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Abstract: The aquatic environment faces increasing threats from a variety of unregulated organic
chemicals originating from human activities, collectively known as chemicals of emerging concern
(CECs). These include pharmaceuticals, personal-care products, pesticides, surfactants, industrial
chemicals, and their transformation products. CECs enter aquatic environments through various
sources, including effluents from wastewater treatment plants, industrial facilities, runoff from
agricultural and residential areas, as well as accidental spills. Data on the occurrence of CECs in the
marine environment are scarce, and more information is needed to assess the chemical and ecological
status of water bodies, and to prioritize toxic chemicals for further studies or risk assessment. In
this study, we describe a monitoring campaign targeting CECs in surface waters at the Swedish
west coast using, for the first time, an on-site large volume solid phase extraction (LVSPE) device.
We detected up to 80 and 227 CECs in marine sites and the wastewater treatment plant (WWTP)
effluent, respectively. The dataset will contribute to defining pollution fingerprints and assessing the
chemical status of marine and freshwater systems affected by industrial hubs, agricultural areas, and
the discharge of urban wastewater.

Dataset: 10.5281/zenodo.7845557

Dataset License: CC-BY-NC-SA 4.0
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1. Summary

Streams, rivers, and coastal areas are characterized by the occurrence of mixtures of
hundreds of organic chemicals occurring at low concentrations [1]. These mixtures consist
of a wide variety of unregulated organic chemicals, including pharmaceuticals and personal-
care products (PPCPs), pesticides, surfactants, industrial chemicals, and transformation
products, referred to as chemicals of emerging concern (CECs) and originating from human
activity [2]. At environmental concentrations, CECs are known to have deleterious effects
on aquatic life, ranging from microbes [3] to higher vertebrates [4] and from genes to the
landscape genetics of non-target organisms [5].

CECs enter streams, rivers, and coastal areas due to discharges from wastewater
treatment plants (WWTPs) [6], individual drains, industrial facilities [7], run-off from
agricultural and residential areas, and accidental spills [8]. Once in the aquatic environment,
CECs can be detected in different environmental compartments (i.e., water and sediment),
including biota [9,10]. Although most CECs are not highly persistent, their continuous
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release into the aquatic environment, in small but significant amounts, makes many of
them “pseudo-persistent” [11,12].

Data on the occurrence of CECs are critical for conducting environmental-risk assess-
ments to assess the ecological status of water bodies and prioritize chemicals for further
studies. Information on marine CECs is scarce, particularly in the context of identifying
emission sources. Several emission sources usually contribute to the toxicant load in ma-
rine areas, leading to mixing zones with an enormous complexity of exposure, while the
individual CECs are often diluted. In combination, this adds to the analytical challenges.

In this study, we describe a sampling campaign that analyzed and quantified CECs of
different chemical classes in surface waters along the Swedish west coast using an on-site
large volume solid phase extraction (LVSPE) device. This dataset contributes to defining
pollution fingerprints and assessing the chemical status of marine and freshwater systems
affected by large industrial hubs, agricultural areas, and the discharge of urban wastewater.

Stenungsund is a municipality of 27,000 inhabitants located on the Swedish west coast,
approximately 40 km north of Gothenburg. It is home to the largest chemical cluster in
Sweden, centered around a steam cracker that produces ethylene and various fuel gases,
which are then used by a range of companies for the production of polyethylene, polyvinyl
chloride (PVC), amines, detergents, and various other chemicals. Additionally, there are
several harbors situated along the coast. The municipality, itself, discharges its treated
sewage effluents into the fjord (Hakefjord). Consequently, a range of petrochemicals, sur-
factants, microplastics, heavy metals, and antifouling paint residues have been found in
the waters and sediments of the area, including phthalates, chlorobenzenes, chlorophe-
nols, PCBs, cadmium, copper, mercury, tributyltin (TBT), and pharmaceuticals and other
chemicals from household use [13,14].

We collected surface-water samples from six marine and two freshwater sites, plus
one WWTP effluent site, using an on-site large volume solid phase extraction device [15]
in October 2020 (fall season). We selected marine sites (M1–M6) based on their relative
location to urban and industrial areas along the Hakefjord. Freshwater sites represented
inland contributions from agricultural areas and small settlements (F1), and the industrial
hub and Stenungsund city (F2). In addition, the effluent from the Strävliden WWTP was
used as a point source of chemicals in our study (F3; Figure 1).
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Figure 1. Location of sampling sites through the Hakefjord on the Swedish west coast. Marine sites
(M1–M6) are marked in blue, freshwater sites (F1–F2) in brown, and WWTP effluent (F3) in red.
Urban areas are depicted in light brown.



Data 2023, 8, 93 3 of 7

2. Data Description

The data reported in this study originates from surface-water samples collected down
to five meters below the surface for marine samples and down to one meter below the
surface for freshwater samples. The effluent sample was collected directly from the WWTP
effluent pipe. The effluent later discharges into the marine environment at site M5. The data
are reported as tabular data in both Rdata (RDS) and CSV (UTF-8 tab delimited) formats,
and can be accessed at [16]. The CAS Registry Number (CAS RN), International Chemical
Identifier (InChI) and its hashed InChIKey counterpart, and Simplified Molecular Input
Line Entry System (SMILES) identifiers [17] are provided to easily access public databases
containing detailed information on substances; this includes, for instance, the US National
Institutes of Health (PubChem). The mechanism-of-action information was retrieved from
literature [18] and gaps were filled through searching in the Elsevier Bibliographic Database
(Scopus) and Google Scholar using terminology, which included (“chemical_name”) AND
(“mode of action”) AND (“mechanism of action”).

The CSV file contains one sheet with the columns defined in Table 1 and a summary
of the detected and quantified CECs in Table 2.

Table 1. Column description.

Columns Description

chemical_name Name of the emerging chemical.
cas_number CAS Registry Number used as the chemical identifier.
InChIKey Textual identifier for chemical substances.
SMILES Line notation for the chemical structure.
molecular_weight Molecular weight of the substance (g/mol).
DTXSID Distributed structure-searchable toxicity-substance identifier.
type Type of chemical (parent or transformation product).
main_source Urban areas, agriculture-derived chemicals, or multiple sources.
compound_class_level_1 Use category (e.g., pharmaceutical, pesticide, biocide, etc.).
compound_class_level_2 Sub-use category (e.g., antibiotic, herbicide, plasticizer, etc.).
compound_class_level_3 Sub-use category (e.g., benzodiazepine, organophosphate, etc.).

alternative_class Known alternative use (e.g., veterinary pharmaceutical,
additive, etc.).

MoA Mechanism of action of the chemical.
detection_limit Level of quantification in ng/L.
ESI_mode Electrospray mode (positive or negative).
M1 Concentration at M1 in ng/L.
M2 Concentration at M2 in ng/L.
M3 Concentration at M3 in ng/L.
M4 Concentration at M4 in ng/L.
M5 Concentration at M5 in ng/L.
M6 Concentration at M6 in ng/L.
F1 Concentration at F1 in ng/L.
F2 Concentration at F2 in ng/L.
F3 Concentration at F3 in ng/L.

Table 2. Summary of data provided.

M1 M2 M3 M4 M5 M6 F1 F2 F3

Detected CECs 73 77 74 67 79 61 73 118 226
Quantified CECs 68 66 64 57 68 52 68 114 224

3. Methods
3.1. Sample Collection

Water samples (100 L) were collected at 9 sampling sites at the listed coordinates
(Table 3). CECs were extracted by pumping the water through an on-site large vol-
ume solid phase extraction device (LVSPE, MAXX Mess-und Probenahmetechnik GmbH,
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Rangendingen, Germany). The LVSPE consisted of a vacuum-sampling system, a filtra-
tion unit (Sartopure GF+ MidiCaps, 0.65 µm in separation-size, Sartorius) connected to a
dose-glass chamber (500 mL), and a tailor-made, solid-phase extraction (SPE) cartridge
filled with 10 g of neutral sorbent polystyrene divinylbenzene co-polymer (Chromabond
HR-X, Macherey Nagel, Düren, Germany) [15]. We followed the recommendations of
Nanusha et al. [19] and Machate et al. [20] for the cartridge conditioning, extraction, and
Liquid Chromatography–High Resolution Mass Spectrometry (LC–HRMS) analysis.

Table 3. Information on different sampling sites. Geographic coordinates are in decimal degrees
(WGS84).

Sampling Site Type Latitude (N) Longitude (E)

M1 Marine 57.99630 11.766283
M2 Marine 58.05225 11.802267
M3 Marine 58.08136 11.802533
M4 Marine 58.09178 11.808867
M5 Marine 58.10185 11.803717
M6 Marine 58.13981 11.836833
F1 Agricultural stream 58.00076 11.816983
F2 Industrial stream 58.07856 11.820018
F3 WWTP effluent 58.09492 11.836374

3.2. Sample Preparation and Extraction Procedure

All samples were prepared and extracted following the recommendations of
Nanusha et al. [19]. Briefly, Liquid Chromatography–Mass Spectrometry (LC–MS) grade
methanol, formic acid, and ammonium formate were purchased from Merck
(Rahway, NJ, USA), and LC–MS grade water from Thermo-Fisher (Waltham, MA, USA).
LC–MS grade ethyl acetate and 7 N ammonia in methanol were obtained from Sigma-
Aldrich (St. Louis, MO, USA). Reference standards were purchased from various suppliers
with a purity of higher than 97%.

The tailor-made SPE cartridges were preconditioned with methanol/ethyl acetate (1:1,
v/v), methanol, and LC–MS grade water before the water sampling. After the sampling,
cartridges were kept at 4 ◦C and transported to the laboratory, where they were purged
with nitrogen to remove water, freeze-dried, and stored at−20 ◦C for extraction. Blanks
were also prepared using the LVSPE device, similar to the samples.

The analytes were eluted from each cartridge with methanol/ethyl acetate 1:1 (v/v,
500 mL each, neutral fraction), methanol containing 2% of 7 N ammonia in methanol
(500 mL, acidic fraction), and methanol with 1% of formic acid (500 mL, basic fraction). The
pH of both acidic and basic fractions was adjusted to 7 ± 0.5 by adding formic acid or 7 N
ammonia in methanol. The eluates were filtered (GF/F Whatman) to remove precipitates
and reduced to dryness using a rotary evaporator (40 ◦C water bath) and a gentle stream
of nitrogen. Subsequently, the samples were transferred to methanol and adjusted to a
final enrichment factor of 1000. For the LC analysis, 100 µL of the aliquots of these extracts
were mixed with 10 µL of an internal standard mixture containing 40 isotope-labelled
compounds (1 µg/mL), 30 µL of methanol, and 60 µL of water. The remaining extracts
were stored at −20 ◦C for ecotoxicological investigations.

3.3. Target Chemical Screening

Information on CECs in the marine environment is extremely limited; therefore, the
target list for the analysis consisted of chemicals typically found in European freshwater
systems. Target screening was conducted for 861 chemicals using an UltiMate 3000 LC
system (Thermo Scientific, Waltham, MA, USA) coupled to a quadrupole-Orbitrap MS (Q
Exactive Plus, Thermo Scientific, Waltham, MA, USA) with a heated electrospray ionization
(ESI) source. For 150 of the 861 target chemicals, the analysis was conducted by applying a
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retrospective analysis, that is, the samples measured up to 1 year earlier were quantified
with newly measured calibration standards as described by Muschket et al. [21].

3.4. Liquid Chromatography HRMS

Liquid-chromatographic separation was performed on a Kinetex C18 EVO column
(50 × 2.1 mm, 2.6 µm in particle-size) equipped with a pre-column (C18 EVO 5 × 2.1 mm)
and an inline filter as described by Nanusha et al. [19]. The mobile phase consisted of
0.1% of formic acid (eluent A) and methanol containing 0.1% of formic acid (eluent B),
which was used at a flow rate of 300 µL/min. After 1 min of elution with 5% of eluent
B, the fraction of eluent B was linearly increased to 100% within 12 min, after which the
mobile phase was kept at 100% of eluent B for 11 min. Subsequently, the column was
rinsed with a mixture of isopropanol + acetone 50:50/eluent B/eluent A (85%/10%/5%)
to remove hydrophobic-matrix constituents from the column. Finally, the column was
re-equilibrated to initial conditions for 5.7 min. An injection volume of 5 µL was used,
and the column was operated at 40 ◦C. The heated ESI source and the transfer capillary
were both operated at 300 ◦C with a spray voltage of 3.8 kV, a sheath gas-flow rate of
45 a.u., and an auxiliary gas-flow rate of 1 a.u. The full-scan MS1 was recorded in the m/z
range of 100–1500 with a nominal resolving power of 140,000 (referenced to m/z 200). For
compound confirmation, data-dependent MS/MS acquisition was performed at a resolving
power of 70,000 in additional runs. The MS was calibrated externally every 2 days using
the calibration mixtures of the vendor. The mass accuracy was always within 5 ppm for
all analyses. All MS and MS/MS analyses were performed in ESI-positive (ESIpos) and
ESI-negative (ESIneg) mode.

3.5. Data Analysis

ProteoWizard (version 3.0.19324-f948194c2) was used to convert the LC–HRMS raw
data into mzML format (centroid mode) [22]. Subsequently, peak detection, sample align-
ment, and target-compound annotation were performed using MZmine (V 2.38) [23], as
detailed in [24]. We used an in-house R package (MZquant, version 0.7.8) to perform blank
correction, calibration, and quantification. Blank-peak elimination and blank-intensity
thresholds were calculated according to the procedures conducted in Machate et al. [20].
Lastly, a series of method-matched calibration standards ranging from 0.5 to 5000 ng/L
were used. The calibration standards were treated the same way as the water samples.
The target compounds were quantified using the internal standards with the nearest re-
tention time. The method detection limits (MDLs) were determined based on the US-EPA
procedure [25].
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