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Simple Summary: Meningioma treatments, including complete surgical resection, debulking, radia-
tion therapy, and palliative care in dogs and cats have recently been improved. Although complete
resection of meningiomas is known to be the most effective treatment, there are still challenges
in performing safe surgeries due to the presence of numerous vessels surrounding the tumor and
brain parenchyma. Many efforts have been made in the field of human medicine to achieve safety,
such as preoperative planning using 3D simulation and contrast angiography. Surgical navigation
systems have been studied for application, but recently, three-dimensional techniques have helped
surgeons perioperatively. This study enhanced the vessels around the meningiomas in the skull
and attempted to identify them using 3D computed tomography and magnetic resonance imaging
angiography rather than conventional angiography. An 11-year-old castrated male cat was referred to
our hospital with a meningioma located in the occipital lobe. The cat showed progressive tetraparesis.
Throughout the long-term follow-up, following the complete removal of the meningioma, the cat
showed favorable clinical outcomes and no neurological abnormalities.

Abstract: We present a case of occipital lobe meningioma resection in an elderly cat. The surgery
was performed with the goal of avoiding major bleeding. An 11-year-old castrated indoor-only male
Persian Chinchilla (5.5 kg) was presented with a month-long history of progressive tetraparesis for a
left occipital lobe meningioma. Magnetic resonance imaging revealed a T2-weighted heterogeneously
hyperintensity and a T1-weighted well-contrast enhancing extradural mass in the left occipital
lobe of the brain. Cerebral angiographic data were obtained using magnetic resonance (MRA)
and computed tomography angiography (CTA). Advanced angiograms and virtual reconstruction
of images revealed that the tumor was surrounded by the caudal parasagittal meningeal vein.
A left caudal rostrotentorial craniotomy and en bloc resection of the tumor were performed, and
histopathology revealed a meningioma. Complete neurological recovery was achieved within 10 days
after surgery. To the best of our knowledge, this is the first case report describing CTA and MRA
findings and favorable clinical outcomes after surgical management of a brain meningioma without
severe perioperative complications.

Keywords: angiography; meningioma; craniotomy; feline; 3D printing

1. Introduction

Feline intracranial meningiomas are mainly benign extra-axial brain tumors that grow
from the meninges and can be attached to the dura mater; they have been reported to
occur frequently in primary intracranial neoplasia [1]. Intracranial meningiomas are more
frequently diagnosed in elderly felines because the clinical signs are often mild and nonspe-
cific. Among the brain regions, the third ventricle (17.2%) was the most frequently affected
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site, followed by the parietal lobe (15%), frontal lobe, and occipital lobe [1,2]. Understand-
ing the prevalence of affected regions is essential because patients with meningiomas often
show clinical signs related to the affected region [1,2].

There are various treatment options, such as chemotherapy and radiotherapy, although
surgical resection is reported to be the most effective [2–4]. Since several regions can be
affected, diverse surgical approaches are designed to expose meningiomas in different
lobes [5]. Among various locations, occipital lobe surgery carries a high risk of complica-
tions, such as visual impairment or injury to vital structures, such as the transverse and
occipital sinuses [2,5–9]. Consequently, it could be an additional risk factor for patients
of advanced age, as they are more vulnerable to intraoperative blood loss [10]. Since
blood loss affects the surgical outcome of resection, it is essential to accurately identify the
vasculature of the occipital lobe and the meningioma [10–12]. A small amount of blood loss
can cause infarction perioperatively, requiring prolonged surgical and anesthesia time to
control bleeding during surgery [3,10–17]. In addition, the restricted working space in brain
surgery makes it difficult to control bleeding effectively [18]. Thus, patient selection for
surgical resection should be executed carefully because it is uncertain whether the elderly
can recover from neurological deficits after surgery, let alone given the high risk of surgery
in this population [7,8].

Diverse advances, such as minimally invasive techniques, approaches, and surgical
devices, have been developed to overcome the challenges of brain surgery [19]. Further-
more, better diagnostic tools are required to preoperatively assess intracranial lesions and
their association with surrounding tissues [15,20]. Tremendous efforts have been made to
develop advanced diagnostic imaging techniques in human medicine [13,20–24]. Several
methods have been developed to assess the blood vessels of meningiomas (feeding artery),
including intra-arterial digital subtraction angiography (DSA), computed tomographic
angiography (CTA), and magnetic resonance angiogram (MRA) [13,20–24]. While DSA, a
catheter-based angiography, remained the standard by having the highest sensitivity and
specificity in determining sinus patency and identifying feeding arteries of intracranial
meningiomas, the cost and the risk for developing neurological complications decreased
utilities compared to the less invasive modalities, such as CTA and MRA [24,25]. Regardless
of the pros and cons of each method, angiography prior to the resection of intracranial
neoplasia helps visualize the relationship between blood vessels and neoplasia [13,20].

However, to the best of our knowledge, there are no published reports on the use of
advanced imaging angiograms for surgical planning of occipital lobe meningiomas in cats.
This case report describes the application of CTA, MRA, and 3D printing techniques in the
surgical planning of intracranial meningiomas in elderly cats, primarily to avoid injury to
major brain vessels for better surgical outcomes.

2. Case Presentation
2.1. Case

An 11-year-old castrated indoor-only male Persian Chinchilla (5.5 kg) was referred to
our hospital for left occipital lobe meningioma. The patient had a history of progressive
tetraparesis that lasted for six months prior to the presentation. Two weeks prior to the
presentation, the patient showed altered mental status due to anorexia and was admitted
to a local hospital. The patient had a tonic-clonic seizure for 15 s during hospitalization,
and no seizures were observed after discharge. The primary veterinarian had prescribed
anticonvulsants because of the seizure, including gabapentin (10 mg/kg PO twice daily),
phenobarbital (3 mg/kg PO twice daily), and levetiracetam (15 mg/kg PO twice daily).
The day after discharge, the patient was referred to a local veterinary imaging center and
admitted for magnetic resonance imaging (MRI). The patient was referred to our hospital
with a suspected left occipital lobe meningioma. On presentation, the abnormal physical
findings included ataxia and lethargy. Abnormalities observed duirng the neurological
examination included obtundation and symmetrical cerebellar pelvic limb ataxia. However,
the other neurological findings were normal. The patient was assessed with a score of
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16/18 according to the Modified Glasgow Coma Scale, which falls into the Score III category
with a good prognosis [26]. There were no difficulties with urination or defecation noted by
the owner. In addition, the menace response test, pupillary light reflex, and visual follow-
up showed that the patient’s vision was intact. A complete blood count was performed,
and mild thrombocytopenia (128 K/uL, reference range: 156.4–626.4 K/uL) was observed.
The serum panel, including FSAA, was unremarkable, and the ProBNP level was normal.

2.2. Images

General anesthesia was induced with propofol (4 mg/kg IV) and maintained with
inhaled isoflurane and oxygen. The MRI sequences included 3-plane scout localizers,
T1-weighted (TR/TE = 576/14 on transverse and 556/14 on sagittal planes), T2-weighted
(TR/TE = 4600/90 on transverse, 2380/81 on sagittal, and 3000/81 on dorsal planes), FLAIR
(TR/TE = 8000/77 on transverse plane), and postcontrast T1-weighted (TR/TE = 576/14 on
transverse and 556/14 on sagittal and dorsal planes) images with a slice thickness of 2 mm.
The MRI revealed a round, solitary, well-defined mass with a homogenous hypointensity
when compared to gray matter in T1-weighted images, dura tail signs in T1-weighted
contrast images, and edematous changes around the occipital lobe tumor in T2-weighted
images. There was no sign of hyperostosis in the bone surrounding the mass (Figure 1).
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The patient’s cerebral angiographic data were obtained using the computed tomog-
raphy (CTA) and magnetic resonance angiography (MRA) after the MRI scan (Figure 2). 
After the scanning procedure, the patient recovered without complications. CTA was per-
formed using a 64-channel multidetector scanner (Toshiba Aquilion; Toshiba, Tochigi, Ja-
pan) with parameters of 0.5 mm section thickness, 1.0 mm interval, 0.4 s rotation time, 
0.641 pitch, 120 kilovoltage peak, and 120 milliampere-seconds. The patient was placed in 
a sternal recumbency position. A contrast medium injector (EmpowerCTA®+ Injector 

Figure 1. Preoperative magnetic resonance images (MRI) of the brain. (A) Transverse view of the
brain in a T1-weighted window showing the neoplasm (arrow) with a homogenous hypointensity
compared to gray matter. The cerebral midline is shifted (arrowhead). (B) Transverse view in a
T1-weighted window after contrast enhancement revealing a dural tail sign (arrowhead) dorsal to the
mass (arrow). Transverse (C) and sagittal planes (F) in a T2-weighted window showing edematous
changes (arrowhead) around the tumor (arrow). Mass (arrow) is homogenously hyperintense in the
dorsal (D) and sagittal views (E) in a contrast enhanced T1-window.

The patient’s cerebral angiographic data were obtained using the computed tomog-
raphy (CTA) and magnetic resonance angiography (MRA) after the MRI scan (Figure 2).
After the scanning procedure, the patient recovered without complications. CTA was
performed using a 64-channel multidetector scanner (Toshiba Aquilion; Toshiba, Tochigi,
Japan) with parameters of 0.5 mm section thickness, 1.0 mm interval, 0.4 s rotation time,
0.641 pitch, 120 kilovoltage peak, and 120 milliampere-seconds. The patient was placed
in a sternal recumbency position. A contrast medium injector (EmpowerCTA®+ Injector
System, Bracco, Italy) was attached to the patient via a 24-gauge intravenous catheter in
the cephalic vein. First, a precontrast scan was performed to define the location of the
carotid artery for bolus tracking. After defining the location of the common carotid artery,
a 2.5 mL/kg dose of iodinated contrast medium (600 mg iohexol/kg) was injected at a
1.5 mL/s injection rate. Hounsfield unit of the common carotid artery was monitored,



Vet. Sci. 2023, 10, 264 4 of 11

and scans were manually initiated immediately after opacification of the artery to obtain
an arteriogram. A venogram scan was started 30 s after the arteriography. On CTA, the
transverse sinus was intact (Figure 2A), yet the mass compressed a vein suspected to be
a caudal meningeal vein (Figure 2B). In addition, there was no evidence of invasion into
the cerebellum in the supratentorial region, although lysis of the ipsilateral tentorium cere-
belli was observed. MRA scanning was performed using a 3.0 Tesla magnetic resonance
scanner (INGENIA, Philips Healthcare, Amsterdam, The Netherlands). Various sequences
were used for visualization of the cerebral vasculature due to the small-sized nature of
the object: 3D time of flight (TR/TE/NSA = 23/3/1, matrix size 500 × 333, field of view
(FOV) 200 × 200), phase contrast (TR/TE/NSA = 12/7.6/1, matrix size 188 × 167, FOV
160 × 160), MRA (TR/TE/NSA = 4/2/1, flip angle 20◦, matrix 384 × 381, FOV 210 × 210,
acquisition time of 1 min 40 s, 0.5 slabs, voxel size 0.65 × 0.65, parallel imaging factor 0.65),
and contrast-enhanced MRA (TR/TE/NSA = 4/2/1, matrix 384 × 381, FOV 210 × 210)
sequence (ClariscanTM, GE Healthcare, Oslo, Norway) (0.1 mmol Meglumine gadoter-
ate/kg). Signals from the cerebral arteries were not identified on the MRA. Additionally, no
evidence of neoplastic invasion of surrounding vessels was observed. The cerebral arteries
and veins were manually segmented using the original and post-processed datasets. The
virtual reconstruction of the brain was performed using an image-processing program
(MeVisLab; Fraunhofer Mevis, Bremen, Germany) (Figure 3) [27].
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Figure 2. Advanced angiogram images. The patient was positioned in sternal recumbency. (A) On
the axial view, the transverse sinuses (white arrows) are not affected by the mass. (B) The dorsal
sagittal sinus is intact (yellow arrow) although the caudal meningeal vein (arrowheads) is observed
as displaced by the mass effect exerted by the meningioma (asterisk) on the axial view.

Bone data were obtained from the CT images and sliced into an STL file using 3D
slicer software (3D Slicer, [www.slicer.org] accessed on 24 November 2021). With the MR
images and virtual images of MRA, rehearsal surgery was performed using 3D modeling
software (3DS MAX; Autodesk, Inc., San Rafael, CA, USA) to determine the operation
window in order to minimize surgical damage to the skull and surrounding tissues. In
addition, a virtual 3D surgical guide was designed using 3D modeling software (3DS MAX;
Autodesk, Inc., San Rafael, CA, USA) to cover the bony surface of the window for the exact
location during the operation (Figure 4). The virtual guide was transferred to an STL file
and printed using an FDM-type 3D printer and a PLA filament [27].

www.slicer.org
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Figure 4. (A) Schematic images of the pre-operative skull-contoured three-dimensional (3D) patient-
specific surgical guide. (B) The tumor (red arrow) is confirmed by a 3D bone model with a sagittal
cut of the skull. A 3D tumor-targeting red cylinder passed the center of the tumor.

2.3. Surgical Techniques

The information obtained from CTA and MRA confirmed that the tumor had not
invaded the dorsal sagittal sinus or the caudal meningeal vein. Despite the slight dis-
placement of the cerebral vein, as shown in the angiograms, the intact vascularity ensured
well-defined capsulation of the meningioma and an en bloc resection was decided.

The surgical procedures were performed with informed consent from the owner and
followed the Animal Use and Ethics Guidelines from the CNU University. The patient was
premedicated with midazolam (0.2 mg/kg IV), anesthetized with propofol (4 mg/kg IV),
and maintained with isoflurane. Intraoperative analgesia was provided by a constant rate
infusion (CRI) of remifentanil (0.1–0.3 µg/kg/min). The patient was positioned sternally
and recumbently, and the head was slightly tilted so that the meningioma was positioned
at the highest point [6]. All the surgical procedures were performed under a surgical
microscope (Leica M530 OHX; Leica Korea, Seoul, South Korea). The approach technique
was extrapolated from a human occipital craniotomy [28]. To create the operative window,
a horseshoe incision was made according to the preoperative plan. Prior to craniotomy, a
patient-specific 3D surgical guide was placed over the skull to confirm the location of the
lesion [27]. Once confirmed, a craniotomy line was marked with a monopolar electrocautery
along the window created by the 3D surgical guide. Craniotomy was performed using a
Sonopet bone saw (Stryker, Kalamazoo, MI, USA) (Figure 5A) [27]. As the bone flap was
elevated, the dura was opened, and a meningioma was identified (Figure 5B). As observed
in the preoperative MRA and CTA, the venous sinus was intact and isolated from the
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meningioma. The meningioma was removed using a Sonopet soft tissue aspirator (Stryker,
Kalamazoo, MI, USA) with an en bloc resection (Figure 5C,D).
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Figure 5. (A) Opening of the cranium. (B) The meningioma was identified, and bipolar was used to
mitigate adjacent vessels during the resection. (C) The mass was removed using the ultrasonic
aspirator in order to reduce the size of the mass. (D) The tumor was isolated from the brain
parenchyma using neurosurgical sponges.

A small portion of the tumor was submitted for biopsy to a pathologist (IDEXX
Laboratories, Inc., Westbrook, ME, USA). Hemostatic products, such as regenerated cel-
lulose (Surgicel®, Ethicon, Somerville, NJ, USA), gelatin sponge (Spongostan®, Ethicon,
Somerville, NJ, USA), and Floseal (Floseal®, Baxter Healthcare Corporation, Fremout, CA,
USA) were used to manage bleeding (Figure 6A). An artificial dura (Redura, Medprin
Biotech, La Mirada, CA, USA) and a dural sealant (Duraseal, Confluent Surgical Inc.,
Waltham, MA, USA) were used for dural closure (Figure 6B,C). To prevent iatrogenic
metastasis, the inner table of the bone flap was drilled out before replacement [29,30]. Two
craniofacial 1.6 plates (a rectangular four-hole plate, an X-shaped six-hole plate, and 4 mm
self-tapping screws; JEIL, Seoul, South Korea) were used for bone flap fixation (Figure 6D).
Finally, the skin and scalp were closed in a routine pattern.

2.4. Postoperative Care, Outcomes, and Pathological Examination

Immediately after surgery, the patient was sedated for 24 h with medetomidine
(1 µg/kg/h CRI) to prevent excitement. All vital signs were normal and the appetite
came back on postoperative day two. On postoperative day nine, gait improved, yet mild
ataxia in the right hindlimb was still present. No other neurological deficits were clinically
observed. Ten days after the surgery, the patient was discharged.

Histopathological examination revealed a grade 1 intracranial mass, a psammoma-
tous subtype, and a meningioma (Figure 7). The results confirmed that the neoplastic
cells predominantly displayed a whirling configuration with overwhelming numbers of
psammoma bodies, consistent with the psammomatous subtypes. Pleomorphism was mild
to moderate, and mitotic activity was low (1 mitosis/10 HPF) and compatible with grade
1 (low-grade) meningiomas. It was not possible to assess the marginal or angiolymphatic
invasion due to the incisional nature of the sample [31]. However, we grossly identified the
complete resection of the tumor. No complaints related to the surgery were received until
postoperative day 445, when the owner sent a video of the patient showing full recovery
from ataxia without neurological problems.
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chromatin, with mild to moderate anisocytosis and anisokaryosis. The sample was diagnosed as the
psammomatous subtype of meningioma with grade 1 (low grade) (H&E staining, scale bar = 100 µm).

3. Discussion

We present a case of occipital lobe meningioma resection with the goal of avoiding
major bleeding in an elderly cat. To minimize hemorrhage during surgery, preoperative
CTA, MRA, and virtual 3D rehearsals were performed, and a 3D printing surgical guide
was used. Therefore, the surgery was successfully performed without significant blood loss,
and the patient completely recovered from the surgery despite its concerning older age.

Surgery involving the occipital lobes may have significant postoperative risks, ranging
from neurological deficits to surgery-related deaths [11,12,32–35]. To minimize these risks,
accurate presentation of blood vessels near surgical sites has been advocated in human
medicine [35,36]. However, there are no reports on cranial blood vessel visualization in
surgical planning in veterinary medicine. The vasculature of the occipital lobe in cats
includes several major vessels, such as the dorsal sagittal sinus, transverse sinus, caudal
dorsal cerebral vein, and more [37]. These vasculatures must be considered in surgical
planning because surgical approaches involving these critical blood vessels are associated
with high mortality and morbidity [3,38]. Furthermore, highly vascularized tumors, such
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as meningiomas, often result in significant hemorrhage during resection [13]. Thus, the
accurate vascular status of tumors, such as occipital lobe meningiomas, must be identified
to avoid the catastrophic outcome of the surgical operation [24,32]. In this case, using the
preoperative CTA and MRA image data, the surgical guide was designed to avoid adjacent
vessels while securing an adequate surgical window to excise the tumor completely. In
addition, the guide guaranteed shorter operations and anesthesia times, which led to
improved surgical outcomes [27,30,38–41]. Although the surgical approach to the occipital
lobe was technically challenging, the angiograms and 3D-printed surgical guides aided the
overall surgical procedure, resulting in a better outcome.

In human medicine, various efforts to mitigate blood loss during resection, includ-
ing accurate assessment of the vasculature and preoperative embolization, are utilized
for patients with intracranial tumors [13,22,42]. These efforts are based on current stud-
ies regarding the complications of intraoperative blood loss during intracranial tumor
surgery [10–12]. However, in veterinary medicine, the effects of these advancements on
patients with meningiomas have not been thoroughly studied, hence further research is
required. Therefore, as the first attempt to report the use of CTA and MRA in a feline patient
with an occipital meningioma, we described the imaging techniques in detail. There were
several considerations when applying CTA and MRA to this patient. First, the concern that
iodinated contrast medium may affect the image quality of MRI could be ignored because
the purpose of the scan is to investigate the anatomical structure of intracranial vessels,
and not the pathologic status of the brain lesion [43]. Additionally, because of the small
size of the patient, the cerebral vasculature in the initially obtained image dataset could
not provide sufficient information for surgical planning. Thus, CTA and MRA images
were registered, and various digital subtraction methods were used (e.g., subtraction of
pre-contrast CT images from arteriogram CT images to obtain bone-free arteriograms) to
offset this limitation [24]. The combination of CTA and MRA offers a high spatial resolution
of the tumor’s vascularity.

Preoperative images could provide information regarding the meningioma and its
neighboring vasculature in detail. Thus, the surgical techniques applied in this case were
mainly focused on minimizing iatrogenic damage to the surrounding blood vessels, such
as the parasagittal sinus. Several advanced techniques, that were extrapolated from human
medical procedures, have been applied in this case [15,16,33,39,44,45]. First, a horseshoe
incision and occipital craniotomy were used in this case to expose the meningioma [16,46].
An occipital craniotomy is a versatile approach to the occipital lobe, that not only offers
adequate exposure to brain lesions, but also provides a safer surgical method (i.e., dynamic
retraction) to prevent the damage of the visual field cortex [8,33]. Furthermore, hemostatic
products, including Surgicels and Floseal, were applied in this case to control intraoperative
bleeding [45]. Although Floseal has some controversial aspects in neurosurgery, particularly
in terms of thrombotic complications, using it in combination with Surgicel, as reported
in the literature, has resulted in improved gelatin granule coherence in this case [44].
Additionally, a previous study reported that the application of Floseal showed decreased
scar tissue formation and dural adhesion in the canine laminectomy model [47].

This study had several limitations. First, this single case does not represent all elderly
feline patients with occipital meningiomas. Further studies should be performed to charac-
terize feline occipital meningiomas, particularly in geriatric populations. Moreover, due to
the small size of the patient, arterial angiography could not be performed. Thus, the feeding
arteries of the meningioma may have been overlooked in this case. Additionally, we did
not perform a follow-up CT or MRI postoperatively to assess nerve tissue adaptation and
local adaptive or pathological changes. Simple clinical evaluation does not fully represent
the extent of tumor removal, as well as changes that occur in surrounding tissue following
surgery. Lastly, the deleterious effects of applied angiograms have been reported at low
rates in human medicine [23]. Although the prevalence of side effects was insignificant,
further studies should be conducted to evaluate the harmful effects on dogs and cats to
advocate the use of angiograms.
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4. Conclusions

In this study, by using advanced angiography techniques, such as CTA and MRA, we
defined the displacement of peritumoral vessels in the preoperative plan. Although these
angiographies are not routinely used in veterinary medicine, understanding the intracranial
vasculature is essential for better surgical outcomes, especially in elderly patients prone to
complications related to blood loss during surgery. To make surgical resection a feasible
choice with a guaranteed acceptable outcome in elderly patients, an appropriate assessment
of intracranial vascularity should be considered.
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