on an RT-
qPCR detection system (Bioer Technology, Hangzhou, China). Briefly, for relative mRNA
expression assays, we used a 10 µL system containing 5 µL SYBR Green I Premix (ABclonal,
Wuhan, China), 0.5 µL each of forward and reverse primers (Supplementary Table S1), 1 µL
cDNA and 3 µL RNase-free water. Relative mRNA expression levels were calculated using
the 2−∆∆CT method [38].

2.9. Statistical Analysis

All data were tested for normality and homogeneity of variance prior to statistical
analysis. Data between the two groups were analyzed by Student t-test and a value of p <
0.05 was considered as statistically significant; experimental results are expressed as mean
± standard error (SEM).

3. Results
3.1. Evaluation of Immune-Related Parameters

The number of blood leukocytes in the CPP-Se group increased significantly as com-
pared to the control group after 30 days of CPP-Se feeding (Figure 2A, p < 0.05). Serum
IgG levels did not change noticeably after feeding CPP-Se (Figure 2B, p > 0.05), but IgM
levels increased significantly (Figure 2C, p < 0.01). Additionally, the contents of IFN-γ, IL-4
and IL-6 were increased significantly in the CPP-Se group compared to the control group
(Figure 2D,F, p < 0.01).

https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://hmdb.ca/metabolites
https://hmdb.ca/metabolites
http://www.lipidmaps.org/
http://www.lipidmaps.org/
https://www.metaboanalyst.ca
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3.2. Summary of RNA-Seq Data

After we had filtered the raw data and checked the error rate, we obtained a total
of 39.98 Gb of clean reads data from all the samples. The error rate < 0.03, Q30 > 92.77%,
total mapped ratio went from 94.98% to 96.04% and the GC content from 57.16% to 57.85%,
indicating that these were high-quality reads (Supplementary Table S2). Moreover, the
boxplot of genes’ FPKM in each sample showed the overall gene expression pattern of
the different sample (Figure 3A). Correlation analysis showed that the R2 > 0.8 between
biological replicates within groups and between different samples (Figure 3B), and these
results suggested that the sequencing data are reliable and can be further analyzed.
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3.3. DEGs and Functional Enrichment Analysis

Compared with the control group, 110 significantly up-regulated and 231 down-
regulated genes were identified in the CPP-Se group (Figure 4A, Supplementary Table
S3). Hierarchical clustering of all the DEGs (Figure 4B) was used to show the gene ex-
pression pattern and the top 20 significantly up- and down-regulated genes are shown in
Supplementary Tables S4 and S5, respectively.
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The 341 DEGs were subjected to GO analysis, including the biological process (BP),
cellular component (CC) and molecular function (MF). In our study, a total of 444 GO
terms was found to be enriched (Supplementary Table S6). The top 10 terms of each
category are shown in Figure 4C. The important BP terms were ion transport and the
metabolic process. Similarly, the predominant enriched CC terms were the extracellular
region, myosin complex, and actin cytoskeleton. The most significant MF terms were the
transmembrane signaling receptor activity, signaling receptor activity, molecular transducer
activity, and cytokine activity. Moreover, KEGG analysis revealed a total of 246 enriched
pathways (Supplementary Table S7). Among the top 20 pathways, most are related to
immune responses, such as the cytokine–cytokine receptor interaction signaling pathway,
TCR signaling pathway, TNF signaling pathway, B cell receptor signaling pathway, NF-
kappa B signaling pathway, and Toll-like receptor signaling pathway (Figure 4D).

3.4. Immune-Related Genes and Hub Genes Analysis of DEGs

A total of 52 immune-related genes was screened from DEGs, out of which 19 were
found to be up-regulated and 33 were down-regulated (Supplementary Table S8); the
top 10 up-/down-regulated DEGs were selected for display according to the log2FC in
Supplementary Table S9. Most of these DEGs are associated with cytokine–cytokine
receptor mediated immunomodulatory pathways, such as SEMA4F, PRF1, LTB, IL18RAP,
IL1RAP and TLR4. Furthermore, we performed PPI and hub genes analysis of these
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immune-related DEGs, and found that ZAP70, LCK and LCP2 were hub genes based on the
node score (Figure 5A,B).
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PPI networks of all up- and down-regulated genes were constructed, and the hub
genes were screened. The top 10 most significant up-regulated hub genes were IL2RB,
CD5, PRF1, TBX21, ZAP70, CD19, LCK, CD6, CD3D and ITK (Figure 5C), and the top
10 most significant down-regulated hub genes were TLR4, FCGR1A, CD86, LCP2, LYN,
IL10RA, CSF3R, SYK, CSF2RA and CSF2RB (Figure 5D). Among them, the ZAP70 and
LCK were immune-related up-regulated DEGs. Furthermore, pathway analysis of these
20 hub genes showed that several immune-related pathways were enriched, including the
cytokine–cytokine receptor interaction pathway, the NF-kappa B signaling pathway, and
the TCR signaling pathway (Supplementary Table S10).

3.5. Analysis of DEGs Related to Cytokine–Cytokine Receptor Interaction Signaling Pathway and
TCR Signaling Pathway

Cytokines and T cells are the vital components of the immune system that keep the
body in a normal physiological state. KEGG analysis indicated that the highest number
of DEGs was involved in cytokine–cytokine receptor interaction signaling pathways, and
the immune-related genes were mostly associated with cytokines and cytokine receptors.
In addition, the immune-related genes LCK, ZAP70 and LCP2 were co-enriched in the
TCR signaling pathway. For further verification, DEGs in the cytokine–cytokine receptor
interaction signaling pathway and the TCR signaling pathway were analyzed. In total,
175 genes were found to be enriched in the cytokine–cytokine receptor interaction signaling
pathway, including 19 DEGs (5 up-regulated and 14 down-regulated, Figure 6A). Moreover,
115 genes were associated with the TCR signaling pathway, including 9 DEGs (4 up-
regulated and 5 down-regulated, Figure 6B). PPI networks were constructed from the DEGs
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(Figure 6C,D) and the hub genes were identified. According to the node degree, CCL4,
CXCR2, CXCL6, CXCL8 and CCR9 were important hub genes present in the cytokine–
cytokine receptor interaction signaling pathway (Figure 6E), while the other hub genes,
i.e., LCK and ZAP70, present in the TCR signaling pathway are also related to the immune
system (Figure 6F).
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3.6. Untargeted Metabolomics and DEMs Analyses

The dogs’ serum metabolic changes that resulted from CPP-Se supplementation were
explored and the DEMs were identified by metabolome analysis. The PCA and OPLS-DA
showed a significant difference in metabolic profiles between the CPP-Se and control groups
(Figure 7A,B). A total of 53 DEMs was identified in the CPP-Se group compared to the
control group, including 17 up-regulated and 36 down-regulated metabolites (Figure 7C,
Supplementary Table S11). The hierarchical clustering of DEMs is shown in Figure 7D.
KEGG enrichment analysis showed that the pathways enriched by DEMs were bile se-
cretion, primary bile acid biosynthesis, tryptophan metabolism and other amino acids
metabolic pathways (Figure 7E).
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3.7. Combined Analysis of Transcriptomics and Metabolomics

To reveal the correlation between transcriptomics and metabolomics, the correlations
between DEGs (top 10 up-/down-regulated immune-related DEGs and hub genes ZAP70,
LCK, CCL4, CCR9) and DEMs were calculated by using the Pearson correlation analysis,
where correlation coefficients values >0 and <0 were considered as positive and negative
correlations, respectively (Figure 8A). Further, correlation coefficients value of >0.8 and
p < 0.5 were considered as strong correlations, and the interaction networks between these
four hub genes and DEMs were plotted by Cytoscape. The results showed a significant
positive correlation between methionine, isoquinoline, liquiritigenin, ACar 15:2 (11E,15Z)-
9,10,13-trihydroxyoctadeca-11,15-dienoic acid, genistein 4-O-glucuronide and hub genes,
suggesting that these DEMs may be synergistically involved with hub genes in immune
regulation (Figure 8B). Moreover, KEGG analysis showed the pathways which were com-
monly enriched by DEGs and DEMs were fatty acid biosynthesis, glycerolipid metabolism,
glycerophospholipid metabolism, pyrimidine metabolism, etc (Figure 8C).
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Figure 8. Combined analysis between transcriptome and metabolome data. (A) Pearson correlation
analysis of DEGs and DEMs. The red and blue colors represent positive and negative correlations,
respectively. “*” indicates p < 0.05. (B) Interaction network of hub genes and DEMs. Pink rectangles
represent up-regulated hub genes, red triangles represent up-regulated DEMs that are significantly
positively associated with hub genes, and light blue ellipses represent down-regulated DEMs that
are significantly negatively associated with hub genes. (C) Common pathways between DEGs and
DEMs.

3.8. RT-qPCR Validation

We randomly selected 10 DEGs (MMP8, CCL4, NAMPT, CCR9, TLR4, CD163, ALOX15,
CMA1, CAMP and CXCL8) for RT-qPCR detection, and the results showed that the expres-
sion trends of these DEGs were consistent with the sequencing data (Figure 9), further
showing that our sequencing data are reliable.
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4. Discussion

Animals with better immunity can fend off disease-causing microorganisms and stay
healthy. In our previous study, we observed that CPP-Se could increase some immunologi-
cal markers in dogs, including lymphocyte counts and cytokine levels [31]. In this research,
we further investigated the effect of CPP-Se on canine immune function by blood RNA-Seq
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and metabolome analysis. First, blood leukocytes, serum cytokines and immunoglobulin
levels were assessed after CPP-Se supplementation. Leukocytes and cytokines are impor-
tant components of the blood immune system and play a vital role in combating infection
and inflammation in animals’ bodies [39,40]. Our results showed that CPP-Se was effective
in increasing leukocyte counts and cytokine levels, which are consistent with previous
studies. Transcriptome analysis indicated that 341 DEGs were identified in the CPP-Se
group compared to the control group and these DEGs were significantly enriched in several
immunomodulatory pathways, suggesting that CPP-Se affects the blood gene expression
profile of dogs.

The cytokine–cytokine receptor interaction signaling pathway is an essential im-
mune related pathway which is involved in the regulation of disease processes in many
species [28,41–44]. Our enrichment analysis revealed that the cytokine–cytokine receptor
interaction signaling pathway was significantly enriched by DEGs. Ye et al. demonstrated
that specifically salmonella or reproductive respiratory syndrome virus infection signifi-
cantly up-regulate the cytokine mRNAs expression in pigs, and that DEGs in the blood were
also enriched in the cytokine–cytokine receptor interaction signaling pathway, demonstrat-
ing that specific factors in this pathway are involved in blood immune system regulation
and reflect the health status of the organism [29]. Similarly, Qian et al. demonstrated that
cytokine–cytokine receptor interaction plays a critical role in the clearance of the respi-
ratory syncytial virus in vivo [45]. In the present study, the cytokine–cytokine receptor
interaction signaling pathway was the most enriched for DEGs, and cytokines or cytokine
receptors were encoded by many immune-related DEGs. In this pathway, CCL4 and CCR9
are up-regulated hub genes encoding chemokines and chemokine receptors, respectively.
An important function of chemokines is to direct immune cells to the site of inflammation
and thereby defend and eliminate the pathogenic microbes [46,47]. CCL4 is a member of
the CC chemokine family and binds to its receptors to regulate immune cell migration and
stimulate T cell activation and differentiation [48,49]. In addition, CCL4 has been found to
have antimicrobial activity [50]. Our study showed that CPP-Se increased CCL4 expression
and presumably increased the resistance to pathogenic infection. Similarly, CCR9 belongs
to the chemokine receptor family and is mainly expressed on immature T cells together
with neutrophils and mononuclear macrophages [51]. The role of CCR9 in inflammatory
diseases is currently being investigated. Huang et al. found a significant increase in CCR9
in mice suffering with myocardial infarction, suggesting that CCR9 plays an important
role in inflammatory cells infiltration [52]. In addition, CCR9+ T cells and plasmacytoid
dendritic cells can reach the small intestine under the guidance of ligands, suggesting
that CCR9 plays a vital role in regulating the intestinal immune response [53,54]. Wurbel
et al. found that CCR9 knockout mice were more susceptible to colitis caused by infectious
agents and recovered more slowly, and the colonic mucosa was found to harbor a large
number of macrophages and inflammatory cytokines, suggesting that CCR9 may be able to
regulate the response of colonic immune cells [55]. Our results showed that CPP-Se could
increase CCR9 expression, indicating that the immune system of dogs is enhanced to some
extent. Additionally, the immune function of the gut may be concomitantly improved, but
this needs to be demonstrated by more in-depth studies.

The sequencing data showed that CPP-Se significantly increased the expression of
LCK and ZAP70 genes, which are enriched in the TCR signaling pathway. Importantly,
LCK and ZAP70 are also immune-related hub genes. The TCR signaling pathway is a
critical pathway for the recognition of external pathogenic microorganisms [56]. In the
TCR signaling pathway, the phosphorylation of LCK recruits and activates ZAP70, which
mediates T cell maturation and activation [57]. Mutation of ZAP70 was found to cause
T cell-related immune deficiency in zebrafish [58]. In addition, the deletion of ZAP70
reduced the number of CD8+ T cells, resulting in a loss of ability to activate the TCR
pathway, T cell proliferation, and cytokine expression [59]. Wang et al. concluded that the
expressions of LCK and ZAP70 were significantly downregulated in the submandibular
gland of juvenile goats compared to adult goats, and because the immune function in the
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submandibular glands of goats gradually decreases with growth, this suggests that there
is a positive correlation between LCK, ZAP70, and immune function [60]. Certain bio-
actives, such as amino acids, can affect immunity by modulating the proliferative capacity
of T cells [61]. Wu et al. found that asparagine phosphorylates LCK, which activates the
TCR signaling pathway and promotes T cell activation, resulting in increased responses
to pathogens and tumor cells, ultimately leads to improved immunity [62]. Du et al.
illustrated that hydrolytic amino acids increased ZAP70 expression in mouse lymphocytes,
accompanied by lymphocyte proliferation and cytokine production; this demonstrates that
ZAP70 can activate lymphocytes and improve immune function [63]. Our results showed
that CPP-Se increased the mRNA expression of LCK and ZAP70, suggesting that CPP-Se
may enhance the immunity of dogs by promoting the immune function of T cells and the
TCR signaling pathways.

Our metabolomic data showed that the pathways highly enriched by DEMs included
several amino acids metabolism pathways, such as tryptophan, phenylalanine, cysteine,
and methionine amino acid metabolism pathways. Studies have shown that amino acids
metabolism is closely associated with immune response [64,65]. Kynurenic acid (KYNA), a
metabolic product of tryptophan, was found to stimulate the expression of IL-6 in human
breast cancer cells as well as cytokine production in mouse splenocytes [66,67]. Barth et al.
showed that KYNA exerts its immunomodulatory function by activating neutrophils and
recruiting leukocytes [68]. In addition, KYNA decreased TNF and nitric oxide levels in the
serum of mice treated with LPS, and increased survival rates after LPS infection [69].

Correlation analysis showed that methionine, isoquinoline and liquiritigenin were
positively correlated with ZAP70, LCK and CCL4. Methionine is considered to be an
important amino acid that affects the immune function of the body. Numerous studies
have demonstrated that methionine enhances the cellular immune response [70], stimu-
lates leukocytes migration [71], promotes the development of bursa [72] and increases the
differentiation of thymic T cells [73] in poultry. Soder et al. discovered that methionine
stimulates the proliferation of peripheral blood lymphocytes in dairy cows [74]. During
in vitro pathogen infection, Zhou et al. observed an increase in granulocytic phagocy-
tosis in cows fed a supplemented fodder with methionine, indicating that methionine
may enhance the immune system [75]. Moreover, reduced lymphocyte counts, increased
susceptibility to bacterial infection and a lower responsiveness to mitogens are all conse-
quences of methionine restriction in mice [76]. Isoquinoline is a class of alkaloids with
anti-inflammatory activity and has been proven to inhibit LPS-induced inflammation and
apoptosis in mouse cardiomyocytes [77]. Pickler et al. found that the sanguinarine, a major
component of isoquinoline alkaloids, reduced the detection rate of bacteria in the cecum
and increased the proportion CD4+ and CD8α+ cells in the blood in a model of salmonella
enteritis [78]. Liquiritigenin, a flavonoid extracted from licorice, has been illustrated to
increase the concentration of cAMP in dendritic and T cells, thereby regulating cytokine pro-
duction and exerting anti-inflammatory effects [79]. Treatment of mouse macrophages with
liquiritigenin suppressed the LPS-induced NF-κB DNA binding activity and inhibited the
LPS-stimulated production of iNOS proteins. Furthermore, liquiritigenin reduced the levels
of TNF-α, IL-1β and IL-6 in macrophages exposed to LPS, suggesting that liquiritigenin has
anti-inflammatory effects [80]. In our study, KYNA, methionine, isoquinoline, and liquiriti-
genin were notably increased after CPP-Se feeding, suggesting that these metabolites may
work in concert with immune-related hub genes to exert an immunomodulatory function
after CPP-Se supplementation.

In this study, the combined analysis showed that the pathways which are commonly
enriched by DEGs and DEMs, such as glycerolipid metabolism, pyrimidine metabolism,
and glutathione metabolism, need further attention, as some reports have indicated that
these pathways are also involved in immune regulation [81–83].
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5. Conclusions

In conclusion, we used RNA-Seq and metabolomic analysis for the first time to explore
changes in the blood transcriptome and serum metabolome of dogs fed CPP-Se. The
results showed that CPP-Se can regulate the expression of immune-related hub genes,
such as CCL4, CCR9, ZAP70, and LCK, which play critical roles in the immune system.
KEGG analysis demonstrated that DEGs were enriched in several immune regulatory
pathways, out of which the cytokine–cytokine receptor interaction signaling pathway and
the TCR signaling pathway were the significant ones, indicating their important functions
in the regulation of the canine immune system by CPP-Se. In addition, the metabolomic
data indicated that the amino acids metabolism was mainly affected by CPP-Se, and the
significant positive correlations among methionine, isoquinoline, liquiritigenin and hub
genes were identified, and these metabolites were closely linked with immune functions.
As a consequence, we have elucidated the underlying mechanism by which CPP-Se exerts
its immunomodulatory effects, although this requires further research to demonstrate;
however, the results of our present study still bring prospective value to the addition of
CPP-Se in pets’ routine diet to enhance immunity.
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