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Abstract: This study introduces a dataset of crop imagery captured during the 2022 growing season
in the Eastern Kazakhstan region. The images were acquired using a multispectral camera mounted
on an unmanned aerial vehicle (DJI Phantom 4). The agricultural land, encompassing 27 hectares and
cultivated with wheat, barley, and soybean, was subjected to five aerial multispectral photography
sessions throughout the growing season. This facilitated thorough monitoring of the most important
phenological stages of crop development in the experimental design, which consisted of 27 plots, each
covering one hectare. The collected imagery underwent enhancement and expansion, integrating a
sixth band that embodies the normalized difference vegetation index (NDVI) values in conjunction
with the original five multispectral bands (Blue, Green, Red, Red Edge, and Near Infrared Red). This
amplification enables a more effective evaluation of vegetation health and growth, rendering the
enriched dataset a valuable resource for the progression and validation of crop monitoring and yield
prediction models, as well as for the exploration of precision agriculture methodologies.

Dataset: https://doi.org/10.5281/zenodo.7749239, https://doi.org/10.5281/zenodo.7749362,
https://doi.org/10.5281/zenodo.7748792, https://zenodo.org/record/7860751.

Dataset License: Creative Commons Attribution 4.0 International

Keywords: multispectral UAV imagery; NDVI; remote sensing; crop monitoring; yield prediction;
precision agriculture

1. Summary

In recent years, unmanned aerial vehicles (UAVs) have emerged as a prevalent tool
for acquiring agricultural crop data [1–5]. These vehicles are outfitted with cameras that
obtain high-resolution multispectral images, which are instrumental in tracking crop health,
growth, and development. The benefits of UAV-based data collection compared to satellite-
based collection include higher resolution, daily data availability upon request, and the
ability to capture images in cloudy weather conditions. In this work, the Phantom 4 multi-
spectral drone is used, which captures data at a resolution of 3 cm and on-demand imaging,
compared to the well-known satellite Sentinel-2, which provides lower resolutions of 10,
20, or 60 m in the visible spectrum and data only every 5 days. UAVs have transformed
agriculture by allowing affordable and efficient data collection, enhancing crop manage-
ment, and facilitating informed decision-making across vast areas. As a result, numerous
research studies are focusing on utilizing UAVs for crop monitoring.
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In [6], Sentinel-2 satellite data and multispectral UAV data for crop monitoring in
Northeastern Germany are compared. The authors demonstrate that UAV data has a
stronger correlation with agronomic variables, specifically with a 6.3% increase for wheat
and a 22.2% improvement for barley. They recommend using UAV data for decision-
making, given its superior performance in calculating vegetation indices. In [7], utilizing
an UAV with a commercial digital camera to estimate SPAD values indicating naked barley
leaf health is explored. The authors offer useful insights for budget-conscious farmers by
improving the correlation between image-derived vegetation indices and SPAD values.
In [8], the focus is on the challenge of soil in UAV images of crops. The authors identify the
most sensitive vegetation indices to refine wheat trait predictions by removing soil pixels
from the distribution of index values. In [9], the potential of a multispectral camera on an
UAV is examined for guiding in-season nitrogen management in wheat production. The
authors propose a modified sufficiency index algorithm to provide variable rate nitrogen
recommendations, resulting in an improved harvest index and reduced nitrogen input
without affecting yield.

The works discussed above investigate different aspects of using UAVs for crop
monitoring, with each work utilizing unique data analysis methods. However, data
collection methods, such as organizing flight missions, conducting flights, and image
processing, are generally standard. Nevertheless, the development of innovative precision
agriculture methods would not be possible without undertaking these time- and labor-
intensive data collection steps. In this regard, open datasets containing raw UAV data from
the field are crucial for researchers who may lack the capability to obtain such data.

A focused search was executed using the Advanced Search Query Builder on the Web
of Science platform to identify pertinent dataset publications in four authoritative data
journals, namely “Data” (MDPI), “Data in Brief” (Elsevier), “Earth System Science Data”
(Copernicus), and “Scientific Data” (Nature Research). The search was centered around the
topics “UAV” and “crop” and generated the following outcomes:

• The journal “Data” contains just one relevant data descriptor article [10], which show-
cases a dataset of UAV RGB images captured over a pistachio orchard.

• The journal “Data in Brief” features seven relevant articles [11–17], including one
that pertains to UAV images of a cotton field [11], another that focuses on UAV
data for avocado classification [12], two that present UAV images obtained over
a vineyard [13,14], and one that presents plant and soil data for forage crops [15].
Additionally, there is an article that showcases UAV RGB images of soybean crops [16]
and another that features hyperspectral imagery of potato cultivation [17].

• The journals “Earth System Science Data” and “Scientific Data” each contain only
one article providing data on grassland aboveground biomass on the Qinghai-Tibet
Plateau [18] and forest ecosystem 3D perception in the Hainich-Dün region in Ger-
many [19], respectively.

Based on the results, it appears that there is currently a shortage of openly available
datasets specifically focused on using UAVs for crop monitoring. While there is one
relevant study [16] that focused on soybean culture, the images were collected in RGB
format and were intended for pest recognition purposes. To address this gap, the current
study presents an imagery dataset of wheat, soybean, and barley crops that were captured
in Eastern Kazakhstan in 2022 using a DJI Phantom 4 UAV equipped with a multispectral
camera. The imagery embodies the progression of crop growth at various phenological
stages, encompassing emergence, tillering, heading, and ripening. The dataset features two
primary components: (1) the raw imagery, directly collected by the UAV and including
images in both TIF and JPEG formats, and (2) the processed imagery, available solely as
TIF files, which have been enhanced by adding an NDVI band to the original TIF bands. It
is expected that the dataset will be used to develop and test new algorithms and models
for crop monitoring, disease detection, yield estimation, and other applications.
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2. Data Description

The suggested UAV imagery dataset is comprised of eight compressed (zip) files
grouped into two components. The first component of the dataset, raw imagery captured
by the UAV, is represented by five zip files by the number of flight sessions, while the
second component, processed orthomosaic imagery categorized by crops, is represented by
the remaining three zip files by the number of crop types grown. Table 1 offers an overview
of the mentioned files. In the dataset, crops are not evenly represented, with 12 wheat plots,
12 barley plots, and just 3 soybean plots in the study. However, as mentioned earlier, all
plots have the same area of 1 hectare, regardless of the crop grown. Detailed descriptions
of Component one and Component two are provided in Sections 2.1 and 2.2, respectively.

Table 1. Summary of the compressed files in the UAV imagery dataset.

No. File Name Size Number
of Files Description

1 flight_session_01.zip 17.7 Gb 8277
Component 1: raw aerial

images from the corresponding
UAV flight session

2 flight_session_02.zip 17.4 Gb 7957
3 flight_session_03.zip 16.7 Gb 7721
4 flight_session_04.zip 17.5 Gb 7267
5 flight_session_05.zip 15.8 Gb 7155

6 barley.zip 12.7 Gb 59 Component 2: processed
orthomosaic images of plots,

categorized by crop type
(barley, wheat, soybean)

7 wheat.zip 11.8 Gb 60

8 soybean.zip 2.34 Gb 12

2.1. The Raw Imagery Captured by the UAV

In Component one, every flight-session zip file features a two-tiered folder organiza-
tion. Initially, raw images are arranged according to their capture dates. Within each date
folder, images are further sorted into subfolders named FPLAN folders according to the
flight plans. The number of FPLAN folders ranges between 6 and 14, contingent on the
specific flight mission configuration for the respective day. For instance, Figure 1 illustrates
the contents of the 102FPLAN folder, corresponding to the date 2022-06-08 and originating
from the second flight session. As shown in Figure 1, each FPLAN subfolder contains
four system files and numerous individual images captured by the UAV in photography
mode. Each image is available in two formats: RGB format (represented by a JPEG file)
and monochrome format (represented by five TIF files, which depict the image in various
bands). The final digit in the name of the TIF file indicates the corresponding band: 1—blue,
2—green, 3—red, 4—red-edge, and 5—near-infrared red.
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Figure 1. Depiction of the folder structure within the flight_session_02.zip file showcasing the
contents of the 2022-06-08/102FPLAN subfolder.

Each image file exhibits a pixel size of 1600 × 1300 and a resolution of 3 cm per pixel.
The drone’s multispectral camera automatically tagged these images using the EXIF format.
Specifically, geotags encompass the latitude and longitude coordinates of the image’s lower-
left point, as well as the altitude above sea level. Figure 2 showcases two images of the
same plot, taken by the UAV on 21 June during the 75% heading phase (Figure 2a) and on
11 July during the phase of milky rape (Figure 2b).
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2.2. The Processed and Enhanced UAV Imagery Dataset

In Component two, every zip file features a two-tiered folder organization. First,
images are sorted based on their corresponding crop types. Inside each crop-type folder,
images are then organized into plot-specific subfolders (see Figure 3). Consequently,
each plot folder houses processed TIF images of the crop captured on different aerial
photography dates. As previously noted, each TIF file comprises: (1) an orthomosaic
formed by approximately 47–50 smaller, adjacent images captured by the UAV, collectively
representing a 1 hectare experimental plot; (2) a collection of six bands, including five
spectral bands and an additional band containing calculated NDVI values (see Figure 4).
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3. Methods
3.1. Experimental Site and Plots

The experimental site is situated near the city of Ust-Kamenogorsk in the East Kaza-
khstan region of the Republic of Kazakhstan, at coordinates 50◦02′ N 82◦35′ E, encompass-
ing an area of 27 hectares. In 2022, three crops were cultivated: wheat, barley, and soy (see
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Figures 5–7). Wheat varieties (Altai, Ulbinka 25, Nargiz, GVK 2120/3) were each grown
on 1-hectare plots, totaling 12 plots with varying sowing rates. Barley varieties (Ilek 16;
L 29; 339 A; B 2015) were similarly grown on 1-hectare plots, amounting to 12 plots with
different sowing rates. Soybean (Birlik) was cultivated on 3 hectares, also with varying
sowing rates. A brief description of the experimental plots and the cultivated crops is
presented in Table 2.
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Table 2. Characteristics of cultivated crops on experimental plots.

Plot ID Crop Type Crop Variety Sowing Rate (kg/ha) Date of Sowing

1 barley Ilek 16 280 4 May 2022
2 barley Ilek 16 260 5 May 2022
3 barley Ilek 16 240 5 May 2022
4 barley L 29 280 5 May 2022
5 barley L 29 260 5 May 2022
6 barley L 29 240 6 May 2022
7 barley 339 A 280 6 May 2022
8 barley 339 A 260 6 May 2022
9 barley 339 A 240 6 May 2022
10 wheat Altay 240 7 May 2022
11 wheat Altay 220 8 May 2022
12 wheat Altay 200 8 May 2022
13 wheat Ulbinka 240 13 May 2022
14 wheat Ulbinka 220 13 May 2022
15 wheat Ulbinka 200 13 May 2022
16 barley B 2015 280 7 May 2022
17 barley B 2015 260 7 May 2022
18 barley B 2015 240 7 May 2022
19 soybean Birlik 120 21 May 2022
20 soybean Birlik 100 21 May 2022
21 soybean Birlik 80 21 May 2022
22 wheat Nargiz 240 13 May 2022
23 wheat Nargiz 220 13 May 2022
24 wheat Nargiz 200 13 May 2022
25 wheat GBK 2120/3 240 14 May 2022
26 wheat GBK 2120/3 220 14 May 2022
27 wheat GBK 2120/3 200 14 May 2022

Situated in the Rudno-Altai structural-facies region and the southern part of the
temperate climate zone, the experimental site is close to the pole of continentality. With a
moderately cool climate and an average annual precipitation of 597 mm, rainfall occurs
even during the driest periods. The site features typical chernozem soil, with 10.1–15 mg/kg
nitrogen, 31–45 mg/kg mobile phosphorus, and 301–400 mg/kg exchangeable potassium
content. This fertile soil type and temperate climate foster diverse vegetation in the region,
such as grasslands, forests, and cultivated farmlands.

3.2. UAV Platform and Mission

The DJI Phantom 4 multispectral UAV is equipped with a 6 × 1.29-inch CMOS multi-
spectral camera that captures visible RGB and multispectral images using five monochro-
matic sensors (Figure 8). The camera has a 62.7◦ field of view, 5.74 mm focal length, and
f/2.2 aperture. It produces images with a resolution of 1600 × 1300 pixels in JPEG and TIF
formats. The UAV can reach a maximum horizontal velocity of 50–58 km/h, ascent speeds
of 5–6 m/s, and a descent speed of 3 m/s. It has a maximum wind resistance of 10 m/s
and an operational altitude of up to 6000 m. The drone features obstacle detection and an
infrared system for safe navigation.

The DJI TimeSync Accurate Data Acquisition System ensures real-time geolocation
data for each image, offering centimeter-level precision. Powered by LiPo PH4 15.2V
intelligent flight batteries, the UAV weighs 1487 g and provides a maximum flight time
of approximately 27 min. It uses GPS + BeiDou + Galileo or GPS + GLONASS + Galileo
positioning systems for accurate navigation. A total of five flight sessions were carried out
by the UAV to capture the phenological development of the plants at specific milestones.
To address practical limitations in terms of human resources and/or weather conditions,
all five flight sessions were spread over two consecutive days. Specifically, during the first
day of these two-day sessions, the UAV covered approximately half of the available plots,
with the remaining plots being captured on the second day of the session. All the flight
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sessions (excluding the first one) took place between 10:00 a.m. and 2:00 p.m. local time to
minimize filming distortions. Tables 3 and 4 provide information about the schedule of the
flight sessions and conditions under which the images were captured, respectively.
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Figure 8. The DJI Phantom 4 multispectral UAV at the experimental site.

Table 3. Schedule of the conducted flight sessions, including the date, duration, and corresponding
phenological stage (for wheat and barley).

Flight Session Milestone (Corresponding
Phenological Stage) Date Covered Plots

01 75% emergence 17 May 2022 15
18 May 2022 13

02 Tillering 8 June 2022 14
9 June 2022 7

03 75% heading 21 June 2022 8
22 June 2022 7

04 Milky ripe 11 July 2022 9
12 July 2022 6

05 Waxy ripe 25 July 2022 8
26 July 2022 7

Table 4. The conditions under which the images were captured.

Date of 2022 Local Time Sun Elevation
Angle, ◦

Sun Azimuth
Angle, ◦ Temperature, ◦C Wind Speed, m/s Cloud Coverage

17 May 13:00–17:00 54.25–19.09 219.66–277.9 27.7–13.7 1–2 clear

18 May 11:00–14:30 59.16–42.85 167.61–246.97 30.2–22.0 1–2 clear

8 June 09:30–12:30 54.22–60.39 128.31–209.1 26.8–27.2 2–3 clear

9 June 09:30–12:30 54.26–60.48 128.17–209.07 30.6–31.0 1–2 clear

21 June 09:30–12:30 54.33–61.11 126.89–208.26 32.7–24.0 5–6 clear

22 June 09:30–12:30 54.3–62.65 126.82–163.62 34.9–35.2 3–4 clear

11 July 10:30–12:30 59.15–60.05 149.13–205.7 30.7–30.9 2–3 clear

12 July 09:30–11:30 52.57–61.84 127.08–177.01 31.3–29.7 4 clear

25 July 10:00–12:30 53.95–57.72 138.91–203.88 24.6 –24.8 2–3 clear

26 July 09:30–11:00 50.3–58.42 129.03–163.19 27.5–29.1 2–3 clear

Shooting plans were created using the DJI GS Pro app (version: 2.0.17), with a hori-
zontal speed of 5 m/s and a flight altitude of 57 m above ground level. This setup allowed
for a theoretical average ground resolution of 3.0 cm/px. The camera angle was set at 90◦,
side overlap ratios at 75%, and front overlap ratios at 60%. The camera was configured
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to “Single Shot” in “Still Image Mode”, with the highest possible image quality selected
(1600 pixels × 1300 pixels). All photographs were automatically geotagged by the aircraft’s
multispectral camera in EXIF format, using the latitude/longitude (WGS84) coordinate
system. To optimize battery usage, experimental plots were combined into larger sections.
Figure 9 shows a flight mission as visualized using: (Figure 9a) the DJI GS Pro app; (Figure 9b)
the precision agriculture framework specifically designed for this research project.

Figure 9. UAV flight mission: (a) A visualization with DJI GS Pro; (b) A visualization using the
precision agriculture framework.

3.3. Processing the UAV Imagery Dataset

For all images, a photogrammetric reconstruction process was executed, resulting
in the generation of a point cloud, digital elevation model (DEM), and an orthomosaic.
The Agisoft Metashape Professional v1.8.3 software was employed to process the cap-
tured images, adhering to the software provider’s recommendations [20]. Initially, the
photographs were aligned with high precision, limited to 40,000 key points and 4000 con-
nection points, followed by a camera optimization process. Subsequently, a medium-quality
dense cloud was created with depth filtering disabled. Default settings were applied for all
remaining parameters.

Thus, a high-quality digital elevation model (DEM) and an orthomosaic were gener-
ated (Figure 10). A DEM image provides a three-dimensional representation of the terrain
and visualizes the elevations and contours of the land. An orthomosaic image enables users
to orient themselves regarding the relative position of the plots in space. As depicted in
Figure 10b, the field is partitioned into nine large plots, each of which is further divided into
three smaller plots, resulting in a total of 27 plots. The distance between the larger sections
is 2 m, and the distance between the smaller sections is 50 cm. The export of orthomosaic
considers all spectral bands, resulting in a single multispectral orthomosaic that retains the
same ranges as the original images. The methodology for processing multispectral data
is like that of standard photographs, except for an additional step to select the primary
channel after incorporating all images into the project.
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Figure 10. (a) Digital elevation model representation; (b) Orthomosaic generated during the pho-
togrammetric process.

3.4. Enhancing the UAV Imagery Dataset

Orthomosaic TIF files were imported into a Python application and processed using
the Rasterio library. During this stage, the primary objects for processing were the spatial
layers or rasters, which are georeferenced images. In other words, each raster contains
a numeric pixel array for the image in its respective band, as well as metadata defining
a rectangular extent corresponding to a specific spatial coordinate system. By utilizing
the matrices from bands 3 and 5, a new NDVI value matrix was computed using the
formula NDVI = (NIR − R)/(NIR + R), where NIR represents the near-infrared band, and
R represents the red band. Once calculated, this matrix was added as the sixth layer in the
original TIF file. To prevent confusion and enhance the usability and interpretability of the
multispectral data, descriptive names were assigned to the layers in the application since
the original source files only labeled the channels with numerical values. This step ensures
that users can effortlessly identify and work with the various layers.

In Figures 11 and 12, two graphical representations are depicted, incorporating the
application of Normalized Difference Vegetation Index (NDVI) layers. The initial figure’s
visualization reveals a chromatic scale where pixels with NDVI values close to 0.1 manifest
as red, shifting to orange for values around 0.2 and progressively transitioning from red
to green with increasing values. Notably, approximately 26.1% of the observed values
are situated within the 0.4 range, suggesting a favorable outcome for the given survey
period. In contrast, the subsequent figure exhibits a predominantly green appearance,
with nearly 65% of the total plot area demonstrating NDVI values proximate to 0.4 and
35% demonstrating values around 0.5. The enhanced greenness of the second plot serves
as an indicator of superior crop health in comparison to the first plot.
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4. User Notes

The provided dataset meets the FAIR principles that stand for Findability, Accessibility,
Interoperability, and Reusability [21]:

• The dataset is findable, as it has unique and persistent identifiers (DOIs).
• The dataset is accessible since it is hosted on Zenodo, an open-access repository that

allows users to access and download the data.
• The dataset is interoperable since it is provided in commonly used formats (TIF,

GeoTIF and JPEG) and includes an additional NDVI band for enhanced compatibility
with other tools and platforms.

• The dataset is reusable since it includes metadata and is licensed under a Creative
Commons Attribution 4.0 International License, which allows users to freely use and
redistribute the data if they give appropriate credit.

In this section, two use cases for the created UAV imagery dataset are presented.
The first use case outlines the process of reading and interpreting Component one of the
dataset using Python in Google Colab. The second use case demonstrates the integration of
Component two of the dataset into a framework for precision agriculture.

4.1. A Use Case for Utilizing Component One of the UAV Imagery Dataset

Component one of the dataset, i.e., the raw imagery, comprises TIF files, which
lack georeferencing information, in contrast to GeoTIF files. While TIF files contain Exif
metadata that offers details regarding the image capture location, this information only
specifies the latitude and longitude of the bottom-left pixel within each image. To uti-
lize this imagery for georeferencing and overlaying purposes with other spatial data,
the location of every pixel must be determined. Specialized GIS software, such as Ag-
isoft or QGIS, can automatically address this issue by employing the geospatial infor-
mation from EXIF. However, if users wish to independently transform TIF into GeoTIF
using Python, specific manipulations are necessary. This use case illustrates the conversation
of a raw TIF image to GeoTIF format, utilizing the affine transformation. The complete
code can be accessed through the provided link (https://colab.research.google.com/drive/
1PTBHExWMbgxRkUreUFBaPrZmhOvAxYw3#scrollTo=2Iz7gsXQPJbc (accessed on 28 April
2023)). The following is an outline of the high-level algorithm:

1. Read the input image file and retrieve its width (ImageWidth) and height (ImageHeight)
in pixels.

2. Extract GPS coordinates (latitude and longitude) of the bottom-left pixel from the image.

https://colab.research.google.com/drive/1PTBHExWMbgxRkUreUFBaPrZmhOvAxYw3#scrollTo=2Iz7gsXQPJbc
https://colab.research.google.com/drive/1PTBHExWMbgxRkUreUFBaPrZmhOvAxYw3#scrollTo=2Iz7gsXQPJbc
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3. Convert the extracted longitude and latitude from Degrees/Minutes/Seconds format
to decimal degree format as Xleft-bottom and Yleft-bottom, respectively using the follow-
ing formula:

Decimal Degrees = (Degrees + Minutes / 60 + Seconds/3600) ∗ Sign (1)

where Sigh is +1 for North latitude or East longitude and −1 for South latitude or
West longitude (in this case, sign is +1).

4. Compute the pixel size (in degrees) for both X and Y directions. Pixel size for X
direction is calculated using the following formula:

Pixel_size_x =
FlightResolution/100, 000

2π ∗ EarthRadius ∗ cos
(
Yleft-bottom

)
/360

(2)

The Earth’s radius (EarthRadius) is approximately 6371 kilometers (km). The flight
resolution (FlightResolution) is defined by the application of the UAV and, in this case, is
equal to 3 centimeters (cm) per pixel; to convert the resolution from cm to km, it is divided
by 100,000. The latitude of the bottom-left pixel (Latitude) should be in decimal degrees.
Therefore, the formula calculates the length of the Earth’s circumference along one degree
of longitude at a given latitude, considering that the Earth is not a perfect sphere and that
its circumference varies with latitude. Pixel size for the Y direction is calculated using the
following formula:

Pixel_size_y =
FlightResolution/100, 000

111.3
(3)

The value 111.3 represents the approximate number of kilometers along one degree
of latitude. This value is relatively constant because lines of latitude are parallel and
evenly spaced.

5. Create the geotransform matrix (Affine transformation) to convert the pixel coordi-
nates of the image into geographic coordinates by:

a. Translating the origin of the image coordinate system to the bottom-left cor-
ner of the image using the decimal degree longitude and latitude values of
the bottom-left corner of the image. This ensures that subsequent transfor-
mations are performed relative to this corner, which is the reference point for
geographic coordinates.

b. Scaling the X (longitude) and Y (latitude) dimensions of the image by their
respective pixel sizes in degrees. Scaling ensures that the transformation from
pixel coordinates to geographic coordinates will be performed with the correct
spacing between them.

6. Save the geotransform matrix as metadata within the GeoTIF file.

4.2. A Use Case for Integration of Component Two of the UAV Imagery Dataset in a Framework to
Support Beginning Farmers

This research was conducted within a three-year project focused on developing a
precision agriculture framework specifically designed for small-scale farming. The resulting
technology and associated dataset were integrated into the framework as detailed below.
To monitor a particular plot, an NDVI matrix was generated using satellite images (see
Figure 13) or the UAV images. In areas with low NDVI values indicating plant growth
stress, additional surveys were conducted by the UAV at elevations between 10 and 50 m
to acquire a more accurate representation. The framework further provides users with
supplementary services, such as humidity assessment, meteorological data analysis, and
more. Currently, the platform is in the prototype development stage.
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Outlined below is the high-level algorithm for extracting NDVI values from a GeoTIF
file and generating GeoJSON. After generating the GeoJSON, it can be integrated into a
framework for further analysis or visualization.

1. Read the source GeoTIF file.
2. Read the sixth layer of the file, which represents the calculated NDVI values.
3. Extract the GPS coordinates and NDVI values for each pixel.
4. Create a polygon based on the GPS coordinates.
5. Create a GeoDataFrame from the polygon and NDVI values.
6. Generate GeoJSON from the GeoDataFrame.

Author Contributions: Conceptualization, A.N. and Y.B.; methodology, A.M.; software, K.A.; vali-
dation, A.M., A.N. and Y.B.; resources, M.S.; data curation, A.N. and A.M.; writing—original draft
preparation, A.M. and A.N.; writing—review and editing, A.M. and A.N.; visualization, A.M. and
K.A.; supervision, A.N. and M.S.; project administration, M.S.; funding acquisition, A.N. and A.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan, grant number AP09259379.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Link to the dataset: https://doi.org/10.5281/zenodo.7749239,
https://doi.org/10.5281/zenodo.7749362, https://doi.org/10.5281/zenodo.7748792, https://zenodo.
org/record/7860751 (accessed on 3 May 2023).

Acknowledgments: This study was developed in the context of the Program of Grant Funding for
scientific and (or) scientific and technical projects for 2021–2023, supported by the Science Com-
mittee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (grant num-
ber AP09259379).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nhamo, L.; Magidi, J.; Nyamugama, A.; Clulow, A.D.; Sibanda, M.; Chimonyo, V.G.; Mabhaudhi, T. Prospects of improving

agricultural and water productivity through unmanned aerial vehicles. Agriculture 2020, 10, 256. [CrossRef]
2. Hegarty-Craver, M.; Polly, J.; O’Neil, M.; Ujeneza, N.; Rineer, J.; Beach, R.H.; Temple, D.S. Remote crop mapping at scale: Using

satellite imagery and UAV-acquired data as ground truth. Remote Sens. 2020, 12, 1984. [CrossRef]
3. Shamshiri, R.R.; Hameed, I.A.; Balasundram, S.K.; Ahmad, D.; Weltzien, C.; Yamin, M. Fundamental research on unmanned aerial

vehicles to support precision agriculture in oil palm plantations. In Agricultural Robots-Fundamentals and Applications; IntechOpen:
London, UK, 2018; pp. 91–116.

https://doi.org/10.5281/zenodo.7749239
https://doi.org/10.5281/zenodo.7749362
https://doi.org/10.5281/zenodo.7748792
https://zenodo.org/record/7860751
https://zenodo.org/record/7860751
https://doi.org/10.3390/agriculture10070256
https://doi.org/10.3390/rs12121984


Data 2023, 8, 88 13 of 13

4. Hafeez, A.; Husain, M.A.; Singh, S.P.; Chauhan, A.; Khan, M.T.; Kumar, N.; Soni, S.K. Implementation of drone technology for
farm monitoring & pesticide spraying: A review. Inf. Process. Agric. 2022, 10, 192–203.

5. Daponte, P.; De Vito, L.; Glielmo, L.; Iannelli, L.; Liuzza, D.; Picariello, F.; Silano, G. A review on the use of drones for precision
agriculture. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 275, p. 012022.

6. Li, M.; Shamshiri, R.R.; Weltzien, C.; Schirrmann, M. Crop Monitoring Using Sentinel-2 and UAV Multispectral Imagery: A
Comparison Case Study in Northeastern Germany. Remote Sens. 2022, 14, 4426. [CrossRef]

7. Liu, Y.; Hatou, K.; Aihara, T.; Kurose, S.; Akiyama, T.; Kohno, Y.; Omasa, K. A robust vegetation index based on different UAV
RGB images to estimate SPAD values of naked barley leaves. Remote Sens. 2021, 13, 686. [CrossRef]

8. Almeida-Ñauñay, A.F.; Tarquis, A.M.; López-Herrera, J.; Pérez-Martín, E.; Pancorbo, J.L.; Raya-Sereno, M.D.; Quemada, M.
Optimization of soil background removal to improve the prediction of wheat traits with UAV imagery. Comput. Electron. Agric.
2023, 205, 107559. [CrossRef]

9. Zhang, J.; Wang, W.; Krienke, B.; Cao, Q.; Zhu, Y.; Cao, W.; Liu, X. In-season variable rate nitrogen recommendation for wheat
precision production supported by fixed-wing UAV imagery. Precis. Agric. 2022, 23, 830–853. [CrossRef]

10. Vélez, S.; Vacas, R.; Martín, H.; Ruano-Rosa, D.; Álvarez, S. High-Resolution UAV RGB Imagery Dataset for Precision Agriculture
and 3D Photogrammetric Reconstruction Captured over a Pistachio Orchard (Pistacia vera L.) in Spain. Data 2022, 7, 157. [CrossRef]

11. Krestenitis, M.; Raptis, E.K.; Kapoutsis, A.C.; Ioannidis, K.; Kosmatopoulos, E.B.; Vrochidis, S.; Kompatsiaris, I. CoFly-WeedDB: A
UAV image dataset for weed detection and species identification. Data Brief 2022, 45, 108575. [CrossRef] [PubMed]

12. Amraoui, K.E.L.; Lghoul, M.; Ezzaki, A.; Masmoudi, L.; Hadri, M.; Elbelrhiti, H.; Simo, A.A. Avo-AirDB: An avocado UAV
Database for agricultural image segmentation and classification. Data Brief 2022, 45, 108738. [CrossRef] [PubMed]

13. Ariza-Sentís, M.; Vélez, S.; Valente, J. Dataset on UAV RGB videos acquired over a vineyard including bunch labels for object
detection and tracking. Data Brief 2023, 46, 108848. [CrossRef] [PubMed]

14. Vélez, S.; Ariza-Sentís, M.; Valente, J. Dataset on unmanned aerial vehicle multispectral images acquired over a vineyard affected
by Botrytis cinerea in northern Spain. Data Brief 2023, 46, 108876. [CrossRef] [PubMed]

15. Garba, I.I.; Williams, A. Datasets supporting the adoption of multifunctional cover crops related to soil water and nitrogen in
water-limited environments. Data Brief 2023, 46, 108841. [CrossRef] [PubMed]

16. Mignoni, M.E.; Honorato, A.; Kunst, R.; Righi, R.; Massuquetti, A. Soybean images dataset for caterpillar and Diabrotica speciosa
pest detection and classification. Data Brief 2022, 40, 107756. [CrossRef] [PubMed]
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