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Abstract: The lack of annotated semantic segmentation datasets for electrical substations in the
literature poses a significant problem for machine learning tasks; before training a model, a dataset is
needed. This paper presents a new dataset of electric substations with 1660 images annotated with
15 classes, including insulators, disconnect switches, transformers and other equipment commonly
found in substation environments. The images were captured using a combination of human, fixed
and AGV-mounted cameras at different times of the day, providing a diverse set of training and testing
data for algorithm development. In total, 50,705 annotations were created by a team of experienced
annotators, using a standardized process to ensure accuracy across the dataset. The resulting dataset
provides a valuable resource for researchers and practitioners working in the fields of substation
automation, substation monitoring and computer vision. Its availability has the potential to advance
the state of the art in this important area.

Dataset: https://zenodo.org/record/7884270.

Dataset License: CC-BY

Keywords: semantic segmentation; annotation; labeling; automated methods; substation automation;
machine learning; weak supervision; computer vision; artificial intelligence; image dataset

1. Summary

Currently, there are no publicly available annotated datasets for substation equipment.
For any method of supervised learning, a dataset of images with objects labeled in categories
is the first step before any machine learning model can be trained [1]. The motivation of
this work is to provide a foundation for further research and advancements in the fields
related to substation analysis and automation, filling an existing gap in the literature.
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With the increasing number of substations and the growing complexity of their equip-
ment, manual inspection and maintenance have become more challenging, time-consuming
and costly [2]. In recent years, advances in computer vision techniques and deep learning
algorithms have paved the way for automating the inspection process, since they offer the
robustness necessary to work with such complex environments [3]. Object detection and
segmentation are key components of this automation, as they enable the identification and
localization of objects of interest within an image or video. Such systems can play a vital role
in ensuring the smooth functioning of electrical grids and preventing potential equipment
failures that can result in power outages and safety hazards [4]. As the existing litera-
ture lacks comprehensive and well-annotated datasets specifically tailored to the unique
challenges and characteristics of electrical substations, works such as [5] (that focused on
semantic segmentation of electrical switches), [6] (that focused on semantic segmentation
of current transformers on thermograms) and [7] (that focused on semantic segmentation
of insulators) had to make their own datasets to train their segmentation models.

During the process of making our own dataset as a part of research related to automat-
ing substation inspections, we realized the challenging and time-consuming nature of the
task of collecting, annotating and curating a dataset. Semantic annotation is much harder
than a box-based object annotation; every region of interest (RoI) needs to be outlined by
a polygon that follows their shape as closely as possible, a task that takes approximately
15 times longer than standard box annotation [8]. While fully supervised methods achieve
state-of-the-art performance, the process of manually annotating each training image is
time-consuming and expensive [9,10]. This motivated us to share the dataset we created,
providing researchers and practitioners with a valuable resource for developing and testing
innovative algorithms and solutions. By addressing the shortage of annotated datasets in
this domain, our work aims to contribute to the advancement of substation automation,
monitoring and computer vision research, ultimately improving the efficiency, reliability
and safety of electrical power systems, as substations are responsible for safe and reliable
operation of the electrical network [11,12].

Furthermore, beyond its original purpose, this dataset serves as a fundamental build-
ing block for diverse applications and future research endeavors. It provides a solid
foundation for improving detection algorithms, achieving instance segmentation if paired
with an object detector, enabling real-time anomaly detection, advancing autonomous
inspection systems, facilitating object recognition under diverse conditions and exploring
potential applications in various domains. By fulfilling the fundamental requirement of
dataset acquisition, our work paves the way for a multitude of tasks and advancements in
the field.

The paper is organized as follows: Section 2 details the images, classes and file
structure of our dataset; Section 3.1 explains how the images were captured and Section 3.2
explains how the images were annotated; finally, Section 4 shows an example of a case
where our dataset is used to validate a weakly supervised semantic segmentation model
trained on substation reclosers.

2. Data Description

This dataset comprises a total of 1660 electric substation images, which have been
annotated with a total of 50,705 objects. There are images collected by humans using a
variety of cameras, images collected by AGV-mounted cameras and images collected by a
camera in a fixed location. Table 1 provides an overview of the distribution of the images
based on source. The unspecified smartphone and digital cameras collected by humans
on field are referred to as miscellaneous. The images in the dataset come in a variety of
resolutions, as shown in Table 2.
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Table 1. Dataset distribution based on source.

Source Camera Quantity

Human (Morning) Misc, T540 682
AGV (Morning and afternoon) A700 230
AGV (Night, light) A700 360
AGV (Night, no light) A700 348
Fixed (Morning and afternoon) A700 32
Fixed (Night, light) A700 8

Table 2. Resolutions and occurrences of the 1660 images in this dataset.

Resolution Occurrences

1280 × 960 887
2592 × 1944 268
2880 × 2160 266
4032 × 3024 98
4000 × 3000 36
640 × 480 31
4624 × 3468 28
2048 × 1536 27
704 × 480 10
1156 × 867 4
1280 × 720 2
2324 × 1440 1
4624 × 2604 1
4672 × 3504 1

There are 15 classes of substation equipment. Table 3 lists them, along with how many
times each object appears in the “Instances” column. An example of each object class is
presented in Figure 1.

Table 3. Object classes, number of instances in the dataset and their colors in RGB values used for the
.png segmentation masks.

Class Instances RGB Color

Background - (000, 000, 000)

Open blade disconnect switch 310 (162, 000, 255)

Closed blade disconnect switch 5243 (097, 016, 162)

Open tandem disconnect switch 1599 (081, 162, 000)

Closed tandem disconnect switch 966 (048, 097, 165)

Breaker 980 (121, 121, 121)

Fuse disconnect switch 355 (255, 097, 178)

Glass disc insulator 3185 (154, 032, 121)

Porcelain pin insulator 26,499 (255, 255, 125)

Muffle 1354 (162, 243, 162)

Lightning arrester 1976 (143, 211, 255)

Recloser 2331 (040, 000, 186)

Power transformer 768 (255, 182, 000)

Current transformer 2136 (138, 138, 000)

Potential transformer 654 (162, 048, 000)

Tripolar disconnect switch 2349 (162, 000, 096)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)
Figure 1. An example for each of the 15 classes present in the dataset. (a) Open blade disconnect
switch. (b) Closed blade disconnect switch. (c) Open tandem disconnect switch. (d) Closed tandem
disconnect switch. (e) Breaker. (f) Fuse disconnect switch. (g) Glass disc insulator. (h) Porcelain
pin insulator. (i) Muffle. (j) Lightning arrester. (k) Recloser. (l) Power transformer. (m) Current
transformer. (n) Potential transformer. (o) Tripolar disconnect switch.
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The semantic annotations of the images are available in two formats: VOC-style
polygonal JSON files and segmentation masks in .png images. The polygonal VOC-style
JSON format used in this dataset consists of a .json file with a dictionary that includes the
following fields:

• “version”: the LabelMe version that was used to annotate the associated image;
• “imagePath”: the path to the associated image file in the ”images“ directory;
• “imageHeight”: the height of the image associated with the .json file in pixels;
• “imageWidth”: the width of the image associated with the .json file in pixels;
• “flags”: either “Day”: “True“ or “Night”: “True“, to indicate daytime or nighttime

images;
• “imageData”: since the images are not embedded into the jsons, this entry is unused

in this dataset;
• “shapes”: a list with each polygon annotated in the image. Each one has these

attributes:
◦ “label”: one of the 15 class labels from Table 3 plus the Background class;
◦ “points”: a vector with coordinates in pixels for each point of the polygon, in

the format [[y1, x1], [y2, x2] . . . [yn, xn]], where yi, xi are the vertical and horizontal
coordinates, respectively;

◦ “group_id”: unused in this dataset;
◦ “shape_type”: all entries in our dataset list this as “polygon“;
◦ “flags”: unused in our dataset.

The .png masks were generated from the annotations present in the .json files. Table 3
lists the RGB color values used in the .png masks for each class in the “RGB” and “Color”
columns. Since annotations of the class “Porcelain pin insulator” often overlap with
disconnect switches, this class had its own .png masks generated apart from the other
14 classes, as shown in Figure 2.

(a) (b)

(c) (d)
Figure 2. Masks present in this dataset. The mask types for (a) are shown in (b–d). (a) Original image.
(b) 14-class mask. (c) Porcelain pin insulator mask. (d) 15-class mask.

The Python script used to generate masks from the .json files is also included with
this dataset, allowing the desired classes to be filtered. This dataset presents three different
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segmentation masks: 15-class masks where only porcelain pin insulators that were not part
of another object appear, 14-class masks that have all classes except porcelain pin insulators
and single-class masks that only contain porcelain pin insulators.

The script utilizes the provided .json files containing polygonal annotations to extract
the coordinates of each object. Those coordinates are then used as input to the OpenCV
fillPoly function, which fills the specified polygonal regions with the corresponding
class label color. It operates on a per-image basis, iterating through the .json files and
generating the masks for each image in the dataset. The pseudocode that describes this
script is described in Algorithm 1, with its associated variables shown in Table 4.

Table 4. Variables used in Algorithm 1.

Variable Description

image Current image in the dataset
image_name Name of the current image
shapes json field with multiple polygon objects
polygon Current polygon in the shapes field
RGB_value RGB color value associated with the polygon.label field
points Polygonal point coordinates from polygon.points field

Algorithm 1: Generate .png Masks from .json Annotations
Input : .json files containing polygonal annotations
Output : .png masks
foreach image in dataset do

Get the image_name;
Open image_name.json;
for each polygon in the shapes field do

Get the RGB_value from Table 3 associated with the label json field from
polygon;

Get the polygonal point coordinates from the points json field from
polygon;

Pass the RGB_value and the point coordinates points to the OpenCV
fillPoly function;

end
Save resulting mask file as image_name.png;

end

Dataset Organization

The structure of the directories and files present in this dataset is as follows:

• images: this directory contains the 1660 substation images;
• labels_json: this directory contains the .json files annotated in the VOC-style polygonal

JSON format, where each file shares the same filename as its respective image in the
images directory;

• 15_masks: this directory contains the .png segmentation masks for all classes. Each
file shares the same name as its counterpart in the images directory;

• 14_masks: this directory contains the .png segmentation masks for all classes except
porcelain pin insulator. Each file shares the same name as its counterpart in the images
directory;

• porcelain_masks: this directory contains the .png segmentation masks for the porcelain
pin insulator class. Each file shares the same name as its counterpart in the images
directory;

• classes.txt: a text file with the 15 classes plus background used with LabelMe;
• json2png.py: a Python script that can generate segmentation masks using the VOC-

style polygonal JSON annotations.
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3. Methods

The collection of this dataset was conducted as part of a research project aimed at
developing an automated monitoring system for infrared thermography. The dataset was
specifically curated based on its relevance to infrared thermography using stereo cameras
for thermal imaging. Due to limitations in the number of available thermal cameras, the
dataset consists exclusively of optical images, which can be captured using a wide range
of cameras. This deliberate choice ensures that the dataset encompasses a diverse set
of relevant images, despite the constraints on accessing thermal imaging equipment. It
is worth noting that our team conducted additional research, beyond the scope of this
paper, where the RoI information extracted from object detectors using models trained
with the optical images of our dataset was applied to segment corresponding objects in
their equivalent infrared images. Thus, the creation of this optical image dataset was
instrumental in enabling further investigations within our research project.

To ensure high-quality and relevant substation equipment pictures, a rigorous screen-
ing process was conducted. Expert technicians and electrical engineers with field experience
reviewed and filtered the images based on their suitability for equipment analysis. Their
expertise allowed them to assess the visual clarity, relevance and representativeness of
each image. By applying strict criteria during the screening, the dataset contained im-
ages that accurately represent the diverse range of substation equipment encountered in
real-world scenarios.

In addition to the initial screening, a second round of evaluation was conducted
during the annotation process to further enhance the quality and reliability of the dataset.
Dataset annotators carefully examined each image to identify objects of interest and provide
accurate annotations. To maintain the integrity of the dataset, objects that were not clearly
visible or had significant occlusion were excluded from annotation. Only objects with a
visible area occlusion of less than 60% were considered for annotation, ensuring that the
included objects were readily discernible. Moreover, annotators focused on annotating
objects with clear class identification, avoiding ambiguity and enabling efficient utilization
of the dataset for subsequent analysis and modeling tasks. The combination of expert-
driven screening and rigorous annotation evaluation guaranteed the overall quality and
reliability of the dataset, providing researchers and practitioners with a valuable resource
for substation equipment analysis and related tasks.

3.1. Data Acquisition

The images in this dataset were captured from a single electrical distribution substation
in Brazil over a period of two years, at different times of day and under varying weather
and seasonal conditions, ensuring a diverse range of lighting conditions for the depicted
objects. All the images underwent a curation process by experts in Electrical Engineering
to ensure that the angles and distances depicted in the images were suitable for automating
inspections in a substation.

According to the provided information from the electrical company overseeing the
substation, the energy consumption profile exhibits a consistent pattern throughout the year.
The profile shows a global minimum at 6h00, a local maximum at 13h00, a local minimum
at 17h00 and a global maximum at 20h00, with slight amplitude variations. Based on this
insight, a collection schedule was devised for automated inspections, encompassing time
slots at 8h00, 13h00, 17h00 and 20h00. Human-led collections were conducted exclusively
during the morning period to align with the availability of on-field company technicians
assisting our researchers.

The human-collected images were captured by various individuals using different
camera models, including smartphone cameras, unspecified digital cameras and the FLIR
T540, as shown in Figure 3. There was no standardization in terms of camera angles or
distances, although the maximum distance for image capture was limited to 30 m. Those
images were taken during the morning period, with the time of capture ranging from 8h00
to 12h00.
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Figure 3. A technician capturing images using the FLIR T540 camera.

The Autonomous Ground Vehicle (AGV) shown in Figure 4 used the FLIR A700 camera
to collect the majority of the images in this dataset. This AGV followed a predetermined
path through 60 possible scenes, capturing images at fixed angles and distances ranging
from 3 to 5 m. Those collections were conducted three times per day, with the specific
times being in the morning (between 8h00 and 10h00), in the afternoon (between 13h00
and 17h00) and at night (between 20h00 and 21h00).

Figure 4. A photo of our AGV equipped with the FLIR A700 (marked with the red box) and the FLIR
A310 (the white one, with two separate lenses) cameras in a substation floor. The A310 was not used
to take any photos for this dataset, but was used for pan-tilt purposes for other mounted cameras.

The FLIR A700 camera fixed in the substation, shown in Figure 5, collected photos also
three times per day: in the morning (between 6h00 and 11h00), in the afternoon (between
13h00 and 18h00) and at night (between 21h00 and 00h00).

(a) (b)
Figure 5. Photos of the A700 fixed in the substation. The camera is encircled in red in both subimages.
(a) Front view of the A700. (b) Back view of the A700 showing objects in its field of view.
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3.2. Dataset Annotation

We annotated the semantic dataset using the software LabelMe [13], as shown in
Figure 6. The annotation process took approximately 1100 man-hours over the course of
4 months by 9 people.

(a) (b)
Figure 6. Examples of manual annotation for semantic segmentation using LabelMe. The colors used
by LabelMe have no relation to the colors used in the masks from Table 3. (a) Insulators (red) and
breakers (green). (b) A recloser (purple).

Most objects of interest had been previously labeled using box annotations if at least
40% of them were visible, which was used as the starting point for the semantic annotation.
However, since the goal of semantic annotation is assigning a class to every pixel in an
image, all identifiable objects were annotated following the same rules as long as there was
no ambiguity in their class, even if they lacked box guidelines.

4. User Notes

The dataset presented in this data descriptor adheres to the FAIR principles, which
encompass Findability, Accessibility, Interoperability and Reusability [14]:

• Findability: The dataset is easily discoverable, as it is assigned unique and persistent
identifiers in the form of DOIs (Digital Object Identifiers);

• Accessibility: The dataset is readily accessible through Zenodo, an open-access repos-
itory that provides users with the ability to access and download the data without
restrictions;

• Interoperability: The dataset is designed to promote interoperability with various
tools and platforms. The images are provided in common formats such as .jpg, .tif and
.png, while the annotations are provided in .json and .png;

• Reusability: The dataset is designed for reuse and ease of use. It includes documenta-
tion that facilitates understanding and utilization of the data, with all code used for its
generation and the enclosed use case example publicly available. Additionally, it is
licensed under a Creative Commons Attribution 4.0 International License, enabling
users to freely utilize, distribute and build upon the dataset, as long as appropriate
credit is given. Moreover, an accompanying Python script is provided to allow users
to freely choose which classes they want from the .json files to generate .png masks to
fit their needs.

This dataset was originally assembled to be used as the test set to validate weakly
supervised models that we are currently studying. What we present here is a use case
example of how it can be used in the context of substation automation, where the ground
truths are used to validate the performance of a DeepLabV3+ [15] model trained for
semantic segmentation on substation reclosers, 1 of the 15 classes in this dataset.
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4.1. Weakly Supervised Semantic Segmentation

We adapted the weak supervision technique proposed in the paper “Simple Does It:
Weakly supervised instance and semantic segmentation” [16].

Box annotations previously made to train an object detector serve as the starting point
for a recursive process over multiple generations that tries to converge boxes into something
closer to the real RoI of the objects. The recursive procedure for an SDI generation consists
of the following steps:

1. Train DeepLabV3+ for 200 epochs using automatically generated mask annotations as
the training set (automatically generated annotations for the first generation; output
from the previous generation of training for the following generations) and manually
annotated ground truths as the validation test;

2. Run the DeepLabV3+ detector on the images of the training set with the weights from
the training from the previous step, generating new mask annotations;

3. Post-process the masks to fine-tune the output and also to prevent them from shrinking
too much.

For the automatic mask generation, we tried three techniques inspired by those de-
scribed in the SDI paper, namely, box, boxi and GrabCut:

• Box: Shown in Figure 7b. The ground truth boxes are simply drawn as they come for
the first generation;

• Boxi: Shown in Figure 7c, only 20% of the object’s ground truth boxes are filled with
that class’s color, with the remainder being filled with the ignore color, being neither
background nor object;

• GrabCut: Shown in Figure 7d, the GrabCut algorithm [17] is applied using masks of
all objects of a given class as input. We used the Boxi masks instead of Box masks,
considering the innermost 20% as definitely foreground and the remainder of the box
as likely background.

(a) (b)

(c) (d)
Figure 7. Segmentation masks for object detection: (a) shows the original box annotations, (b–d) show
the results of applying different mask generation techniques to the original annotations. (a) Original
box annotations. (b) Box mask. (c) Boxi mask. (d) GrabCut mask.

For post-processing, the segmentation mask annotations are subjected to a denseCRF
algorithm [18] for refinement. To prevent the masks from shrinking excessively, they are
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compared to the area of the original box annotation. If the IoU of a given object mask has
reduced beyond a certain threshold in relation to the box area for that same object, that
object’s segmentation is returned to the previous generation’s state. The original SDI study
employed a shrinkage threshold of 50%; however, this value was found to be suboptimal
for the segmentation of objects that either fill a significant portion of their bounding boxes,
or occupy a much smaller area than their bounding boxes. Table 5 shows the thresholds
we observed to give best results visually for each class in our dataset. However, the only
relevant information for the recloser model is that 50% still works well for it.

Table 5. Cut-off IoU thresholds to reset a mask to a previous state.

Class Area Threshold

Disconnect switches <25%
Power transformer <80%
Other classes <50%

4.2. Evaluation Metric

The Intersection over Union (IoU) is a commonly used evaluation metric for image
segmentation tasks. It measures the similarity between the predicted segmentation mask
and the ground truth mask by calculating the ratio of the intersection between these two
masks to their union. The IoU for each class is computed separately and then averaged
across all classes to generate the mIoU (mean Intersection over Union). This allows for a
more fine-grained evaluation of the segmentation performance, as it considers the different
sizes and shapes of objects within the image.

In our single-class semantic segmentation problem, we only needed to classify pixels
belonging to the class of reclosers; however, the background is treated as a separate class in
segmentation problems, even if there is only one target class. Since using mean IoU with
the background class results in a high IoU score, it does not reflect the true performance of
the model on our target class. By using only class IoU, we can focus solely on how well
the model identifies reclosers in the image, providing us with a clear and interpretable
evaluation metric.

4.3. Technical Results

As this dataset was mainly intended for testing and validation, we split it into three
sets in a 20:40:40 ratio for augmenting training, validation and testing sets, respectively.
Table 6 shows the image and ground truth totals that had reclosers from the 15-class dataset.

Table 6. Splitting of recloser dataset into training, validation and testing.

Subset All Images Recloser Images Recloser Instances

Total 1660 861 2331
Train 331 174 486
Validation 663 326 879
Test 664 361 966

To evaluate the performance of the automatic segmentation techniques employed (box,
boxi and GrabCut), we trained six generations of SDI, followed by two models that mixed
automatic generated masks with some ground truth images from Table 6. Table 7 shows
the numbers of images and boxes present in the three training sets used. The segmentation
masks from the fully generated dataset were made from box annotations.
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Table 7. Training set splits.

Dataset Images Recloser Instances

Fully generated dataset 2363 3589
Mixed dataset 2694 4075
Bigger mixed dataset 3369 4750

4.4. Box Method Models

In Figure 8, the performance of each SDI model is shown. The SDI generations are
named generation 0 up to generation 5, where generation 0 used the masks generated
by each technique, whereas generations 1 up to 5 used the results of predictions of the
DeepLabV3+ models from the previous generation for training. The last training is what
we expected to effectively use as the object detector, but the results show that a later SDI
generation does not necessarily yield the best class IoU.

Figure 8. Evolution of recloser IoU for the Box, Boxi and GrabCut methods evaluated using the test
set. The best and worst IoU scores for each method are shown with arrows.

Box showed gradual improvements through every generation, even scoring the highest
recloser IoU by generation 5, when compared to more elaborate methods.

Boxi had the worst Generation 0, indicating that this technique is ill-suited for the
general format of reclosers, since the innermost center may sometimes not even be part
of the object class, as shown in the example from Figure 9. However, post-processing
greatly improved the results starting from Generation 1, surpassing the Box method on all
generations until the last, where it performed worse than Box.

GrabCut obtained the highest IoU score in generation 1, implying that it required only
one detection round and post-processing to attain optimal performance. Despite a steady
decline in the IoU score over the subsequent generations, GrabCut outperformed both Box
and Boxi in all rounds until generation 4, where its performance level matched the other
two methods.

Based on our experimental results, it appears that, by the fifth generation of SDI, all
three techniques achieved similar results. This can be attributed to the post-processing
step involving the use of denseCRF on the detection masks between each generation.
However, this approach may not be ideal for the GrabCut method, which performed well
in generating visually impressive automatic segmentation even without post-processing, at
least for this class. It is also worth noting that our use of DeepLabV3+ may have contributed
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to the observed similarity in performance between the three methods, since the original
SDI paper used DeepLabV1 [16].

Figure 9. Example of how Boxi is ill-suited for the recloser object class, with the ground truth
outlining the object in purple. In this case, of the 20% innermost portion of the white box that should
identify the object class, 42% of the total area is actually background, represented here in red.

4.5. Final Model Performance

For the final model, we mixed some ground truth masks from the dataset with the
segmentation masks generated by the fifth generation of SDI. Specifically, we used the
weights file generated by the fifth generation of GrabCut SDI, which had scored the highest
using the validation dataset (recloser IoU of 0.43), to generate segmentation masks using
the output from the DeepLabV3+ detector and mixed them with the 331 ground truth
images to train two models: one augmented with 2363 images (called mixed dataset) and
the other with 3038 images (called bigger mixed dataset). The results are presented in
Table 8.

Table 8. Performance of the models augmented with weak supervision.

Dataset Images Recloser Boxes Recloser IoU

Mixed dataset 2694 4075 0.617
Bigger mixed dataset 3369 4750 0.629

Mixing the box annotations of what was originally the training set for an object detector
with the ground truth masks resulted in an IoU score of 0.617. By incorporating additional
images generated from the box annotations for the validation set of that object detector to
the mixed dataset, we were able to achieve a score of 0.629. This suggests that the inclusion
of more synthetic images enhances performance, although ground truth images remain the
optimal means of attaining convergence in results. Figure 10 shows examples of predictions
made with this model.

(a) (b) (c) (d)

Figure 10. Cont.
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(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 10. Comparison between predictions from the bigger mixed dataset model and their respective
ground truths. (a) Prediction overlay. (b) Groundtruth for (a). (c) Prediction overlay. (d) Groundtruth
for (c). (e) Prediction overlay. (f) Groundtruth for (e). (g) Prediction overlay. (h) Groundtruth for (g).
(i) Prediction overlay. (j) Groundtruth for (i). (k) Prediction overlay. (l) Groundtruth for (k).

5. Conclusions

In this work, we presented a new ground truth segmentation dataset for substations,
consisting of 15 object classes commonly found in them. The dataset was carefully anno-
tated and curated by domain experts to ensure its accuracy and relevance for automating
inspections and maintenance tasks. We believe that this dataset will be a valuable resource
for researchers and practitioners in the field, enabling the development and evaluation of
new computer vision algorithms for substation monitoring and management. Furthermore,
beyond its original purpose, this dataset serves as a fundamental building block for di-
verse applications and future research endeavors, such as instance segmentation, real-time
anomaly detection, facilitating object recognition under diverse conditions and exploring
potential applications in other domains.

To demonstrate the utility of the dataset, we also presented a technical validation
study in which we validated a weakly supervised model made to detect a specific type of
substation equipment, the recloser. This study showed that this dataset serves the intended
purpose of testing and validation of segmentation models related to substations. By using
a small amount of labeled data from our dataset to augment automatic segmentation, we
show that this dataset can also be used to train models.

In order to facilitate further exploration and replication of our research, we have made
the code for training the DeepLabV3+ model [19] on our custom dataset, as well as the
scripts utilized in implementing the SDI method [20], openly accessible on GitHub. Those
resources serve as Supplementary Material for individuals interested in exploring our work
further or seeking to apply similar approaches in other domains.

In conclusion, we believe that our ground truth segmentation dataset for substations
represents a valuable contribution to the field of computer vision for power systems. By
providing a standardized and high-quality dataset that can serve as a benchmark for future
comparative studies, allowing researchers to assess the performance of their algorithms,
we hope to foster further research and development in this area, ultimately leading to more
efficient and reliable management of the electrical power grid.
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Supplementary Materials: The scripts used in the technical validation of this dataset to implement
the iterative steps of SDI and to generate segmentation masks from box annotations can be found at
https://github.com/andreas-apg/simple-does-it-utils (accessed on 23 April 2023). The DeepLabV3+
implementation used with this dataset is available at https://github.com/andreas-apg/deeplabv3
-custom-dataset (accessed on 24 April 2023).
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