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Abstract: Investigating travel time variability is critical for pre-trip planning, reliable route selection,
traffic management, and the development of control strategies to mitigate traffic congestion problems
cost-effectively. Hence, a large number of studies are available in the literature which determine
the most suitable distribution to fit the travel time data, but these studies recommend different
distributions for the travel time data, and there is a disagreement on the best distribution option
for fitting to the travel time data. The present study proposes a novel framework to determine
the best distribution to represent the travel time data obtained from probe vehicles by using the
modern machine learning technique. This study employs vast travel time data collected by fitting
GPS tracking units on the probe vehicles and offers a comprehensive investigation of travel time
distribution in different scenarios generated due to spatiotemporal variation of the travel time. The
study also considers the effect of weather and uses the three most commonly used non-parametric
goodness-of-fit tests (namely, Kolmogorov–Smirnov test, Anderson–Darling test, and chi-squared test)
to fit and rank a comprehensive set of around 60 unimodal statistical distributions. The framework
proposed in the study can determine the travel time distribution with 91% accuracy. Additionally,
the distribution determined by the framework has an acceptance rate of 98.4%, which is better than
the acceptance rates of the distributions recommended in existing studies. Because of its robustness
and applicability in many different traffic situations, the proposed framework can also be used in
developing countries with heterogeneous disordered traffic conditions to evaluate the road network’s
performance in terms of travel time reliability.

Keywords: machine learning; travel time variability; travel time distribution; heterogeneous disordered
traffic; probe vehicle data

1. Introduction

When urban commuters plan to use city road transportation, they are met with
challenges from unanticipated factors, such as the level of congestion, the mix of traffic,
accidents, incidents, weather changes, fluctuations in traffic demand, etc., which affect the
anticipated travel time. Erratic changes on both the supply and demand sides of traffic
introduce uncertainty in the travel time experienced by commuters. Because of this travel
time uncertainty, the precise travel time of a trip is generally not known until it is completed,
despite major improvements in urban transportation infrastructure and accessibility to
many forms of transportation. As a result, commuters frequently plan their trip’s departure
time, mode, and route based on only their prior experience from multiple travels.

Travel time variability makes trip planning even more challenging for travelers who
do not have any prior experience of traveling in the area. Users see travel time variability
as a risk (or added expense) to their travel decisions because it increases the uncertainty of
arriving at their destination on time. It has been found experimentally that TTV is either
the most important or the second most important factor for the majority of commuters [1].
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Travel time variability significantly influences the users’ travel decisions, such as the choice
of departure time [2,3], route choice [4,5], and mode choice [6,7]. Additionally, according to
a study by Bates et al. [8], a reduction in travel time variability (TTV) is much more valuable
to commuters/travelers than a reduction in travel time. Because of the rising relevance of
TTV, this research topic is receiving the attention of researchers all over the world.

This paper presents a thorough empirical investigation of travel time variability on
urban roads (both interrupted and non-interrupted corridors) by studying the travel time
distribution. Earlier, it was difficult to collect travel-time-related information on a large
scale, but now it can be easily acquired via various data sources using modern enhanced
traffic sensing technologies. These technologies include station-based traffic condition
monitoring (using devices such as microwave sensors, loop detectors, and video cameras)
and point-to-point travel time measurement (e.g., probe vehicles, mobile, Bluetooth, license
plate recognition systems, and automatic vehicle identification systems). The spatial
arrangement and fixed positioning of traffic sensors significantly impact the data collection
performance of station-based technologies. On the other hand, probe vehicles fitted with
GPS tracking units might move over the entire road network and periodically collect
the locational information of the vehicles and travel time data at regular intervals. The
data obtained from the probe vehicles are referred to as probe vehicle data and represent
relatively comprehensive operating characteristics for urban traffic. The data fidelity and
coverage of anonymous probe vehicle data have improved significantly recently, making it
a dependable data source for travel time studies. In the present study, probe vehicle data
are used to investigate how travel time varies with the different weather conditions, type
of road, the direction of the travel, day of the week (DOW), and time of the day (TOD).

A number of studies examining the travel time distribution are available in the litera-
ture and are listed in Table 1. Table 1 also summarizes the location, data source, dataset
duration/size, vehicle types considered, recommended distribution, and limitations of
these studies.

Table 1. Travel time distribution studies available in the literature.

Study Year Location Data Source Dataset
Duration/Size

Types of
Vehicles
Considered

Recommended
Distribution Limitations

[9] 1979 Chicago, USA

Drivers who measured
TT on their regular
daily trips to and
from work

179 trips on
14 routes - Gamma Considered only

179 trips

[10] 2009 Melbourne,
Australia GPS-equipped buses 3351 trips Buses

Normal
(peak hour)
Lognormal
(off-peak)

Considered travel time
data of only buses and
used a small dataset
(only 3351 trips)

[11] 2009 Hirakata City,
Japan

Buses operated by
Keihan Bus Company 12 Days Buses Lognormal Considered travel time

data of only buses

[12] 2013 Adelaide,
Australia

GPS-equipped probe
vehicles

180, 67 runs for
Route 1 and
Route 2,
respectively

N/A Burr Type XII Used a very small
travel time dataset

[13] 2014 Beijing, China Historical floating
car data Seven days N/A

Generalized
extreme value
(GEV) and
generalized
Pareto

Used travel time data
of one week only

[14] 2015 Brisbane,
Australia

Transit Signal Priority
(TSP) data 1 year Buses Lognormal Considered travel time

data of only buses

[15] 2016 Brisbane,
Australia

TransLink Division,
Department of
Transport and Major
Roads (DTMR)

6 months Buses Gaussian
mixture

Considered travel time
data of only buses
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Table 1. Cont.

Study Year Location Data Source Dataset
Duration/Size

Types of
Vehicles
Considered

Recommended
Distribution Limitations

[16] 2018 Beijing, China
Taxis equipped with
GPS devices
(Probe Vehicles)

1 week Taxis Lognormal

Used travel time data
of one week only, also
used only taxis as
probe vehicles

[17] 2018
Surat and
Ahmedabad
City, India

Video graphic survey 5 h a day for two
working days

Two-wheelers,
Three wheelers,
cars, buses,
LCVs, Truck

Burr Used travel time data
of 10 h only

[18] 2018
Surat, Mysore,
and Chennai,
India

SITILINK Ltd.,
Metropolitan Transport
Corporation (MTC),
Karnataka State Road
Transport Corporation
(KSRTC)

N/A Buses GEV Considered travel time
data of only buses

[19] 2018
Calgary,
Alberta,
Canada,

Calgary Transit
From 6 a.m. to
9 a.m. for six
months

Buses

Lognormal
(For pseudo
horizon range =
7–8 km), Normal
(For pseudo
horizon range >
8 km)

Considered travel time
data of only buses that
also for morning peak
only

[20] 2019 Nanjing,
China RFID Base Stations One month N/A Gaussian

mixture model
Used travel time data
of one month only

[21] 2020 Surat, India Video graphic survey 5 h N/A
Burr (2 Lane),
Log-logistic
(3 Lane)

Used travel time data
of 5 h only

[22] 2020
Charlotte,
North Carolina,
USA

Regional Integrated
Transportation
Information System
(RITIS)

N/A N/A Burr

Used aggregated travel
time data Dataset
description, i.e., dataset
duration and types of
vehicles considered, is
missing

[23] 2020 Mysore, India KSRTC 4 months Buses

Normal
(peak hours),
GEV (off-peak
conditions)

Considered travel time
data of only buses and
used dataset of only
four months

[24] 2020 New York City,
USA

Department of
Transportation, New
York City, USA

8:00 a.m. to
8:00 p.m. for one
week

N/A Gamma Mixture Considered travel time
data for only one week

[25] 2021 Athens, Greece Vodafone Innovus S.A Three months

Passenger cars,
taxis, minivans,
vans,
minibuses,
buses, mini
trucks

Lognormal
Considered travel time
data for three months
only

[26] 2021 Mysore, India KSRTC (public
transport) Two months Buses GEV

Considered travel time
data of only buses and
used dataset of only
two months

[27] 2022 Tehran, Iran Wi-Fi and Bluetooth
sensors Two months N/A Lognormal

Considered travel time
data for two months
only

As we reviewed the available literature on travel time distribution, we found some
significant weaknesses in previous research. The first limitation is that different distribution
types, such as normal [10], lognormal [10,11,14,16,19,25], gamma [9,24], and Burr [17,21,22],
etc., are fitted to travel time data, and there is disagreement on the best distribution option
for fitting to travel time data.



Data 2023, 8, 60 4 of 18

The second limitation is that most of the studies considered only homogeneous traffic
flow conditions, while disordered heterogeneous traffic flow conditions, which are common
in developing nations [28] such as India, Sri Lanka, Bangladesh, Pakistan, Bhutan, Nepal,
and others, are largely under-explored. Heterogeneity here refers to the variety of vehicle
categories present in the traffic flow. The traffic flow in developing nations comprises a
large variety of vehicles, ranging from non-motorized vehicles to light motorized vehicles
(two-wheelers, three-wheelers, cars) to heavy vehicles (buses, trucks). Additionally, each of
these vehicles has distinctive static and dynamic characteristics that, in turn, result in large
variations in their driving behavior. For example, motorcycle riders will behave differently
than bus drivers because motorcycles are smaller in size and have more maneuverability in
comparison to buses. Additionally, disordered traffic is distinguished by a higher degree of
lateral movements, excessive overtaking, occurrences of abrupt cuts in front of other vehi-
cles, and staggered following (a vehicle following two leaders and positioned in between
them). It is quite likely that this diversity in the vehicle categories and disorderly movement
will lead to distinct travel time distributions and an increase in travel time variability.

Additionally, the limited studies [26,29] conducted in developing countries used the
data from public transportation vehicles (buses) only. Additionally, as pointed out by
a study by Kieu et al. [30], travel time data collected from public transportation vehi-
cles are not a realistic representation of the actual travel time data, especially in terms of
variability, due to the buses’ requirement to stick to schedules, bus queuing time, accelera-
tion/deceleration time, dwell time, etc. Additionally, as stated previously, these vehicles’
drivers will behave differently in disordered heterogeneous traffic conditions. Moreover,
the inclusion of travel time data from almost all vehicle types present in the traffic flow in
the present study is expected to provide a comprehensive picture of travel time variability
and assist policymakers in formulating policies for mitigating traffic congestion.

Additionally, we also observed that most of the research did not use a large dataset
(say, data spanning a year). A large dataset can capture more variability and help in
identifying a more realistic distribution that fits the travel time data.

Inspired by the limitations of previous studies, this study aims to build a machine-
learning-based novel framework to determine the statistical distribution suitable to model
travel time variability, especially in developing nations. The present study considers a
comprehensive set of around 60 distributions to find the optimum/best fit for travel time
data obtained from a large GPS trajectories dataset collected over a period of one year
by installing GPS tracking devices on almost all vehicle types present in the disordered
heterogeneous traffic streams seen in many developing nations. The present study is the
most comprehensive study on travel time variability as it examines the effects of all factors
affecting the travel time variability, including weather conditions, type of the roads, the
direction of the travel, time of the day (TOD), and the day of the week (DOW).

This paragraph outlines how the rest of the manuscript is organized. Section 2 de-
scribes the data collection procedure and pre-processing steps taken to acquire the travel
time data employed in the current study. Section 3 explains the approach used in the
current study to build a machine-learning-based novel framework for travel time distri-
bution determination. This section also provides an overview of the extent and pattern
of travel time variation in heterogeneous disordered traffic streams, which is common in
developing nations. Section 4 provides the details of the results obtained from fitting the
statistical distributions using Easy Fit software and the development of the RUS Boosted
decision-tree-based model for the travel time distribution determination. This section also
includes a discussion related to the salient findings of the study. Lastly, Section 5 includes
the conclusion drawn from the results obtained in the present study. Limitations and
suggestions of the present study are also included in this section.
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2. Study Area and Data Collection
2.1. Study Area

In the present study, Delhi, also known as the National Capital Territory of Delhi
(NCT), is selected as a study area. Delhi is a city and union territory that houses New Delhi,
the nation’s capital. Its population is 16.7 million (according to the census of India, 2011),
and the number of registered vehicles is over one crore (according to the Transport De-
partment of NCT of Delhi, 2017). For the present study, two road segments representing
uninterrupted and interrupted flow in the urban corridor, falling on Delhi-Noida Direct
Flyway and Firoze Gandhi Road, respectively, are selected. The location map of the study
area is shown in Figure 1.
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Figure 1. Location map of the study segments.

DND Flyover is the primary connecting facility between Delhi and Noida, a major
metropolis in the neighboring state of Uttar Pradesh. The freeway segment selected between
the DND Toll, located in the Uttar Pradesh state of India, and Gol Chakkar Park, located
in the Union Territory of Delhi, is an access-controlled uniform section and represents
uninterrupted traffic flow in the urban corridor.

Feroze Gandhi Road is 1.19 km long and located in South East Delhi. This road experi-
ences side friction due to its passage through the market area and represents interrupted
traffic flow in the urban corridor in the true sense. Frequent traffic jams are also observed
on this road which introduce significant variability in the travel time observed on this road.
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2.2. Data Collection

Data for the current study were obtained from an Indian GPS tracking unit manufactur-
ing firm. The firm shared the anonymized GPS trajectories of 2000+ vehicles permanently
equipped with GPS tracking units and running in the study region for around one year.
In GPS trajectories obtained, vehicle identification information was encrypted to protect the
privacy of the vehicle owners. GPS trajectories utilized in the study consisted of different
types of vehicles such as personal cars, taxis, commercial vehicles, etc., covering almost all
vehicle types present in the traffic of developing nations.

Raw data obtained in the form of GPS trajectories consisted of the following informa-
tion: encrypted device ID, timestamp, locational information (latitude, longitude, altitude),
directional information (bearing), engine status (ON/OFF), and speedometer information
(vehicle instantaneous speed). A sample of the raw dataset is shown in Table 2.

Table 2. A sample of the raw data obtained from GPS tracking devices.

Encrypted
Device ID Timestamp Latitude Longitude Altitude Bearing Engine

Status
Speedometer
Reading

8493 31-07-2018 03:20:54 28.65647095 77.43452638 204 0 1 0
458 31-07-2018 03:20:53 28.66622667 77.32199333 N/A 16.34 1 60.5
459 31-07-2018 03:20:51 28.646855 77.41362333 N/A 36.6 1 36.6
8487 31-07-2018 03:20:50 28.64896978 77.34511459 187 0 1 0
12533 31-07-2018 03:20:52 28.68999299 77.35131744 196 241 0 0

Raw weather data for the current study were obtained from the website
www.wunderground.com (accessed on 2 September 2022). This website provides historical
meteorological data, such as temperature, pressure, wind speed, precipitation, visibility,
etc., for the required time frame.

According to past studies, it is widely acknowledged that only bad weather substan-
tially impacts travel times and speeds. Hence, detailed weather conditions are further
classified into only two categories, i.e., interfering and non-interfering weather conditions.

• Non-Interfering Weather Conditions: Weather conditions such as fair, partly cloudy,
mostly cloudy, cloudy, haze, smoke, and blowing dust have no discernible effect on
the traffic conditions. Hence, these are grouped into the non-interfering weather
conditions class.

• Interfering Weather Conditions: all weather situations, such as drizzle, light rain, rain,
heavy rain, thunderstorm, mist, shallow fog, fog, etc., that are expected to have a
considerable effect on travel times and speed. Hence, these are grouped into interfering
weather conditions class.

2.3. Data Pre-Processing

Data pre-processing includes various steps required to transform the raw GPS trajec-
tories into useful travel time data. These steps include data cleaning, trip extraction, and
map matching and are described in detail in this sub-section.

2.3.1. Data Cleaning

Encrypted raw data obtained from the firm were cleaned using usual data cleaning
approaches, such as the removal of duplicate points with identical IDs and timestamps.

Although the probe vehicles’ GPS tracking units can measure the locational informa-
tion with high accuracy, the data obtained from these devices contain a significant number
of outliers for a wide range of reasons, such as multipath signals, signal loss, atmospheric
interference, etc. Therefore, these outliers were removed before proceeding further. In the
current study, GPS points with an instantaneous speed of more than 120 km/h are regarded
as outliers and removed from the dataset; 120 km/h is the maximum speed for which roads
are designed in the study area.

www.wunderground.com
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2.3.2. Data Visualization and Trip Extraction

In the literature, there are several methods for identifying the trips from the trajec-
tories, e.g., temporal gaps (e.g., no change in the location for a minimum of 15 min),
recurring patterns (e.g., daily journeys), positional features (e.g., whether the engine is
on/off), extensive movement (e.g., if the next location is more than 5 km away), etc.
The current study used tableau software for visualizing the data and extracting the trips
falling on the study segments. Finally, travel time data with the direction of travel were
obtained by comparing the arrival and departure times of the vehicles in the study seg-
ment. A total of 52,569 trips were obtained on both study segments by following the
above-mentioned approach.

The trips having travel time longer than walking time are regarded as outliers. In the
current study database, 38 trips matched this outlier criterion. Hence, these were removed
to obtain the final travel time data utilized in the current study for the distribution fitting.

3. Methodology

The different steps involved in the development of a novel framework for travel time
distribution determination are shown in Figure 2.
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3.1. Analysis and Classification of Data

The first step in determining the best-fitted distribution is to classify the data into
various classes representing different traffic conditions. This classification can be carried out
based on the variability range of the degree of capacity utilization. However, as the present
study proposes to develop the framework based on only the GPS trajectories of the probe
vehicles, the variation of the travel time per unit length, which is an indirect measure of the
degree of capacity utilization, is used for the classification of the data. Hence, in the first step
toward the development of the framework for travel time distribution determination, the
travel time variation with the type of road, the direction of the travel, the day of the week
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(DOW), the time of the day (TOD), and weather conditions were analyzed. Figure 3 shows
the sample of the travel time variation obtained from the data used in the current study.
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Figure 3. Sample of the travel time variations on the study segments. (a) Travel time variation
with time of the day for direction Noida to Delhi. (b) Travel time variation for direction Delhi to
Noida. (c) Travel time variation with days of the week. (d) Comparison of travel time variation for
non-interfering and interfering weather conditions. (e) Comparison of travel time variation for DND
flyway and FG road.

Figure 3a,b show the trend of the travel time variation with the time of the day
on weekdays (working days) for DND Flyway during non-interfering (normal) weather
conditions in the directions Noida to Delhi and Delhi to Noida, respectively. From these
figures, it can be inferred that travel time varies with the time of the day, and time of the
day can be classified into five classes, viz., Morning Peak (MP) from 9:00 to 11:00, Inter Peak
(IP) from 11:00 to 16:00, Evening Peak (EP) from 16:00 to 20:00, Late Evening (LE) from
20:00 to 1:00, Late Night (LN) from 1:00 to 6:00, and Early Morning (EM) from 6:00 to 9:00.
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Additionally, the travel time of the trips varies with the direction of the travel. Hence, both
directions shall be considered separately to study and model the travel time variability.

Figure 3c shows the travel time variation with the day of the week for DND Flyway in
the direction of Noida to Delhi during Morning Peak time in normal weather conditions.
From this figure, it can be inferred that trips on working days have more travel time
compared to off days (Sundays). Trips made on Saturdays have in-between travel time. The
possible reason behind this observation could be that many businesses and offices in Delhi
are off on Sundays only, while others have two off days (Saturdays as well as Sundays).
Based on the travel time variation shown in Figure 3c, days of the week can be classified
into three categories: working days (WD), Saturdays (SAT), and Sundays (SUN).

Figure 3d shows the comparison of the travel time variation during normal weather
conditions and interfering weather conditions for DND Flyway in the direction of Noida
to Delhi on weekdays. From this figure, it can be inferred that the travel time of the
trips increases significantly during the interfering weather conditions. Hence, travel time
variability shall be studied separately during normal and interfering weather conditions.

Figure 3e shows the comparison of the travel time in seconds per km on an uninter-
rupted urban corridor (DND Flyway) and an interrupted urban corridor (FG Road). From
the figure, it can be inferred that during rush hours (morning peak), both roads behave at
almost the same travel speed, but during non-rush hours, travel speed on the interrupted
corridor is comparatively slow. Hence, travel time variability shall be modeled differently
on interrupted and non-interrupted urban corridors.

Hence, based on the above inferences, travel time data were categorized into 144 cate-
gories (based on the type of road, the direction of travel, the day of the week, the time of
the day, and weather conditions). As of the date this paper was written, we could not find
any research that has taken such a comprehensive and detailed classification of travel time
into account. Tables 3 and 4 show the descriptive statistics of the travel time data obtained
on interrupted and uninterrupted urban corridors, respectively.

Table 3. Descriptive statistics for travel time data on uninterrupted urban corridor (DND Flyway).

Travel
Direction

DOW TOD
Non-Interfering Weather Conditions Interfering Weather Conditions

N TMin TMax ATT SD N TMin TMax ATT SD

Noida to Delhi

Weekdays

MP 1625 165 547 441 60 386 170 810 588 137
IP 3722 178 654 255 36 503 140 732 500 100
EP 1751 159 640 253 42 264 193 705 510 100
LE 2788 112 1192 208 63 650 121 591 410 81
LN 1038 107 958 154 55 332 139 585 414 80
EM 1311 146 556 189 37 251 101 536 403 78

Saturdays

MP 749 168 489 359 52 58 257 673 499 94
IP 749 188 529 271 42 101 103 707 480 94
EP 322 173 521 256 41 49 226 695 494 107
LE 369 129 499 218 57 87 187 573 411 79
LN 221 116 681 165 67 55 165 565 433 76
EM 330 160 493 191 28 63 225 569 415 68

Sundays

MP 209 145 555 318 65 49 256 669 495 91
IP 801 175 413 251 38 110 219 649 475 100
EP 354 175 386 258 35 54 154 699 467 113
LE 346 121 536 208 58 81 224 581 417 78
LN 145 120 359 161 37 37 170 559 415 85
EM 305 160 320 188 21 59 133 557 413 85
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Table 3. Cont.

Travel
Direction

DOW TOD
Non-Interfering Weather Conditions Interfering Weather Conditions

N TMin TMax ATT SD N TMin TMax ATT SD

Delhi to Noida

Weekdays

MP 981 166 972 310 72 230 137 680 516 116
IP 2513 181 740 263 44 343 102 669 491 96
EP 2019 187 629 270 35 302 200 720 551 112
LE 2164 124 933 214 57 508 157 582 425 77
LN 966 115 577 161 50 242 165 596 431 81
EM 1663 153 769 195 42 317 120 588 421 75

Saturdays

MP 168 168 452 318 55 41 104 677 491 117
IP 463 192 504 263 39 65 291 672 495 81
EP 442 171 559 261 46 65 197 670 493 111
LE 417 125 768 211 59 96 178 584 422 90
LN 202 112 490 163 51 51 121 579 428 83
EM 333 153 500 187 30 62 170 583 413 79

Sundays

MP 159 126 481 301 59 36 214 674 497 95
IP 466 163 427 246 40 64 195 639 474 98
EP 480 166 527 253 43 71 195 662 492 103
LE 410 106 748 205 54 97 212 568 440 73
LN 192 117 493 169 57 49 155 591 438 68
EM 324 166 293 191 18 65 148 575 406 87

Tables 3 and 4 shows that travel time varies substantially even under free-flow condi-
tions prevailing in the late night period of the day. This large variation hints towards the
problem of heterogeneity in the traffic streams of developing nations. Additionally, a large
variation in travel time is observed during traffic jam conditions. This is possibly due
to the combined effect of heterogeneity and disorderliness prevalent in the traffic stream.
From these observations, it can be inferred that traffic conditions in developing nations are
different from those in developed nations, which have nearly homogeneous traffic with
proper lane discipline.

Table 4. Descriptive statistics for travel time data on interrupted urban corridor (FG Road).

Travel
Direction

DOW TOD
Non-Interfering Weather Conditions Interfering Weather Conditions

N TMin TMax ATT SD N TMin TMax ATT SD

UP

Weekdays

MP 617 63 200 140 22 145 134 255 213 22
IP 1310 40 220 120 23 179 104 236 183 22
EP 885 82 204 158 18 132 157 270 227 23
LE 1004 98 195 112 9 235 135 261 219 23
LN 323 70 218 87 18 81 93 215 165 24
EM 649 91 162 104 7 124 137 243 198 22

Saturdays

MP 122 39 192 124 29 29 123 219 184 21
IP 290 59 177 116 19 38 135 210 177 18
EP 176 77 194 162 18 26 171 256 224 22
LE 190 94 151 108 9 46 150 250 212 28
LN 51 68 148 83 12 14 120 198 168 22
EM 125 92 161 103 9 24 154 236 204 23

Sundays

MP 117 57 211 128 28 27 115 206 182 20
IP 277 68 201 119 19 36 57 217 175 29
EP 167 80 193 162 18 25 158 252 219 25
LE 181 94 167 107 10 36 149 256 220 23
LN 48 67 195 82 18 10 112 192 165 26
EM 119 90 131 100 6 23 147 241 203 25
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Table 4. Cont.

Travel
Direction

DOW TOD
Non-Interfering Weather Conditions Interfering Weather Conditions

N TMin TMax ATT SD N TMin TMax ATT SD

DOWN

Weekdays

MP 558 56 205 143 22 129 126 258 214 23
IP 1184 46 208 122 24 160 97 227 182 24
EP 796 88 205 160 18 122 165 264 225 21
LE 906 97 233 112 10 212 128 271 218 21
LN 291 64 188 80 14 73 82 213 158 25
EM 586 95 173 107 7 112 118 249 196 25

Saturdays

MP 121 70 191 127 25 28 105 208 182 22
IP 284 83 180 126 17 39 115 216 180 21
EP 172 104 202 164 19 26 184 261 223 20
LE 185 94 186 109 10 44 157 259 220 20
LN 49 65 202 81 20 13 87 190 151 30
EM 122 96 150 105 9 24 137 241 197 22

Sundays

MP 110 75 200 127 28 27 135 211 183 20
IP 262 65 183 118 19 37 89 238 173 29
EP 160 105 199 163 19 23 159 258 222 24
LE 172 93 148 106 8 40 160 264 223 19
LN 46 62 227 80 25 12 114 188 162 22
EM 114 94 133 104 7 21 145 237 203 21

3.2. Distribution Fitting

Statistical distributions are fitted to each category’s observed travel time data in this
step. In the present study, a comprehensive set of around 60 statistical distributions,
including the most widely used distributions in the literature, such as Burr distribution,
Gamma distribution, and lognormal distribution, is used to find which distribution can
match the travel time data desirably. The current study also estimates the parameters of each
distribution in each category. For the distribution fitting and their parameter estimation,
the EasyFit software by math wave is used. EasyFit covers a wide range of continuous
distributions, which are classified into the following four types (distribution types):

• Bounded Distributions: Distributions that fall into this category include Uniform
distributions, Triangular, Reciprocal, Power Functions, PERT, Beta, and Johnson-
Simons-Brown (JSB). These distributions are bounded between a range of [a,b].

• Unbounded Distributions: Normal, Logistic, Cauchy, Error, Error Function, Johnson
SU, Hyperbolic Secant, Student’s t distribution, and Laplace (Double Exponential) are
among the unbounded distributions. These distributions are unbounded and have a
range of (−∞, +∞).

• Non-Negative Distributions: The majority of these distributions are defined for the
range x > γ, which is equivalent to x − γ ≥ 0, where γ is a continuous location
parameter. Log-logistic, Inverse Gaussian, Weibull, Levy’s Log-Gamma, Rayleigh’s
Rice, Nakagami’s Lognormal, Pearson V, Pearson VI, Pareto (first kind), and Pareto
(second kind) are among the non-negative distributions supported by the EasyFit
software. Most of the non-negative distributions supported by EasyFit are available in
two versions or forms: a simplified version and a complete version.

• Advanced Distributions: EasyFit’s classification of continuous distributions is based
on various definitions. As a result, some of the continuous distributions do not fall
into any of the categories listed above. Simultaneously, they frequently represent
more valid models than a large number of other distributions. EasyFit supports ad-
vanced distributions such as generalized Pareto, generalized extreme value (GEV),
Log-Pearson III, Wakeby, generalized logistic, Phased Bi-Exponential, and Phased
Bi-Weibull. These distributions are generated by combining two or more basic dis-
tributions. For instance, the GEV distribution is generated by combining Weibull,
Gumbel, and Frechet distributions.
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For checking the goodness-of-fit, the three most widely used non-parametric tests,
namely the Kolmogorov–Smirnov, Anderson–Darling, and chi-squared tests, are used.

3.2.1. Kolmogorov–Smirnov Test

Suppose the travel time dataset from particular traffic conditions consists of T1, T2 . . .
Tn as data points from some distribution with cumulative distribution function (CDF) F(x).
Then, empirical CDF is defined as follows:

Fn(T) =
1
n
× [Number o f Observations ≤ T] (1)

The following equation defines the Kolmogorov–Smirnov test statistic (D):

D = max
0≤i≤n

(
F(Ti)−

i − 1
n

,
i
n
− F(Ti)

)
(2)

3.2.2. Anderson–Darling Test

In this test, tails are given more weight as compared to the Kolmogorov–Smirnov test.
The following equation defines the Anderson–Darling (A-D) test statistics (A2):

A2 = −n − 1
n
×

n

∑
i=1

(2i − 1).[lnF(Ti) + ln(1 − F(Tn−i+1))] (3)

A-D test critical values typically depend on the particular distribution being evaluated.
However, it is difficult to find tables of critical values for several distributions. EasyFit uses
an approximation formula, which gives the same critical values for all distributions based
on the sample size only. A-D test based on these same critical values for all distributions is
less likely to reject a good fit than the original A-D test and can be used to compare several
fitted distributions.

3.2.3. Chi-Squared Test

This test is used for continuous data only, and the test statistic’s value depends upon
the data’s binning. Various formulas can be used to determine bin size based on the sample
size (N). EasyFit software uses the following empirical formula to calculate the number of
bins (k) and can group the data into intervals of equal width or probability.

k = 1 + log2 N (4)

The chi-squared test statistic (χ2) is defined as follows:

χ2 =
N

∑
I=1

(Oi − Ei)
2

EI
(5)

Although, as per the original test, DOF (degree of freedom) is calculated as k-c-1,
EasyFit calculates DOF as k − 1 since this definition reduces the chances of rejecting the fit
in error. Hence, the critical value for the chi-squared test in EasyFit is defined as χ2

1−α,k−1.
Next, the fitted distributions are ranked based on the test statistics, and the best-fitted

distributions are identified based on the test statistics values of the three tests as mentioned
above for each of the 144 categories considered in the study.

3.3. Determination of Distribution Suitable for Travel Time Data

In order to determine the most appropriate statistical distribution for travel time
under different traffic conditions, first, the data consisting of the best-fitted distribution
with the corresponding test, type of the road, the direction of the travel, DOW, TOD, and
weather conditions were split into the training (70%) and test (30%) dataset. Then, the five
most popular distributions among the best-fitted distributions determined in the previous
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step were identified. Finally, the RUS Boosted ensemble classifier was trained on the
training dataset using MATLAB to determine the travel time distribution for the instances
in the test dataset. In the earlier studies, the distribution which has the highest acceptance
rate is assumed to fit the travel time data in all scenarios. As the distribution with the
highest acceptance rate need not be the best-fitted distribution, the authors think that the
assumption of the highest acceptance rate distribution fitting to all scenarios made in earlier
studies is unreasonable, especially in heterogeneous disordered traffic conditions.

4. Results and Discussion

The authors observed that during the different traffic conditions, not only the average
travel time but also the shape of the travel time distribution are different. Figure 4 shows
the travel time histogram for different traffic conditions.
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Figure 4. Histograms for the travel time variation in different traffic conditions. (a) For Direction
Noida to Delhi on weekdays in non-interfering weather conditions during morning peak, (b) in-
terpeak, (c) evening peak, (d) late evening, (e) late night, (f) early morning. (g) For direction Noida to
Delhi in non-interfering weather conditions during morning peak on Saturdays, (h) Sundays. (i) For
direction Delhi to Noida on weekdays in non-interfering weather conditions during morning peak.
(j) For interfering weather conditions on weekdays during interpeak in direction Noida to Delhi
(k) For FG road on weekdays during morning peak in non-interfering weather conditions.
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From Figure 4a it can be observed that the travel time distribution curve is left-skewed
during rush hours. The left-skewed shape possibly represents that the drivers are forced
to move slowly. On the contrary, the travel time distribution curve under the free flow
condition shown in Figure 4e is right-skewed, which possibly indicates that drivers are free
to drive at any speed they desire, and most of the drivers prefer to drive fast. The same
statistical distribution cannot model these different shapes of the travel time distribution
curve. From this observation, the authors infer that the studies available in the literature
may also have considered different traffic situations, resulting in different distributions.
Hence, there is disagreement on the best distribution option for fitting travel time data in
the literature.

This study used a comprehensive set of around 60 statistical distributions to find
the best-fitted distribution based on the test statics value of three commonly used tests
(KS, AD, CS). Figure 5 shows the plot of the various statistical distributions fitted to the
travel time data and the frequencies of their being the best-fitted distributions over the
training dataset.
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Figure 5 shows that the Burr, Johnson SB, Log Logistic, Weibull, and general extreme
value (GEV) are the five most popular distributions among the best-fitted distributions over
the training dataset. Analysis of the best-fitted distributions over the test dataset showed
that these distributions are also the five most popular distributions over the test dataset.
These distributions are also among the best-fitted distributions reported for the travel time
data in the literature.

In the next step, the best-fitted distribution among the five most popular distributions
(Burr, GEV, Johnson SB, Log Logistic, and Weibull) was determined for each of the 144 traffic
situations generated based on the test statics values of tests mentioned earlier.

Finally, the RUS Boosted ensemble classifier was trained on the training dataset having
the best-fitted distribution data with the corresponding road type, the direction of the
travel, DOW, TOD, and weather conditions.

It was observed that data points of different distributions differ significantly, as ex-
pected. Hence, travel time distribution determination using a classifier has an issue of
class imbalance. Therefore, the classifier employed for the travel time distribution deter-
mination needs to use data sampling/boosting techniques to alleviate the issue of class
imbalance. Data sampling strategies modify the training dataset’s class distribution in an
effort to address the issue of class imbalance. Random Under Sampling (RUS) used in the
present study removes instances from the dominant class randomly until the required class
distribution is reached.

In the present study, the RUS Boosted ensemble classifier is used. Ensemble classifiers
aggregate the classifying capability of the individual classifiers. Decision tree ensembles
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are the most effective classifiers and can solve the instability issue of the decision tree.
In ensemble classifiers, weak learners are run repeatedly on the training data and combined
to give superior performance. These models generally have the problem of overfitting. So,
five-fold cross-validation is used to protect the model against overfitting. Additionally,
cross-validation is also utilized for tuning the model’s hyperparameter.

The model developed in the present study has a validation and test accuracy of
92.4% and 90.7%, respectively. The model has a training time of 3.8 s. Table 5 shows the
comparison of the present study with similar recent studies available in the literature in
terms of performance and robustness.

Table 5. Comparison of the present study with recent similar studies.

S. No. Study No. of Distributions
Considered

Number of Traffic
Scenarios Considered

Acceptance
Rate

1 Present study 60 144 98.4%
2 [25] 7 6 91.6%
3 [16] 4 16 87.5%
4 [22] 4 24 79.2%

The present study determined the best-fitted travel time distribution with 90.7%
accuracy, i.e., in 90.7% of the instances, the distribution determined by the model developed
in the present study is the same as the best-fitted distribution. In the rest of the cases, it is the
second or third best-fitted distribution. Here, it should be noted that the model proposed
in the study gave the rejected distribution in only two instances.

Therefore, the acceptance rate for the distribution determined by the model developed
in the present study is 98.4%. The model developed in the present study has an acceptance
rate of 98.4%. Among the studies available in the literature, the study by Adnan et al. [25]
determined the distribution with the highest acceptance rate (91.6%). So, in terms of
acceptance of the TTD distribution recommended by the studies, the present study is better
than the highest-performing study available in the literature.

Additionally, the present study is most robust in terms of the number of traffic scenar-
ios and statistical distribution considered. Hence, the framework proposed in the current
study can be utilized for widely varying traffic situations.

To further analyze the class-wise performance of the model, a confusion matrix was
produced. Figure 6 shows the confusion matrix for travel time distribution (TTD) deter-
mined by the proposed framework over the test dataset.
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In the classification tasks, classification can fall under any of the four categories,
namely true positive (TP), true negative (TN), false positive (FP), and false negative (FN),
as per the conditions defined below:

• Classification xi is a true positive for class c if both the actual and the predicted classes
of xi are the same as c.

• Classification xi is a true negative for class c if neither of the actual or predicted classes
of xi matches with c.

• Classification xi is a false positive for class c if the predicted class of xi matches c but
the actual class does not.

• Classification xi is a false negative for class c if the actual class of xi matches c but the
predicted class does not.

As the data points in all classes are not equal, to further evaluate the performance
of the model developed in the present study, standard measures for evaluation of the
class-wise performance of the classifiers, such as precision, sensitivity, and F1-score, are
used. The formulae to calculate these measures are shown in the following equations.
Table 6 shows the class-wise performance of the framework proposed in the present study
using these measures.

Precision =
TP

TP + FP
(6)

Sensitivity =
TP

TP + FN
(7)

F1 − score =
2 ∗ TP

2 ∗ TP + FP + FN
(8)

Speci f icity =
TN

TN + FP
(9)

FPR =
FP

TN + FP
(10)

Table 6. Class-wise performance of the framework proposed in the study.

S. No. Class Precision Sensitivity F1-Score Specificity FPR

1 Burr 90.48 95.00 92.68 98.17 1.83
2 GEV 78.57 91.67 84.62 97.44 2.56
3 Johnson SB 90.00 75.00 81.82 98.10 1.90

4 Log
Logistic 97.14 91.89 94.44 98.91 1.09

5 Weibull 89.74 97.22 93.33 95.70 4.30

The above table shows that the Log Logistic class has maximum precision while the
Weibull class has the highest sensitivity. As in the present study, both false positive and
false negative classifications are equally critical and have similar costs. Hence, the F1-score
is better for comparing the model’s performance over different classes. Burr, Log Logistic,
and Weibull classes have good F1-scores and hence minimum total error (Type-I and Type-
II error). GEV and Johnson SB classes have the comparatively lesser values of F1-scores,
possibly due to their fewer data points in the training dataset. If the training data size of
these distributions is increased, the overall accuracy is expected to increase further.

5. Conclusions

This study aims to analyze the travel time variability by fitting suitable statistical
distribution to travel time data collected from the disordered heterogeneous traffic streams
common in developing nations such as India, Sri Lanka, Bangladesh, Pakistan, Bhutan,
Nepal, and others. In this study, travel time data are derived from the GPS trajectories of
approximately 2000 probe vehicles equipped with GPS tracking devices and operating in
the study area (Delhi–Noida Direct Flyway) in the capital region of India. The concept of
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tracking a representative sample of almost all vehicle types present in the traffic stream of
a developing nation for one year to obtain a large travel time dataset used in the current
study is unique and novel.

First, the travel time data extracted are classified into 144 categories according to the
type of road, the direction of the travel, the day of the week, the time of the day, and weather
conditions. This classification is based on the assumption that travel time distribution
would differ in various spatial, temporal, and weather contexts. Next, a comprehensive set
of approximately 60 statistical distributions is examined for their ability to fit the travel time
data for identified categories by using three widely used non-parametric goodness-of-fit
tests (namely, Kolmogorov–Smirnov, Anderson–Darling, and chi-squared tests). Finally,
an RUS Boosted decision tree classifier is used to determine the best-fitted distributions in
different traffic scenarios. The following inferences can be drawn from the results obtained
from this study:

A single statical distribution cannot represent the travel time variability in differ-
ent traffic situations, especially in developing nations with heterogeneous disordered
traffic conditions.

• Disagreement on the best distribution option for fitting to travel time data among the
studies available in the literature is possibly due to differences in the traffic situations
prevailing in their study area.

• An RUS Boosted decision-tree-classifier-based novel framework proposed in the study
can determine the best-fitted distribution for the travel time data with 91% accuracy.

• Travel time distributions determined by the novel framework proposed in the current
study have an acceptance rate of 98.4%, even in heterogeneous disordered traffic
conditions. This acceptance rate is expected to increase if the framework is applied to
travel time data in developed countries with lane-disciplined homogeneous traffic.

The novel framework proposed in the current study can be utilized for travel-time-
distribution-related work in the real world. However, the proposed framework has limita-
tions associated with the data collection through GPS devices, such as the loss of signals
on roads surrounded by high-rise buildings and passing through underground tunnels,
temporal and spatial resolutions of the data obtained, and the RUS Boosted ensemble
classifier employed in the framework. In the future, network-level travel time distribution
analysis and testing for truncated and multimode distribution can be conducted. The
results of distribution fitting can also be utilized for forecasting travel times.
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