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Simple Summary: In andrology, ultrasound provides important information on the patient’s state
of health. In dogs, as in humans and other mammals, many reproductive pathologies can affect
the male’s general and reproductive health. In today’s society, the dog represents a full member of
the family unit, thus early and timely diagnosis represents an important step in the treatment and
resolution of the testicular pathological process, improving both reproductive and general health.
Ultrasound represents a noninvasive diagnostic technique and is well tolerated by patients. Several
new ultrasound-based technologies developed in recent years have expanded the tools available to
the andrologist. The present review aims to describe all ultrasound techniques applied to canine
testis evaluation, including the well-known basic B-Mode ultrasonography and colour Doppler, and
new and advanced technologies, such as contrast-enhanced ultrasonography (CEUS) and ultrasound
elastography. The principles of the different technologies, their applications, and the relevant findings
in normal and abnormal testicular conditions, often completed by images, are described and discussed.
Thus, the present review, describing the ultrasound-based tools available to canine andrologists,
promotes the diffusion of advanced technologies for the rapid identification of canine testicular
disease, promoting the chances of a resolution and restoration of reproductive function.

Abstract: Ultrasonography is a valuable diagnostic tool extensively used in the andrology of human
and domestic animals, including dogs. This review aims to provide an overview of various technolo-
gies based on ultrasound, from the basic B-Mode ultrasonography to the more recent advancements,
such as contrast-enhanced ultrasonography (CEUS) and ultrasound elastography (UEl), all of which
are utilized in the evaluation of canine testicles. The review outlines the principles behind each of
these technologies and discusses their application in assessing normal and abnormal testicular condi-
tions. B-mode canine testicular ultrasonography primarily focuses on detecting focal lesions but has
limitations in terms of objectivity. Other technologies, including Doppler ultrasonography, B-Flow,
and CEUS, allow for the characterization of vascular patterns, which could be further measured using
specific applications like spectral Doppler or quantitative CEUS. Additionally, ultrasound elastog-
raphy enables the assessment of parenchyma stiffness both qualitatively and quantitatively. These
ultrasound-based technologies play a crucial role in andrology by providing valuable information for
evaluating testicular function and integrity, aiding in the identification of pathological conditions
that may impact the health and quality of life of male dogs.

Keywords: dog; testis; ultrasonography; B-flow; doppler; CEUS; sonoelastography

1. Introduction

An essential part of the andrological examination of dogs involves the evaluation of
the reproductive tract using ultrasonography [1]. Evaluating canine testes holds significant
importance for both veterinary clinics and breeders selecting stud dogs; combining the
strengths of traditional and modern techniques can yield a more accurate and thorough
assessment of a dog’s testicular health. This approach ensures that veterinarians can
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provide comprehensive care and that breeders or owners can make informed decisions to
properly manage their dog.

The imaging modality of choice for the evaluation of the reproductive system in both
humans and animals is ultrasonography [2], which is also used for the detection and
characterization of testicular lesions [3]. Ultrasonography is safe and minimally invasive,
easy and ready to use, rapid to perform and interpret, and less expensive compared with
other technologies, such as magnetic resonance or computerized tomography [4]. The
technological advancement in this field has been very fast in recent years, adding to the con-
ventional and well-known ultrasound methodologies, like B-mode ultrasonography and
Doppler-based ultrasonography, several advanced techniques, such as contrast-enhanced
ultrasonography (CEUS) and ultrasound elastography (UEl). As a consequence, the tech-
nological implementation has expanded the diagnostic armamentarium available for the
andrologist, increasing the chances of an effective and rapid diagnosis [2].

This review of both conventional and innovative ultrasound-based techniques presents
a description of the technology, the procedures for examination of the testis, and the typical
findings in normal and pathologic testis, recognizing the strengths and limits of each
technology. The information reported allows the andrologist to choose the technique or the
combination of techniques most helpful and powerful to define the testicular disease and
to undertake the therapeutic procedure to restore canine reproductive and general health.

To achieve this, two research databases, Scopus (https://www.scopus.com, accessed
on 15 March 2023) and PubMed (https://pubmed.ncbi.nlm.nih.gov/, accessed on 16
March 2023) were consulted using systematic keywords (dog, testis, ultrasound) and,
depending on the technology considered, specific keywords (B-mode, Doppler, B-flow,
contrast-enhanced ultrasonography, elastography). After introducing these criteria, a total
of 102 and 136 manuscripts were detected for Scopus and PubMed, respectively. All the
manuscripts were consulted, and the main findings are reported in the present review.
When studies were not available on the dog or when few references were available, relevant
references regarding other mammals were considered for each technology.

2. Testes Component Evaluation by Ultrasonography
Anatomy, Physiology and Vascularization of the Testis

Testes are the primary reproductive organs of male dogs [5]. They are located in the
inguinal region within the scrotum and are nearly globous with a dorsal–caudal orientation
of their major axis. The standard volume dimension of a canine testis was 3 cm (major axis)
or 2 cm (minor axes) in an 11 kg dog, [6], but wide variability in canine body weight in
different breeds, which results in large variability in testicular size, is present in this species.
In smaller breeds, the testes may be relatively smaller and closer to the body due to the
limited space within the scrotum. In contrast, in larger breeds, the testes may be larger and
situated further away from the body.

The extra-abdominal position of the testes makes these organs easily accessible for ultra-
sonography evaluation, as well as the epididymis and the distal part of the spermatic cord [6].

The epididymis is adherent to the testis, with its head located at the testicular cranial
pole of the testicle. The body runs dorsolaterally, and the tail is anchored at the dorsal-
caudal extremity of the testis by the short, thick proper ligament. The tail of the epididymis
is continuous with the ductus deferens, which forms the spermatic cord along with the
vascular compartment. It moves within the inguinal canal and enters the abdomen via the
vaginal ring [6].

The testis is composed of stroma, the connective tissue framework, and the parenchyma,
which is composed of the seminiferous tubules. The stroma is formed by the external tu-
nica albuginea, from which septa branch out to compartmentalize the parenchyma into
lobules [6]. The septa merge centrally at the mediastinum testis, a cord of connective tissue
running lengthwise through the middle of the testis [6].

https://www.scopus.com
https://pubmed.ncbi.nlm.nih.gov/
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Testicular blood vessels and lymphatics enter and exit through the mediastinum. The
testicular artery supplies the testis, while the artery of the ductus deferens supplies the
epididymis [6].

At the level of a transverse plane through the fourth lumbar vertebra, the testicular
artery emerges from the ventral side of the aorta. The right artery begins cranially to the
left, in line with the locations of the testicles during foetal development. Following the
ductus deferens into the spermatic cord to the level of the epididymis, the artery of the
ductus deferens, which is a branch of the prostatic artery from the internal pudendal, runs
along the prostatic artery. It connects to the testicular artery and the epididymis through
anastomoses [6].

Within the spermatic cord, the testicular vein surrounds the testicular artery, lym-
phatics, and nerves in an extensive pampiniform plexus, following the arterial pattern.
The right testicular vein drains into the caudal vena cava at the point where its arterial
counterpart originates. The left testicular vein carries blood to the left renal vein [6].

The testicular vessels are unusually long and tortuous, which is functional in creating
a low temperature via thermic dispersion and exchange [7]. It also mantains a low oxygen-
tension environment [8] due to the low intratesticular capillary pressure, both of which are
beneficial for spermatogenesis [9].

3. Grey-Scale Ultrasonography
3.1. Technology and Applications

Grey-scale ultrasonography was the first technique applied to evaluate the testis,
starting in the early 1990s. Several authors have confirmed its usefulness in providing
clinicians with information about the health of the reproductive tract, making it an integral
component of the breeding soundness evaluation (BSE) for dogs [10–14]. Grey-scale ultra-
sonography offers fine anatomical details of the testicle and surrounding structures [15],
revealing lesions that may be too small or inaccessible for detection through palpation [1].
However, ultrasonographic changes are not specific enough to identify the different types
of testicular lesions [3]. Moreover, a series of ultrasonographic scans can be very beneficial
in assessing the progression of a disease and the effectiveness of treatment [16].

Grey-scale ultrasonography is a subjective procedure that allows for a qualitative
evaluation of testicular parenchyma, enabling the detection of intraparenchymal lesions.
However, it does not discriminate between different types of lesions or allow for a quantita-
tive evaluation useful for assessing alterations involving the whole parenchyma without
specific lesions. To enhance the use of grey-scale ultrasonography, some authors have pro-
posed the objective estimation of the echotexture based on pixel-intensity analysis [17]. The
image display consists of an array of picture elements (pixels), with each pixel representing
a determined acoustic impedance displayed in a range of shades of grey (ranging from
white to black) [17]. Acoustic impedance is, in turn, related to the tissue density crossed by
the acoustic beam, resulting in a larger (shift toward white in the sonogram) or lesser (shift
toward black in the sonogram) echo. Assuming a relationship between pixel intensity and a
specific point’s ability to reflect the acoustic beam as a sign of tissue density, several studies
have investigated the relationship between the pixel intensity of testicular sonograms,
quantified by image-analysis software, and semen quality in domestic animals [17–22]
and humans [23–26]. These studies revealed that changes in testicular pixel intensity were
correlated with the percentage of morphologically normal live spermatozoa.

Likewise, although ultrasound imaging cannot establish a cytologic or histologic
diagnosis, ultrasound-guided tissue sampling can be performed quickly, accurately, and
safely [27] using techniques such as testicular biopsy or testicular fine-needle aspiration [28].

3.2. Examination Technique

As a result of the short distance between the probe and the testis, high-frequency
and linear transducers should be used whenever possible, typically in the range of 7.5 to
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10 MHz. Low-frequency transducers may not provide sufficient resolution to detect small
lesions or subtle parenchymal changes [16].

The testicular examination is a straightforward procedure. Images can be obtained
in a nonsedated dog in lateral recumbency or a standing position. Clipping of the scrotal
hair should be avoided, as good images could be obtained by using generous amounts of
ultrasound gel [27]. The testes should be scanned in transverse, longitudinal, and dorsal
planes. One testis can be used as a standoff to image the opposite one [16]. Both testes
can often be imaged in a single transverse or dorsal section, which is helpful for direct
comparison [16].

3.3. Normal Findings

The canine testis appears echogenic with a homogeneous, medium echotexture. The
parietal and visceral tunics form a thin, hyperechoic peripheral echo. The mediastinum
testis is visible as an echogenic central linear structure on the midsagittal plane and as a
central focal echo on a mid-transverse scan plane (Figure 1) [16].
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Figure 1. Example of B-Mode ultrasonography of normal testis in the dog, in longitudinal (A) and
transversal (B) scan. The hyperechoic mediastinum is visible as a band (A) or a circular area (B) within
the homogeneous parenchyma.

In prepubertal dogs, the testes tend to have a more hypoechoic echogenicity compared
to adult dogs, and the mediastinum testis can be easily identified [29]. Typically, there are
no noticeable differences in echogenicity between the right and left testis [22,29].
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The tail of the epididymis generally appears isoechoic when compared to the testicular
parenchyma (Figure 2). Additionally, the tail exhibits a coarser echotexture than the testis.
On the other hand, the head and body of the epididymis are nearly isoechoic with the testis.
The head is located cranially, and the body can be traced caudally in both sagittal and
transverse planes to reach the tail, which is consistently the most clearly imaged portion of
the canine epididymis [16].
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Figure 2. Example of B-Mode ultrasonography of normal epididymis in the dog. The normal tail of
the epididymis, isoechoic, can be detected on the right of the image, closely adherent to the testis
(on the left).

In older dogs, small hyperechoic foci representing the testicular septa are occasionally
visible [30].

Testicular volume is positively correlated with total sperm count, sperm motility, sperm
morphology, and daily sperm production in dogs [31,32]. Estimating testicular volume can
be useful in demonstrating asymmetry or reduction, as some authors have reported that
testicular volume is age-related, with the maximum size reached at 6 years, followed by a
progressive decrease [33]. Ultrasonography is generally considered the most accurate method
for quantitatively determining testicular volume [16]. Few studies have evaluated ultrasound
mensuration of dog testicles, establishing its reliability in comparison with the results obtained
using calipers (orchidometer). Among the most common formulas used for calculating
testicular volume, Lambert’s formula (volume = length × width × height × 0.71) provides a
more accurate estimate [31,32].

3.4. Abnormal Findings
3.4.1. Intratesticular Diseases

Testicular neoplasms are the most common tumours of the male dog’s genital tract [27,34–39],
with a prevalence of up to 60% and an incidence that increases with age [3,40–43] and cryp-
torchidism [37–40,44–46].

The ultrasonographic features of testicular tumours can vary widely [3], from small
nodules distinguishable within the parenchyma to heterogeneous echotexture that alters
the normal canine testicular pattern. Although testicular tumours cannot be discriminated
based on shape, margin, and echotexture [3], small and well-defined hypoechoic focal
lesions are usually associated with interstitial cell tumours, while large lesions, sometimes
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enlarging the testis, with heterogeneous echotexture are typically detected in Sertoli cell
tumours or seminomas [27].

Areas of haemorrhage and necrosis can occur in all types of tumours and may be
observed ultrasonographically as disorganized hyperechoic and hypoechoic regions. Addi-
tionally, areas of calcification within the testicular parenchyma can be visible, appearing as
hyperechoic foci producing acoustic shadowing [27].

While testicular tumours are rarely malignant, with a metastasis rate of lower than
15%, among the testicular tumours Sertoli cell tumours are most prone to metastasize [43].
However, seminomas and Leydig cell tumours can also develop metastasis [47–49]. Metas-
tasis typically occurs first in the iliac, para-aortic, and sublumbar lymph nodes. Metastasis
to the liver, lungs, kidneys, spleen, adrenals, pancreas, skin, brain, and eyes has also been
reported [50]. Early detection through ultrasonography allows for the orchiectomy of the
affected testis, improving the chance of maintaining the patient’s fertility, especially in
breeding dogs [3].

There are few reports in which dogs have been diagnosed with neoplasms of testicular
origin in an extratesticular location [51]. Few possibilities, including the presence of embry-
ological ectopic tissue or the presence of testicular tissue transplanted during castration,
are considered causal factors [51]. The location of the extratesticular testicular tumours in
dogs varies and includes the spermatic cord, the inside of the scrotal skin, or the site of the
prescrotal castration incision site [51]. Most of the neoplasms are small, typically about
1.5 cm in diameter [35]. Apart from their location, their appearance is indistinguishable
from their intratesticular counterpart [35].

Orchitis, as inflammation of the testis, can occur acutely or chronically. Acute orchitis
may present with variable ultrasonographic characteristics, ranging from irregular and poorly
defined anechoic areas to a diffuse patchy hypoechoic echo pattern, and focal abscessation may
be evident [1,16,29]. Typically, the testis and epididymis enlarge, and fluid may accumulate
between the visceral and parietal tunic within the scrotum [1,16,29,52]. Chronic orchitis is
less obvious in terms of ultrasonographic features and may reveal hyperechoic or mixed
echogenic parenchyma, often associated with a reduction in testicular size [16]. In the case of
chronic progression of orchitis, abscess formation may occur, characterized by an irregular
hyperechoic wall and anechoic to hypoechoic central contents [16].

Testicular hypoplasia is a developmental defect of the testis, preventing it from reaching
the normal postpubertal size. Most cases of hypoplasia are due to cryptorchidism and are
often linked to the underdevelopment of the epididymis as well [35].

In contrast, testicular atrophy is used to describe normally developed testes that have
become smaller in size due to ageing [35], cryptorchidism, testicular tumour, or chronic
orchitis in the opposite testicle [16]. An atrophic testis typically retains a normal-sized
epididymis, so proportions change with increased severity.

In both testicular hypoplasia and atrophy, ultrasonography reveals thickened albug-
inea, with less obvious or missing blood vessels. The echotexture can vary, ranging from
hypoechoic to isoechoic, or it can be diffusely hyperechoic, depending on the cause and
severity [16]. Hyperechoic foci causing acoustic shadowing may also be present, reflecting
parenchymal mineralization [35].

Ultrasonography is a sensitive diagnostic tool for cryptorchidism, used to locate and
evaluate undescended testicle(s), which may be located in the abdominal cavity (sensitivity
of 97.7%), inguinal canal (sensitivity of 100%), or in an ectopic subcutaneous location
between the superficial inguinal ring and the scrotum [53]. This method facilitates the
location of retained testes before surgical exploration or laparoscopy [53]. Cryptorchid
testes are typically smaller in size, and the testicular parenchyma can often be detected
by the presence of the hyperechoic mediastinum testis. Retained testicles may undergo
neoplastic transformation [54], and they are usually located based on their increased size
and abnormal architecture (Figure 3). They appear as masses with mixed echogenicity and
varying diameters, often situated in abdominal region [14].
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Figure 3. Ultrasonographic B-mode appearance of a large tumour in the testis (black arrow) compared
to the testicular parenchyma (white arrow) in an inguinal cryptorchid testis. Based on histology, the
image is consistent with a Sertoli cell tumour.

Occasionally, the ultrasonographic examination may reveal the presence of hyper-
echoic nonshadowing spots within the testicular parenchyma. These lesions have been
referred to as testicular microlithiasis, a condition well defined and described in human
andrology [55]. Unfortunately, in domestic animals, this condition has been poorly char-
acterized, and the epidemiology, ultrasonographic appearance, as well as its biological
significance and implications, remain largely understudied in both large and small animals.

3.4.2. Extratesticular Diseases

Epididymitis can occur separately or concurrently with orchitis (Figure 4), and the
damage may extend to include the ductus deferens [1,16,29]. Typically, epididymitis
involves the tail and sometimes the body of the epididymis, with the head of the epididymis
seldom being affected [56].

This condition may be bilateral or unilateral, with varying severity that reflects the
degree of damage, including necrosis and vascular changes. In cases of severe acute
disease, there is swelling and oedema of the tail of the epididymis, resulting in a relevant
increase in size [35], sometimes accompanied by fluid accumulation into the vaginal cavity.
Ultrasonography, through direct visualization of the altered organs, aids in the differential
diagnosis of diseases that cause scrotal volume increase [14,16,29,56].

Torsion of the spermatic cord is uncommon in dogs [16]. Due to the peculiar structure of
testis vascularization, testicular necrosis can result from varying degrees of torsion, and it
is more frequently observed in retained (or cryptorchid) testes [35]. Additionally, torsion
of the spermatic cord in an intra-abdominal testicle has been frequently reported in the
presence of testicular tumours [1,16,44]. The ultrasonographic appearance of experimentally
induced testicular torsion in the dog has been reported by Hricak et al.: between 15
and 60 min after torsion, there are anatomical changes detectable by ultrasound, such as
testicular enlargement characterized by diffusely decreased parenchymal echogenicity,
concurrent enlargement of the epididymis and spermatic cord, and hypoechoic thickening
of the scrotal skin [57].
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Figure 4. A case of epididymitis, contextual with orchitis, in the canine testis involving the tail of the
epididymis. Note the relative hypertrophy of the tail of the epididymis (on the right) compared to
the correspondent testis (on the left). Both organs appear heterogeneous, and small anechoic areas
can be detected (white arrows).

Ultrasonography can be particularly valuable in cases of extratesticular (around the
testicle but within the vaginal tunic) fluid accumulation. In this case, the fluid causes a scrotal
enlargement, preventing clinical discrimination between the structures involved. Types
of extratesticular fluid accumulation include serum (hydrocele), blood (haematocele), pus
(pyocele), or possibly urine [12,14].

Epidydimal cysts, resulting from epididymal canal occlusion, are rarely reported
in dogs [12].

Spermatic granulomas are characterized by the accumulation of spermatozoa in efferent
ducts, the epididymis, or the deferent duct, surrounded by macrophages and other inflam-
matory cells [58]. Clinically (hard nodular lesion) and on grey-scale ultrasonography, this
lesion can be challenging to differentiate from neoplasia. Cytology via fine-needle aspira-
tion or histology from biopsy or orchiectomy is necessary to confirm the non-neoplastic
nature of the lesion [59]. Unfortunately, no reports describing spermatic granulomas in
dogs are available in the literature.

Varicocele in humans results from alterations in the veins of the pampiniform plexus,
leading to enlargement, elongation, and tortuosity. On sonograms, varicocele appears as
anechoic, tubular, and serpiginous fluid collection in the region of the epididymis. Varico-
cele is rarely encountered in dogs [12,60]. It is characterized by the formation of varicose
veins in the scrotal region. Ultrasonographic imaging reveals vascular dilatation [61].

4. Colour Doppler and Power Doppler
4.1. Technology and Applications

Doppler ultrasonography has become the method of choice for evaluating the blood
supply of the testis. It is one of the simplest and most precise techniques for estimating
blood flow, as it combines data concerning the anatomy and dynamic flow parameters [62].

Based on how blood flow information is displayed, Doppler ultrasonography can
be classified as colour (colour Doppler and power colour Doppler) or spectral (pulsed
wave—PW, continuous wave—CW), or a combination of both.

Colour and power colour Doppler are termed colour Doppler due to the use of colour
map overlays on real-time two-dimensional grey-scale images to visualize blood flow
(Figure 5) [16]. These overlays represent signals from moving red blood cells in colour,
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indicating the direction of their motion toward or away from the transducer. The amount
of colour saturation also conveys information about the relative velocity of cells.
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Power colour Doppler ultrasonography is more sensitive in detecting low velocities
and small parenchymal vessels [16,63]. Due to the qualitative nature of the interpretation
of sonograms, colour Doppler is rarely applied in experimental studies.

Quantitative blood flow analysis includes the evaluation of peak systolic velocity = PSV,
end-diastolic velocity = EDV, resistance index = RI, and pulsatility index = PI.

Pulsed-wave and continuous-wave Doppler are collectively referred to as spectral
Doppler. They display quantitative information in the form of time-velocity waveforms
along the y and x axes, respectively. Pulsed-wave Doppler ultrasonography transmits sound
in pulses using the pulse-echo principle, similar to real-time imaging [16]. Pulsed-wave
Doppler is the most commonly used type of spectral Doppler because it is readily available
on nearly all modern transducers and provides depth discrimination [16]. Continuous-wave
Doppler technology can measure much higher flow velocities than pulsed Doppler [16,64].

Duplex Doppler ultrasonography involves the simultaneous display of pulsed- or
continuous-wave spectral Doppler tracings and B-mode images [16].

Similarly, triplex Doppler ultrasonography combines two-dimensional ultrasound,
colour Doppler, and pulsed Doppler, allowing for the collection of anatomical data of
the vessels and functional data regarding blood flow, including its presence or absence,
direction and speed [16,65].

In human medicine, pulsed-wave Doppler, colour, and power Doppler are routinely
applied to asses andrology status [56,66–76] and to determine the aetiology of dysper-
mia [23,77], demonstrating that sperm quality and quantity are dependent on tissue perfu-
sion [23,26,78–80] and suggesting that the evaluation of testicular blood flow can predict
the testicular function and, in turn, spermatogenesis [23,78–80].

In veterinary medicine, the study of testicular vascularization has been conducted
in various animal species, including stallions [8,81–84], jackasses [85], tomcats [86,87],
bulls [17,88,89], rams [20,90,91], bucks [62,92], and dogs [52,65,93–103]. The results of these
studies essentially confirm a relationship between testicular arterial blood flow and seminal
quality in both normal and pathological conditions.

4.2. Normal Findings

The peculiar vascularization of the testis allows for the division of vessels into three
segments: (a) supratesticular arteries within the pampiniform plexus, which include the
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testicular artery, cremasteric artery, and deferential artery; (b) arteries within the testicular
membranes, represented by the marginal artery; and (c) intratesticular vessels, comprising
the centripetal branches and recurrent rami [99].

Characteristics of blood flow within the testicular artery, assessed by pulsed-wave
Doppler ultrasound, vary depending on the segment [97,99]. In the supratesticular region,
the blood flow exhibits a biphasic waveform with a diastolic notch followed by a diastolic
peak, or it may display a monophasic waveform characterized by a slow systolic increase
followed by decreased diastolic flow, attributed to the vessel’s tortuous nature in this
area. The other two regions typically demonstrate low-resistance flow with monophasic
waveforms (Figure 6) [29]. Blood flow velocities are higher in the supratesticular region,
gradually decreasing through the marginal and intratesticular regions [29,94,97,99].
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(B) portions of the testicular artery.

4.3. Relationship between Spectral Doppler Measurement and Dog’s Semen Quality

As mentioned earlier, there is an observed relationship between pulsed-wave Doppler
measurements and semen quality in various studies, primarily in human medicine, which
report strong correlations between the values of the resistive index (RI) and peak sys-
tolic velocity (PSV) with sperm production rate scores. These parameters are considered
reliable indicators of spermatogenesis and are proposed for routine clinical protocols in
distinguishing different causes of dyspermia and identifying subfertile men [104].

In veterinary medicine, the measurement of these indexes could be an effective tool
in andrology as potential markers of seminal quality in dogs. For example, in the study
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of Zelli et al., these indexes were studied in correlation with testicular volume and semen
parameters. The results showed a positive correlation between peak systolic velocity and
testicular volume and a negative correlation with live sperm. Additionally, a negative
correlation was observed between the resistive index and pulsatility index with total
and progressive motility. The resistive index and pulsatility index also showed negative
correlations with the percentage of membrane-intact sperms with curled tails, while the
latter exhibited a positive correlation with end-diastolic velocity [103].

Moreover, in Gloria et al.’s study, the blood flow parameters measured by pulsed-
wave Doppler were evaluated in correlation not only with sperm attributes but also with
testicular histological characteristics. They confirmed negative correlations between RI and
PI with abnormal spermatogenesis and histological abnormalities [98].

Additionally, Velasco and Ruiz proposed the use of ultrasonographic measurement
as objective parameters to evaluate testicular function. However, they noted variability
in all analysed data, depending on factors such as the measurement location, season,
species, breed, and laterality. They concluded that further research is needed to establish
physiological parameters for pulsed-wave Doppler measurements [105].

4.4. Abnormal Findings

In the context of testicular neoplasia, colour (Figure 7) and power Doppler (Figure 8) ultra-
sonography are valuable tools for assessing tumour vasculature. This is due to the typically
high interstitial pressure in tumours and the resulting low-velocity states in tumour vessels.
However, there are limited descriptions of testicular blood flow in abnormal testes [106].
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Figure 8. Colour (A) and power Doppler (B) sonogram of testicular tumour in the dog. Based on
histology, the image referred to a mixed Sertoli cell/seminoma tumour occupying most of the testis.

The vascularity index (VI) appears to increase in solid tumours compared to non-
neoplastic masses, as blood flow within and around most tumours is enhanced [52]. Blood
flow PSV increases with the size of neoplastic nodules, and the spectral waveform around
the lesion typically exhibits a low-resistance pattern with lower to middle values of PI and
RI compared to normal tissue [52]. However, it is important to note that none of these
appearances are specific to a particular tumour type [3,27,52].

In cases of orchitis, testicular blood flow, as estimated by colour Doppler, may demon-
strate increased perfusion within the testicular parenchyma, accompanied by an increase in
RI and PI [29]. However, only limited modifications in vascular flow may be detected in
cases of necrosis and fibrosis [52]. The report also suggests that in inflammatory lesions, RI
may significantly decrease due to reactive hyperaemia, while it increases in fibrotic lesions
associated with degenerative changes.

In dogs with torsion of the spermatic cord, colour Doppler ultrasound can help in
identifying the absence of perfusion to and within the twisted testis [29,57], aiding in the
differential diagnosis of acute orchitis [12]. In cases of incomplete torsion, it may be possible
to observe decreased perfusion rather than complete absence [29].
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5. B-Flow

B-Flow is a type of digitally encoded ultrasound technology developed specifically by
GE Healthcare (Chicago, IL, USA) for visualizing blood flow [107]. This technology is based
on a combination of coded excitation and tissue equalization [107], allowing for the direct
visualization of moving blood echoes using a grey-scale presentation that demonstrates
real-time blood movement, similar to a conventional angiogram (Figure 9), along with
simultaneous visualization of the surrounding anatomy [108].
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In human medicine, B-flow was first applied for carotid artery ultrasound in vascular
medicine. More recently it has been found valuable for assessing abdominal structures,
such as hepatic vasculature and renal perfusion [108–111]. Furthermore, B-Flow imaging
has been explored in obstetrics and gynaecology, focusing on utilizing the technology in
perinatology and foetal echocardiography [107].

Applications of B-flow in veterinary medicine have been relatively limited. There are
only two studies that have used this technology in animals, both evaluating chemically
induced mammary tumours. These studies have reported that B-Flow is more sensitive
than power colour Doppler in detecting tumour vessels [112,113].

In the field of veterinary clinical reproduction, B-flow technology has been primarily
focused on evaluating vascular patterns in testicular neoplasm, with findings suggesting
that these patterns do not significantly vary among different tumour types [3].

6. Contrast-Enhanced Ultrasonography (CEUS)
6.1. Technology and Applications

Contrast-enhanced ultrasonography (CEUS) was introduced in veterinary medicine
relatively recently due to its ability to quantify microvascular blood volume and flow
within vital organs, similar to its application in human medicine [114,115]. CEUS is based
on the intravascular injection of specific ultrasound contrast agents (USCAs), consisting of
microspheres containing gases stabilized by an outer shell [116,117]. Gases are eliminated
through the lungs, while the stabilizing components are filtered by the kidneys and elimi-
nated by the liver [86,118,119]. These microspheres reflect ultrasound echoes, significantly
increasing the intensity of the signal in grey-scale and Doppler modes, enhancing visualiza-
tion for approximately 5 min, depending on the contrast agent used. A complete CEUS
evaluation typically takes around 20 min and does not require general anaesthesia [119].
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The growing adoption of CEUS in diagnostics is attributed to its safety, painlessness,
speed, portability, and lack of irradiation. It does not have nephrotoxic effects, and side
effects from USCAs in dogs are rare, with reported cases limited to injection-site pain,
nausea, or vomiting [120]. In spite of the costs of the contrast material and the need for
specialized ultrasonographic equipment [29], CEUS is considered relatively affordable
when compared to computed tomography and magnetic resonance imaging [117,121] and
can be performed on awake patients without requiring general anaesthesia [119].

CEUS enables the detection of several lesion attributes, including the presence or
absence of contrast, wash-in (incoming phases) and wash-out (output), peak enhancement,
temporal behaviour, perfusion characteristics, vascular anatomy, comparison with the
surrounding tissues, and flow direction [86,117,122]. Some of these attributes can be
quantitatively estimated within a specific region of interest (ROI) using the integrated
software in ultrasound machines [3], which is able to calculate peak intensity (PI), time to
peak (TTP), and area under the curve (AUC). The wash-out (WO), as the time interval from
TTP until signal intensity declined by 40% of PI, could be also calculated [3].

Over the past decades, both ultrasound contrast agents and techniques have evolved
rapidly. CEUS is now used to quantify perfusion in various deep organs, including skeletal
muscle, the heart, adipose tissue, kidneys, liver, and brain [114]. Recent studies have
applied CEUS in human testis evaluation, investigating various features in different patho-
logical conditions [4,123–126].

In veterinary medicine, CEUS has primarily focused on dogs, especially in assessing
the liver and its vascularization [116,127–132], lymph nodes [129,133,134], kidneys [135,136],
pancreas [137,138], eyes [139–141], spleen [117,142–145], and prostate [146–150]. These stud-
ies have examined normal and pathological aspects, differentiating between inflammatory,
degenerative, and neoplastic lesions, while providing discrimination between benign or ma-
lignant conditions [106,119,151]. Some studies have also been performed on cats [86,152,153].
A limited number of studies have explored the application of CEUS in canine andrology,
primarily focused on chronic testicular alterations [120].

6.2. Normal Findings

The contrast agent, after injection, enables the observation of the branching of the
testicular artery and parenchymal perfusion, with a progressive opacification of the con-
voluted supratesticular, marginal, and then intratesticular arteries, with flow directed
towards the mediastinum testis. A progressive increase in the echogenicity of the testicular
parenchyma during the vascular bed phase is observed, followed by gradual clearance of
the contrast from the parenchyma during the wash-out phase. Testicular veins are also
highlighted, with lower echogenicity compared to the arteries, as they exhibited a longer
wash-out period due to their persistence within the vascular bed [120]. It is important to
note that a range of values for CEUS in normal dogs was proposed. However, reference
values should be used with caution due to the lack of reproductive information from the
healthy group and the sedation of the patients during the procedure, which could alter the
physiological vascular flow.

6.3. Abnormal Findings

Due to the detection of fine vascularization, CEUS can detect some testicular lesions not
previously revealed by conventional ultrasonography, resulting in a particularly powerful
assessment of testicular neoplasia [3,120]. Neoplastic lesions have been described to be
better defined in the wash-in phase and tend to maintain the pattern during peak and
wash-out phases. Thus, specific phases are not associated with different patterns of contrast
enhancement in lesions over time [120]. According to a previous study, CEUS was a highly
efficient technique for detecting both neoplastic and non-neoplastic testicular lesions, with
a sensitivity of 87%, specificity of 100%, a positive predictive value of 87%, and a negative
predictive value of 100% [117].
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Although some authors have hypothesized an association between specific CEUS
patterns and different tumour types, the results have been somewhat controversial [3].
Volta et al. reported the association between hypo- or iso-enhanced testicular lesions
with intralesional vessels with seminomas [120], while Orlandi et al. found similar CEUS
parameters in different tumour types, suggesting the inability to differentiate between
testicular tumours based on their contrast-enhanced pattern [3].

A CEUS pattern in non-neoplastic testicular lesions was reported in a study on dogs,
which included degenerated testes, atrophic testes, testes with chronic necrotic orchitis,
and testes with interstitial cell hyperplasia [120]. However, the limited number of cases and
the lack of specific lesions in different conditions have reduced the application potential of
this approach.

7. Ultrasound Elastography
7.1. Technology and Applications

Ultrasound elastography (UEl) is an ultrasonography-based technology introduced in
the 1990s, designed to assess the elasticity or the stiffness of the tissues [154]. This technique
is grounded in the concept that softer tissue deforms more readily under compression
compared to harder tissue, enabling the estimation of tissue elasticity [155]. Tissue elas-
ticity changes can be associated with pathological modifications induced by degeneration
(ageing), inflammation, and uncontrolled cell growth [154].

Elastography utilizes ultrasonic imaging to monitor tissue shear deformation under
conditions of one or both shear conditions, often in real-time two-dimensional image
sequence, following the application of dynamic forces (e.g., thumping or vibrating) or
gradual forces considered “quasi-static” (e.g., probe palpation). The deformation can be
represented in an elastogramme, or as a local measurement, in one of three ways: (i) tissue
displacement may be directly detected and displayed, as in the method known as acoustic
radiation force impulse (ARFI) imaging; (ii) tissue strain can be calculated and displayed,
producing what is termed strain elastography (SE); (iii) in the dynamic case only, data can
be used to record the propagation of shear waves, which can be employed to calculate
regional values of their speed (without creating images) using methods referred to herein
as transient elastography (TE) and point shear-wave elastography (pSWE), or images of
their speed using methods referred to herein as shear-wave elastography (SWE), which
includes 2-D SWE and 3-D SWE [156,157].

Various technologies can evaluate tissue stiffness qualitatively, semi-quantitatively,
or quantitatively. Strain elastography, for instance, translates the deformation of tissue
resulting from manual probe compression into a grey-scale image. The final result is
an image, namely an elastogramme, in which the stiffness of the different components
of the anatomical region is displayed in real time on a colour-coded map [158]. Due to
the subjective origin of the compression, this technique could be considered qualitative.
To increase objectivity, a semi-quantitative measurement has been proposed, involving
the calculation of the strain ratio. This ratio compares the stiffness of the tissue under
examination, as determined in a region of interest (ROI), to that of adjacent normal tissue
in a similar-sized ROI [157].

In contrast to strain imaging, shear-wave elastography allows the measurement of
the speed of shear-waves generated by the probe, enabling the quantitative assessment of
tissue elasticity even within a specific range of interest (ROI) [157].

In human medicine, UEl has found success in diagnostic imaging of various organs,
such as the liver, breast, prostate, thyroid, and lymph nodes and musculoskeletal patholog-
ical conditions. It is widely used in oncology for predicting lesion malignancy, including
in cases of testicular neoplasm [155,158–162]. In human andrology, UEl has also been pro-
posed for the examination of nonfocal alterations of the testis, aiding in infertility aetiology
determination [26,163,164].
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In veterinary medicine, studies have been conducted to apply UEl to canine and feline
normal and pathological conditions in various organs, including the spleen, liver, kidney,
prostate [165–168], adrenal glands [169], skin [170], lymph nodes [133,171], pancreas [172],
small intestine mucosa [173], and placenta [174]. The qualitative study on foetal lungs
and liver during the final days of intrauterine development were also reported, revealing
tissue stiffness changes [175]. In veterinary oncology, UEl has been considered a comple-
mentary diagnostic tool to distinguish benign from malignant lesions, mainly focusing on
mammary neoplasm, with inconsistent results. Some preliminary studies reported that
the cyto-/histologic mammary lesions classified as benign are observed as deformable,
whilst malignant exhibited rigidity, resembling the characteristics of breast tumours of
women [176,177]. Contrariwise, a more recent work reported that malignant mammary
nodular lesions showed stiffness similar to hyperplastic/benign neoplastic lesions [178].
Therefore, further investigations into tissue mechanical properties are needed to optimally
incorporate the use of this technology in the evaluation of mammary gland tumors in dogs.

Limited information is available about the use of UEl in veterinary andrology [167,177,179,180],
especially in cases of no focal alterations.

7.2. Normal Findings

In normal canine testes, qualitative (Figure 10) and quantitative ultrasound elastogra-
phy revealed firm, uniform and not pliable organs.
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Figure 10. Representative elastogramme acquired with the qualitative strain elastography of canine
testis (B) compared with B-Mode ultrasonography (A). The colour scale differentiates the hard (blue)
and soft (red) area of the testis. The green bar in the centre of the image represents the adequateness
of the freehand compression applied by the operator.

Consistent with the findings in tomcats [179], shear velocity values were similar in
animals grouped by age, suggesting that age had a limited effect on testicular stiffness
(Figure 11) [167].

The reference values presented in this manuscript, however, should be interpreted
with caution due to the variability in the breeds and weights of the males recruited and the
absence of information about their reproductive function.
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due to the limited number of animals, ultrasound elastography shows promise as a tech-
nology for evaluating neoplastic lesions in canine testis. 

In a preliminary study on UEl in canine testicular assessment, abnormal testes were 
observed to be stiffer and more heterogeneous compared with normal testes, even though 
there was a great variability among the different testicular diseases, making it challenging 
to compare these conditions effectively [180]. 

8. Conclusions 
This review has examined the literature on the use of ultrasound-based technologies 

for the assessment of the canine testis. Conventional technologies, such as B-mode ultra-
sonography, have shown their effectiveness in andrological practice, but the lack of objec-
tivity limits the relevance in differentiating testicular disease. On the other hand, emerg-
ing technologies, such as CEUS and ultrasound elastography, have the potential to expand 
the armamentarium for the clinicians caring for canine andrological patients. Still, further 
studies and solid results are needed to establish their real roles and contributions to clin-
ical practice. 
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Figure 11. Representative elastogramme acquired with the quantitative shear-wave elastography
of canine testis (B) compared with B-Mode ultrasonography (A). The technology can quantify the
stiffness objectively.

7.3. Abnormal Findings

Limited information is currently available regarding the use of UEl in the assessment
of testicular disease in dogs. In a recent study, UEl was found to have the potential to differ-
entiate between non-neoplastic and neoplastic testicular lesions, with the latter exhibiting
greater stiffness [181]. Although the findings from this study were not conclusive due to
the limited number of animals, ultrasound elastography shows promise as a technology for
evaluating neoplastic lesions in canine testis.

In a preliminary study on UEl in canine testicular assessment, abnormal testes were
observed to be stiffer and more heterogeneous compared with normal testes, even though
there was a great variability among the different testicular diseases, making it challenging
to compare these conditions effectively [180].

8. Conclusions

This review has examined the literature on the use of ultrasound-based technologies for
the assessment of the canine testis. Conventional technologies, such as B-mode ultrasonogra-
phy, have shown their effectiveness in andrological practice, but the lack of objectivity limits
the relevance in differentiating testicular disease. On the other hand, emerging technologies,
such as CEUS and ultrasound elastography, have the potential to expand the armamentarium
for the clinicians caring for canine andrological patients. Still, further studies and solid results
are needed to establish their real roles and contributions to clinical practice.
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181. Glińska-Suchocka, K.; Jankowski, M.; Kubiak, K.; Spużak, J.; Dzimira, S. Sonoelastography in Differentiation of Benign and
Malignant Testicular Lesion in Dogs. Pol. J. Vet. Sci. 2014, 17, 487–491. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.20471/acc.2021.60.01.06
https://www.ncbi.nlm.nih.gov/pubmed/34588720
https://doi.org/10.1016/j.ultrasmedbio.2016.11.016
https://doi.org/10.1111/vru.12169
https://doi.org/10.1111/vru.12238
https://doi.org/10.1111/jsap.12323
https://www.ncbi.nlm.nih.gov/pubmed/25615284
https://doi.org/10.1590/1678-4162-12116
https://doi.org/10.1590/1678-4162-9131
https://doi.org/10.1111/vde.12954
https://www.ncbi.nlm.nih.gov/pubmed/33830557
https://doi.org/10.1111/vco.12803
https://doi.org/10.4142/jvs.22055
https://www.ncbi.nlm.nih.gov/pubmed/36174983
https://doi.org/10.24425/PJVS.2019.129305
https://doi.org/10.1016/j.anireprosci.2020.106289
https://doi.org/10.1016/j.anireprosci.2018.08.025
https://doi.org/10.1111/jsap.12256
https://doi.org/10.2478/pjvs-2013-0066
https://www.ncbi.nlm.nih.gov/pubmed/24195281
https://doi.org/10.3390/vetsci9090506
https://www.ncbi.nlm.nih.gov/pubmed/36136722
https://doi.org/10.1590/1678-4162-8284
https://doi.org/10.2478/pjvs-2014-0070

	Introduction 
	Testes Component Evaluation by Ultrasonography 
	Grey-Scale Ultrasonography 
	Technology and Applications 
	Examination Technique 
	Normal Findings 
	Abnormal Findings 
	Intratesticular Diseases 
	Extratesticular Diseases 


	Colour Doppler and Power Doppler 
	Technology and Applications 
	Normal Findings 
	Relationship between Spectral Doppler Measurement and Dog’s Semen Quality 
	Abnormal Findings 

	B-Flow 
	Contrast-Enhanced Ultrasonography (CEUS) 
	Technology and Applications 
	Normal Findings 
	Abnormal Findings 

	Ultrasound Elastography 
	Technology and Applications 
	Normal Findings 
	Abnormal Findings 

	Conclusions 
	References

