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Abstract: Remote sensing data play a crucial role in precision agriculture and natural resource
monitoring. The use of unmanned aerial vehicles (UAVs) can provide solutions to challenges faced
by farmers and natural resource managers due to its high spatial resolution and flexibility compared
to satellite remote sensing. This paper presents UAV and spectral datasets collected from different
provinces in South Africa, covering different crops at the farm level as well as natural resources.
UAV datasets consist of five multispectral bands corrected for atmospheric effects using the PIX4D
mapper software to produce surface reflectance images. The spectral datasets are filtered using a
Savitzky–Golay filter, corrected for Multiplicative Scatter Correction (MSC). The first and second
derivatives and the Continuous Wavelet Transform (CWT) spectra are also calculated. These datasets
can provide baseline information for developing solutions for precision agriculture and natural
resource challenges. For example, UAV and spectral data of different crop fields captured at spatial
and temporal resolutions can contribute towards calibrating satellite images, thus improving the
accuracy of the derived satellite products.

Dataset: Available on request to munghemezuluc@arc.agric.za. The ARC (Agricultural Research
Council) is in the process of developing an interface that will allow users to have access to the data
directly from our server in line with our policies on data sharing. Therefore, in the meantime, users
can request the data.

Dataset License: CC BY-NC 4.0

Keywords: unmanned aerial vehicles; spectral data; precision agriculture; high-resolution imagery

1. Summary

Remote sensing datasets have been widely used in agriculture [1–3] and natural
resource management [4] applications. Most publicly available datasets are of a coarse-to-
medium spatial resolution; examples of these are Landsat-9 [5], Sentinel-1, and Sentinel-2 [6]
datasets. Consequently, coarse-resolution imageries are unable to resolve fine-scale land
features which reduces the reliability of satellite-derived products for natural resource in-
terventions [7]. Apart from resolution issues, freely available satellite products are available
on fixed temporal resolutions [8] which might not be ideal for immediate decision making.
Higher-resolution imagery is available from commercial companies such as PlanetScope.
However, these datasets can be very expensive. With the development of unmanned aerial
vehicles (UAVs) in recent years, it is now relatively affordable to use UAVs for applications
such as precision agriculture and natural resource management with ultra-high spatial
resolution at the centimeter level. The application of UAVs in mapping natural resources
offers flexibility in data acquisition within a flexible user-demand time frame provided the
conditions are permissible [9].
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Applications of UAVs in natural resource management are the focus of this paper.
However, UAVs have proven to be useful in other fields besides agriculture. UAVs enable
the collection of valuable data for environmental research, such as monitoring wildlife
populations [10], assessing ecosystem health [11], mapping vegetation [12], and tracking
changes in land use [13]. They play a crucial role in disaster management by assisting
in search and rescue operations, assessing damage after natural disasters, and delivering
emergency supplies to affected areas [14]. UAVs equipped with advanced sensors and
Global Positioning System (GPS) technology can quickly and accurately map terrain,
create topographic surveys, and gather geographical data for urban planning, mining, and
land management [15].

The advantages of UAVs are that they provide a relatively affordable solution for data
collection compared to traditional methods involving satellites, manned aircraft, or ground-
based surveys. UAVs can be deployed and maneuvered easily in various environments,
offering flexibility in monitoring different terrain or locations. High-resolution cameras
and advanced sensors onboard UAVs allow for precise data collection, resulting in accurate
mapping, monitoring, and analysis. Despite these advantages, UAVs have limitations;
flight time is limited by battery constraints, necessitating careful planning and potentially
multiple flights for comprehensive monitoring. Adverse weather conditions such as strong
winds, rain, or fog can impede drone operations and affect data quality. Managing and
processing large volumes of data collected by UAVs may require specialized software,
skilled personnel, and computational resources. Most farmers have no access to UAV sys-
tems. This is due to a lack of resources and high levels of governmental regulation. Several
Agricultural Research Council-Natural Resources and Engineering (ARC-NRE) projects in
South Africa have introduced the technology to support smallholders and emerging farm-
ers. Such initiatives ensure knowledge transfer and provide access to digital information
to improve crop production. The ARC-NRE aims at identifying problems hindering the
productivity of smallholders and emerging farmers. Different projects focusing on soil as-
sessments, water resource investigations, nutritional status, and disease identification using
geospatial technologies are constantly being carried out. The availability of high-resolution
data allows crop scientists and researchers to understand crop–soil–water variabilities from
a plant level to a field scale in detail as opposed to the use of publicly available satellite
information. High-resolution information is necessary for model development, calibration,
and validation at different scales emerging from local scales.

The aim of this paper is to describe the UAV and spectral datasets collected from vari-
ous projects at the ARC-NRE. The datasets have been collected over a number of years from
different funded projects across South Africa (Figure 1, Table 1). Most study locations are
within farming areas, covering different crops such as maize, wheat, and barely. A standard
data processing procedure was followed to pre-process and generate surface reflectance im-
ages from the UAV system by using Pix4D mapper software version 4.8.4 [16]. The software
has been widely used by researchers to pre-process UAV images, for example, Su et al. [17];
Dimyati et al. [18]; Song et al. [19]; and Chaudhry et al. [20]. An Analytical Spectral Device
(ASD) Fieldspec spectroradiometer instrument was also used to collect spectral reflectance
data of different crops in fields. Clevers et al. [21] and Torres-Madronero et al. [22] used a
similar instrument to estimate canopy water content and to build a spectral library of maize
crops under different nitrogen treatments. Elmer et al. [23] developed a MATLAB-based
tool to process the spectral datasets. More information on the ASD Fieldspec spectro-
radiometer instrument can be found in work by Milton [24], Elmer et al. [23], and the
references therein. The datasets can be used to validate and calibrate satellite products and
machine learning algorithms to map crop–soil–water conditions at the satellite level, thus
improving the accuracy of relevant models.
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Figure 1. Map illustrating distribution of surveys in different provinces. 
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Figure 1. Map illustrating distribution of surveys in different provinces.

Table 1. Summary of the datasets by province and municipality. The Project column describes the
purpose of the data collected; the Temporal resolution column indicates how often data were collected
during specific months; the Spatial Resolution column indicates the pixel size; and the Spectral Data
column indicates whether spectral radiometer data are available.

Province Municipality Project Temporal Resolution Spatial
Resolution Spectral Data

Northern Cape Frances Baard Barley
evapotranspiration Monthly, August–October 2020 2–8 cm Yes

Free State Thabo Mofutsanyana Erosion modelling Yearly, August 2021 & August 2022 2 cm Yes

Limpopo Vhembe/Mopani Crop disease Monthly, 2021–2022 2–8 cm Yes

Limpopo Vhembe Crop disease Monthly, January–March 2021 &
January–February 2023 2–8 cm Yes

Limpopo Vhembe Soil Moisture Monthly, January–March 2022 2–8 cm Yes

Limpopo Vhembe Crop estimate Daily, March-2020 2–8 cm No

Limpopo Vhembe 4IR in farming Monthly, August–November 2022 2–8 cm Yes

Eastern Cape Chris-Hani Crop estimate Daily, February 2022 2–8 cm No

Eastern cape OR-Thambo Bush Encroachment Monthly, October–December 2022 &
March 2023 2–8 cm Yes

Eastern cape Amathole Bush Encroachment Monthly, October–December 2022 &
March 2023 2–8 cm Yes

Free State Thabo Mofutsanyana 4IR in farming Monthly, July–October 2021 2–8 cm Yes

Gauteng Tshwane Municipality 4IR in farming Monthly, February–May 2022 2–8 cm Yes

2. Data Description

The datasets consist of UAV ultra-high spatial resolution images and spectra collected
at different locations in South Africa. The UAV surface reflectance images are stored
as raster Tag Image File Format (TIFF). The images were projected to EPSG:32736-WGS
84/UTM zone 36S. The datasets contain blue, green, red, near-infrared, and red-Edge
bands at the specified bandwidths (Table 2). The spectral data are stored in table format,
where the columns indicate the spectra of samples and the rows consist of sample spectra
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from 340 nm to 2150 nm. For comparison purposes, Table 2 also lists band properties
of Sentinel-2 datasets. Not all the bands are centered at the common wavelengths and
Sentinel-2 has a much narrower bandwidth compared to the RedEdge-MX sensor used in
this study.

Table 2. Comparison of band properties of the RedEdge-MX sensor and Sentinel-2 multispec-
tral imagery.

RedEdge-MX Sensor Sentinel-2

Band Name Center Wavelength (nm) Bandwidth (nm) Center Wavelength (nm) Bandwidth (nm)

Blue 475 20 490 10

Green 560 20 560 10

Red 668 10 665 10

Near Infrared 840 40 842 10

Red-Edge 717 10 705 20

3. Methods
3.1. Unmanned Aerial Vehicle (UAV)
3.1.1. Data Collection

The UAV multi-rotor DJI-Matrice 600 (Figure 2) was used to collect near-ground-based
imagery for different crops and natural resources. The altitude was varied from 50 m to
100 m, resulting in 2 cm to 8 cm spatial resolution imagery. A five-band sensor was used to
capture imagery (Table 1).
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Figure 2. Multi-rotor DJI-Matrice 600 and the MicaSense RedEdge-MX sensor used in the study.
“Light and directional sensor” refers to the Downwelling Light Sensor (DLS).

3.1.2. Pre-Processing

The sensor has bands comparable to those of publicly available satellite data such as
Sentinel-2 data. The UAV images are radiometrically corrected by using the Calibration
Reflectance Panel (CRP) and the sensor measurements of irradiance from the Downwelling
Light Sensor (DLS). The CRP contains unique laboratory-calibrated reflectance values that
are used together with DLS data to generate surface reflectance. Within PIX4D mapper
software [16], the following factors are taken into account: the sensor black level, the
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sensitivity of the sensor, sensor gain and exposure settings, and lens vignette effects to
generate atmospherically corrected surface reflectance images. The values of the surface
reflectance range from 0 to 1.

3.1.3. Example of Results

Figure 3 compares a Sentinel-2 image to the UAV image of a wheat farm in Free State
Province. The Sentinel image has a 10 m spatial resolution, while the UAV image has a
2 cm spatial resolution. The advantage of the Sentinel-2 data is that it has more spectral
information (Figure 2) and high temporal resolution, which is fixed at about 6 to 10 days.
The images can be affected by clouds. The UAV platform is more flexible, it is less affected
by clouds and images can be acquired at any time as required by the farmer. Sentinel-2
A + B satellites belong to the European Space Agency [6] and the data are provided free to
the public.
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Figure 3. Comparison of Sentinel-2 imagery at 10 m spatial resolution (13 September 2021) and UAV
imagery at 2 cm spatial resolution (10 September 2021). The yellow and red squares indicate the
position of the zoomed inserts that are displayed on the right-side from top to bottom respectively.

Figure 4 compares the Normalized Difference Vegetation Index (NDVI), which is
commonly used to assess crop health status [25,26]. It is computed using Equation (1) [27]:

NDVI =
NIR− RED
NIR + RED

, (1)

where NIR refers to the near-infrared band and RED refers to the red bands (see Table 2). The
NDVI values range from −1 to 1, a classification scheme adapted from Mangewa et al. [28].
It is clear from the UAV imagery that more detailed information can be extracted, and
cropconditions can be assessed more accurately. The differences in surface reflectance
values or derived NDVI values may be due to the Sentinel-2 surface reflectance values
derived using Sen2Cor software version 2.9 [29], while UAV imaging used Pix4D software.
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3.2. Spectroradiometer Data
3.2.1. Data Collection

An ASD Fieldspec spectroradiometer (Malvern Panalytical Ltd., Malvern, UK) was
used to collect field spectra across the 400 to 1000 nm wavelength range at a spectral
resolution of 3 nm. Spectral reflectance measurements represent the amount of energy that
is reflected by the surface at specific wavelengths [30]. Generally, the field measurement
procedure involves (1) calibrating the instrument using the flux reflected from the reference
surface (e.g., Spectralon panel) and (2) measuring the flux from the subject (e.g., wheat
crop) [31]. A repetition rate was set to five measurements per point to improve the signal-
to-noise ratio. Measurements were geo-located with a Global Positioning System (GPS)
device connected to the ASD instrument.

3.2.2. Pre-Processing

The raw spectral data were processed to reflectance using the ViewSpecTM Pro 4.02 soft-
ware provided by the Malvern Panalytical Ltd., Malvern, UK company. The reflectance
data were passed through a Savitzky–Golay filter based on a simplified least-squares
convolution method [32]. This method can remove measurements that are affected by
random noise, clouds, or poor atmospheric conditions [33]. Equation (2) describes the
Savitzky–Golay filter algorithm. Y∗j represents filtered values, Ci is the coefficient of the
i-th spectral value filter, Yj+i represents the original spectrum values, and N is the number
of convoluting integers equal to the smoothing window size (2m + 1).
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Y∗j =

i=m
∑

i=−m
CiYj+i

N
. (2)

The smoothed reflectance data were corrected using Multiplicative Scatter Correction
(MSC) according to Martens et al. [34], Isaksson and Næs [35], and Geladi et al. [36].
MSC removes additive and/or multiplicative effects on the spectral reflectance data. This
method can compensate for differences in the baseline and trend and relatively maintains
the original shape of the spectra, making it easy to interpret the transformed data [37]. Each
individual spectrum is regressed on the set-mean-spectrum Lm and the linear regression
coefficients are estimated according to Equation (3):

Li = ai + biLm + ei, (3)

where ai is the intercept estimating the proportional additive effects and the slope bi
estimates the multiplicative effects or rotation away from the line of unity. The errors ei are
attributed to chemical information [38]. Finally, MSC is corrected according to Equation (4):

Mi = (Li − ai)/bi. (4)

The first derivative Dλ+∆λ/2 can be calculated using Equation (5) by taking the differ-
ence in reflectance between two closely spaced wavelengths ∆λ. The second derivative Dλ

as defined in Equation (6) can be derived from Equation (5):

Dλ+∆λ/2 =
Aλ+∆λ/2 − Aλ

∆λ
, (5)

Dλ =
Aλ−∆λ/2 − 2Aλ + Aλ+∆λ/2

∆λ2 . (6)

For a given spectrum f (λ), the Continuous Wavelet Transform (CWT) can be com-
puted using Equation (7) [39]:

W f (a, b) =
1√
a

+∞∫
−∞

f (λ)ψ
(

λ− b
a

)
dλ, (7)

where λ is the wavelength, (λ)ψ is a mother wavelet, a is the scaling factor, and b is the
shifting factor. To identify the characteristic wavelengths, the first derivative, second
derivative, and CWT of the MSC-corrected reflectance curves can be used. All these
methods have been used in the past to extract or characterize spectral reflectance. The
CWT method is thought to reduce noise and enhance spectral features [40]. Xu et al. [41]
noted an improvement in the classification of mangrove species when applying CWT to
hyperspectral data.

3.2.3. Example of Results

Figures 5–10 illustrate examples of wheat spectra, with different models applied to
the datasets as described above. Such datasets can complement satellite or UAV data
at the farm level for the purposes of understanding the variability of nutrients such as
nitrogen, chlorophyll, crop stress, and water content. Table 1 describes the availability of
spectral data for different projects. Detailed hyperspectral applications are provided by
Thenkabail et al. [42] for further reference.
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3.2.4. Scientific Importance and Use of UAVs for Precision Agriculture and Natural Resources

The database generated provides a rich dataset for satellite sensor calibration and a
reference for the next generation of satellite sensors. South Africa is a developing country
with huge potential in space science. The next generation of satellites developed by
institutions such as the South African Space Agency (SANSA), Cape Peninsula University
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of Technology, and associated institutions will rely on ground-based validation datasets to
design and calibrate appropriate sensors that directly/indirectly measure crop stress, water,
nutrients, disease, etc. UAVs and spectral field data of different crops captured at spatial
and temporal resolutions can contribute towards the next generation of sensors. UAV data
have been shown to possess useful applications in precision agriculture. Examples of these
include applications of UAVs for sugarcane crops [43], as well as precision agriculture
applications [43–45] and their associated challenges [46].

Different spectral libraries of different material exist. Examples include a soil spec-
tral library [47]; an integrated open mineral spectral library developed by Xie et al. [48]
(Rock Spectral Library, RockSL); the wetlands spectral library [49,50]; the ECOSTRESS
spectral library [51]; and a maize spectral library under nitrogen deficiency developed
by Torres-Madronero et al. [22], to name a few. Most of these efforts have focused on
measuring spectral signatures of different materials based on single measurements, i.e.,
most spectral libraries lack temporal measurement components. For applications such as
those concerning minerals and rocks, a multi-temporal spectral library is not necessarily
needed. However, for vegetation and crops, it is necessary as the spectra can be influ-
enced by growth stage and biochemical properties (moisture content, chlorophyll, nitrogen,
sugar) [52–54]. Therefore, the spectral datasets provided offer an opportunity to evaluate
crops at different crop stages.

3.2.5. Challenges in Developing UAV and Spectral Databases in South Africa

The main challenge is the funding required to have multiple UAV systems that can
cater for the demands of the agricultural sector, Department of Environmental Affairs, and
research institutions. The government of South Africa has placed high regulations around
the use of UAV systems, especially for commercial purposes, and such regulations have
tended to slow down the uptake of this technology. Training of pilots and funding for
fieldwork also makes it difficult to consistently collect UAV imagery and spectral data.
UAV systems have limited flight time and require regular maintenance. This makes it
impossible to cover large areas during surveys. A web-based data repository should be
implemented by the ARC-NRE to enable easy access of UAV imagery. This should be done
in line with institutional policy on data sharing.

3.2.6. Data Availability

Datasets are available on request:

ARC-Natural Resources and Engineering
Tel.: +27-(0)12-310-2500
Fax: +27-(0)12-323-1157
E-mail: munghemezuluc@arc.agric.za
Physical address: 600 Belvedere Street, Arcadia, Pretoria, South Africa
Postal address: Private Bag X79, Pretoria, 0001
GPS coordinates: 25◦44′19.4′′ S, 28◦12′26.4′′ E

4. Conclusions and Recommendations

This paper presented UAV and spectral datasets collected from different projects
performed by the ARC-NRE. The projects cover different provinces within South Africa.
The datasets are collected from farm areas and some of the datasets concern natural
resources. The data can be used to benefit wider scientific communities and encourage
collaboration. The UAV data collected by the ARC-NRE for various natural resources
form a basis for long-term monitoring and detecting changes in natural resources. By
comparing UAV images collected at different time points, researchers can quantify the
rate and extent of these changes, identify hotspots, and support conservation and land
management efforts. UAVs capture detailed imagery that helps in assessing vegetation
health, biomass estimation, and species composition as demonstrated by the vegetation
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indices generated in this paper. These data aid in crop monitoring, weed detection, and
improving farm management.

There is a greater need to use the data to support smallholders and emerging farmers
across South Africa. However, the cost of data acquisition needs to be reduced by allocating
more funding to similar projects. A central database should be developed to encourage
data sharing.
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