
Citation: Domenico, A.;

Giancarlo, R.; Lo Bosco, G. Learned

Sorted Table Search and Static

Indexes in Small-Space Data Models.

Data 2023, 8, 56. https://doi.org/

10.3390/data8030056

Academic Editors: Donatella Merlini

and Irene Finocchi

Received: 20 January 2023

Revised: 22 February 2023

Accepted: 23 February 2023

Published: 3 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

data

Article

Learned Sorted Table Search and Static Indexes in Small-Space
Data Models †

Domenico Amato , Raffaele Giancarlo * and Giosué Lo Bosco

Dipartimento di Matematica e Informatica, Universitá degli Studi di Palermo, 90123 Palermo, Italy;
* Correspondence: raffaele.giancarlo@unipa.it
† An extended abstract related to this paper has been presented at the 20th International Conference of the Italian

Association for Artificial Intelligence (AixIA 2021), Milano, Italy, 1–3 December 2021. The proceedings are
Lecture Notes in Computer Science Vol. 13196, by Springer.

Abstract: Machine-learning techniques, properly combined with data structures, have resulted in
Learned Static Indexes, innovative and powerful tools that speed up Binary Searches with the use of
additional space with respect to the table being searched into. Such space is devoted to the machine-
learning models. Although in their infancy, these are methodologically and practically important,
due to the pervasiveness of Sorted Table Search procedures. In modern applications, model space
is a key factor, and a major open question concerning this area is to assess to what extent one can
enjoy the speeding up of Binary Searches achieved by Learned Indexes while using constant or nearly
constant-space models. In this paper, we investigate the mentioned question by (a) introducing two
new models, i.e., the Learned k-ary Search Model and the Synoptic Recursive Model Index; and
(b) systematically exploring the time–space trade-offs of a hierarchy of existing models, i.e., the ones
in the reference software platform Searching on Sorted Data, together with the new ones proposed
here. We document a novel and rather complex time–space trade-off picture, which is informative for
users as well as designers of Learned Indexing data structures. By adhering to and extending the
current benchmarking methodology, we experimentally show that the Learned k-ary Search Model is
competitive in time with respect to Binary Search in constant additional space. Our second model,
together with the bi-criteria Piece-wise Geometric Model Index, can achieve speeding up of Binary
Search with a model space of 0.05% more than the one taken by the table, thereby, being competitive
in terms of the time–space trade-off with existing proposals. The Synoptic Recursive Model Index
and the bi-criteria Piece-wise Geometric Model complement each other quite well across the various
levels of the internal memory hierarchy. Finally, our findings stimulate research in this area since
they highlight the need for further studies regarding the time–space relation in Learned Indexes.

Keywords: sorted table search; database management; learned indexes; machine learning

1. Introduction

Fundamental data structures, such as Hash Tables and Balanced Search Trees, are
not only very useful in a broad range of application domains but are also so fundamental
for computer science to be part of widely adopted textbooks in the discipline, e.g., [1].
With the aim of obtaining time and space performance improvements, an emerging trend
is to combine machine-learning techniques with data-structure techniques. This new
research area goes under the name of Learned Data Structures, and it was initiated in 2018
by Kraska et al. [2]. In particular, in this paper, Learned Data Structures were used mainly
for the case of searching in sorted sets. This particular problem can be solved in classic
algorithmics by using a well-known and optimal routine, i.e., Binary Search [3,4], or more
sophisticated data structures, e.g., classic indexes, such as B-Trees [5]. Usually, the classic
approaches consider all of the element positions in a sorted list as possible candidates to be
answers to a search query.
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Such an initial list is then refined in at most O(log n) iterations, where n is the size of
the sorted set. The main novelty in the Learned Data Structures paradigm is the use of a
machine-learning model trained over the elements of a sorted set that can learn the dataset
distribution. This model uses such knowledge to make a prediction of the position of the
query element in the sorted set. The prediction may be inaccurate, and thus the model
returns an interval to search that accounts for prediction errors.

As a consequence, the output of the model is an interval of positions to search. The
better the model, the smaller the interval. The final search stage on the reduced table
positions interval is performed via Binary Search. This particular kind of Learned Data
Structure is referred to as Learned Index and is the main object of this research. In what
follows, in order to place our contributions in the proper context, we provide a brief
literature review, followed by a presentation of our contributions to this novel area, together
with a road-map of the paper in which we also highlight where it has been expanded with
respect to [6].

1.1. Literature Review

Although the Learned Data Structures research field is a very novel one, it has already
been extensively studied in the literature [7–9]. In what follows, we mention the main
methods that can be useful for a better comprehension of the contributions provided in
this paper. To this end, the most significant Learned Indexes are presented, with specific
reference to their training procedures and relative benchmarking studies. Moreover, exam-
ples of real-world applications of Learned Indexes are provided, the important aspect of
time/space correlation is highlighted, and, for completeness, examples of other Learned
Data Structures different from Learned Indexes are given. However, the presentation is
intended to be synoptic, since the interested reader can find details in the papers that are
mentioned, including a recent review on the subject [7].

1.1.1. Core Methods and Benchmarking Platform

The Recursive Model Index [2] (RMI) is the first Learned Index proposal. It is a
hierarchical model that estimates the distribution of the data via a top-down approach. It
can be considered as a tree-like structure, where the nodes are generic models, ranging
from neural-network models [10] to simple linear or polynomial-regression models [2].
Given a query element, the internal nodes at each level identify the index of the next model
(node) to use in the hierarchy. Finally, these provide a reduced interval to search into.

The tree structure of the RMI is characterized by the number of levels, the number
of nodes for each level and the kind of models adopted at each node. As a consequence,
the RMI depends on a consistent number of hyper-parameters, whose estimation can be a
serious issue in real-world contexts as highlighted by Maltry et al. [11]. To overcome these
difficulties, Marcus et al. provided a platform, referred to as CDFShop [12], that can be
used to generate the code of a specific RMI, given an input dataset and specific values of
its hyper-parameters. In addition, given an input dataset, the platform can provide up to
ten RMIs.

Following the seminal proposal of the RMI, various new versions of Learned Indexes
were designed. This is the case of the Piece-wise Geometric Model Index [13] (PGM) that
estimates the data distribution in a bottom-up fashion by a piece-wise linear approximation
algorithm [14]. Differently from the RMI, it is based on only one hyper-parameter ε, which
represents the maximum error admitted for the index prediction. Note that, despite the
value of ε guaranteeing an upper bound on the search time, it does not provide any bound
suggestion on the additional space used by any Learned Index with respect to the size of
the input data.

The FITing-Tree model by Kraska et al. [15] was designed to overcome the mentioned
space issue. It is an extension of the PGM using the maximum number of approximation
segments as an additional parameter so that it is possible to compute the maximum
additional space used by this model. Although characterized by this new space-bound



Data 2023, 8, 56 3 of 33

property, it is not considered in this study because of its poor performance in terms of the
query time with respect to other Learned Indexes, as remarked upon in the literature [16].

The Radix Spline index [17] (RS) is another example of a bottom-up approach to
Learned Indexing that, in a different manner to the PGM, estimates the distribution through
a spline curve [18]. As for the FITing-Tree model, search time and space can be controlled
through two hyper-parameters, i.e., the maximum error ε and the number of bits needed to
index the spline points. However, we anticipate that such control of space is rather poor as
documented by our experiments.

Except for the PGM, all the Learned Indexes mentioned so far are static and need to
be rebuilt in the case the input dataset changes. Such a reconstruction could affect seriously
the Learned Index performances, and thus a new class of indexes referred to as dynamic,
was proposed. This is the case of the Adaptive Learned Index [19] (ALEX), which provides
a Dynamic Learned Index via an extension of the RMI.

Due to the high number of Learned Index proposals, it is evident that it is necessary
to determine the strengths and weaknesses of each method. To this end, Marcus et al. [9]
provided an exhaustive benchmarking study of the main Learned Indexes on real datasets,
supported by the development of a software platform referred to as Searching on Sorted
Data [16] (SOSD). The mentioned study approaches the question by considering only
Binary Search as the final level of Learned Indexing.

Additional pros/cons studies are available at [6,20] also considering different types of
search procedures, such as Uniform Binary Search and k-ary Search. However, it is evident
that no clear winner emerges, across the many datasets and search routines used for
experimentation. It is also evident that, as also summarized in a web platform [21], in most
cases, the best-performing indexes are the RMI, PGM and RS. As a consequence, these
three Learned Indexes are the ones considered in this paper as a baseline to compare against.

1.1.2. Applications

Classic Indexes are widely used in a variety of real-world contexts, such as databases [22]
and search engines [23]. As a consequence, Learned Indexes can also make improvements
in various related applications. In particular, they are widely used for databases, pro-
viding new challenges and opportunities [24], such as the development of the so-called
Learned Databases [25]. They have also been applied in specific kinds of databases, such as
spatial [26,27] and biological [28]. Finally, another very recent application is the develop-
ment of frameworks for optimizing database queries [29–32].

Once we have outlined, at a high level, the range of applications for Learned Indexes,
it is appropriate to present a well-documented topic regarding the time/space trade-off
of Binary Search: Static In-Memory Databases [22]. The purpose is to illustrate the
importance and peculiarity of the time/space trade-off when dealing with Sorted Table
Search Procedures since Static Learned Indexes speed up those routines using more space.
As well-presented by Rao and Ross [22], the deployment of large databases in main memory
is now possible and highly recommended since the query time greatly benefits from the
data being in main memory.

Given that Binary Search has a logarithmic time performance and requires no addi-
tional space with respect to the Sorted Table, i.e., the database in main memory, Rao and
Ross investigated the use of additional space in order to obtain indexing data structures
that can provide faster query times with respect to Binary Search. They proposed the CSS
Tree. Learned Indexes improved the query time of this data structure using less space with
respect to it [13].

Analogous results hold for many other static indexing data structures. Therefore, the
proper formulation of a time/space trade-off in this context is to take constant additional
space with respect to the table as the space baseline and the query time of Binary Search
as the time baseline. Then, as investigated by Rao and Ross, it is natural to ask if, by
using more space, we can design indexes that have a query time faster than Binary Search.
Learned Indexes are the most recent and effective answer to this question.
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1.1.3. The Emergence of a New Role of Machine Learning for Data Processing and Analysis

Analogously to Learned Indexes, many methods can benefit from the combined
approach of machine learning and classic data structures. An example that has been
extensively discussed in the literature is the case of Bloom Filters [33], whose learned
version was introduced by Kraska et al. [2], extended with several variants in [34–36] and
analyzed in more depth by Fumagalli et al. [37]. Other examples are the learned versions of
Hash Functions [2,38], Binary Trees [39], Rank/Select Dictionaries [40], Suffix Arrays [41]
and String Dictionaries [42]. However, the importance of using a learning phase to improve
the performance of a classic algorithm has not been limited only to those concerned with
searching in sorted sets but has also, recently, been used for caching, scheduling and
counting with data streams [8] and in the specific case of sorting operations [43].

Due to the line of research outlined thus far, a new role has emerged for machine
learning in data processing and management. Indeed, it is well-established that machine-
learning techniques have a broad spectrum of applications in data-driven domains as well
exemplified in [44,45]. However, how to leverage those techniques to obtain improvements
in the time and/or space performance of data-processing procedures that can be seen as
belonging to the area of data structures and databases has been overlooked. Learned Data
Structures and algorithms open the way to the exploration of machine-learning techniques
to design pre-processors to boost the performance of data structures and algorithms. The
implications for applications are natural and real as discussed in [46], including a better use
of time and space and the ability to process larger amounts of data with fewer resources.
Database systems, which are essential to any kind of large data-analysis task, can benefit
the most from this new role of machine learning [47].

1.2. Our Contributions to Learned Indexing

As we mentioned, all Learned Index proposals offer some kind of time/space trade-off
with respect to Binary Search. In turn, the abundance of those new data structures gives
rise to many options regarding the use of space and time and which one to pick is specific
to the application that one has in mind and the resources one has available. Unfortunately,
this aspect regarding the time/space trade-off of Learned Data Structures has not been
investigated in depth and rigorously following the methodology coming from classic data
structures [3]. In particular, given that the intent is to speed up Binary Search with the use
of additional space with respect to the input Sorted Table, we are missing an assessment
of how effective constant-space models would be at speeding up Sorted Table Search
procedures. In summary, two related fundamental questions have been overlooked and are
stated here:

• How space-demanding should a predictive model be in order to speed up Sorted
Table Search procedures.

• To what extent can one enjoy the speeding up of the search procedures provided by
Learned Indexes with respect to the additional space one needs to use.

It is relevant to state that, given the previous work that we mentioned motivating the
use of more space with respect to Binary Search in order to obtain better query times, the two
related questions above are methodologically important since a systematic and coherent
study of whether we can obtain Learned Indexes with small-space occupancy, i.e, close to
constant, such as a classic Binary Search, with the characteristic of being able to speed up
Sorted Table Search procedures, are not available. Moreover, such a characterization has
important practical implications as discussed in [13,22].

1.3. Road Map of the Paper

This paper considerably expands the presentation and the results contained in [6]. In
particular, we describe our research in full and provide details with an in-depth analysis.
We also include material in an appendix. We provide a road map of the paper and our
contributions with respect to the state of the art. Moreover, noting that the Introduction
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was considerably expanded with respect to the conference version [6], we also highlight the
additions that we provide in the remaining sections with regard to the conference paper [6].

Section 2 is dedicated to a formal definition of the search on sorted data problem with
an outline of the classic algorithmic solution via Binary Search. Then, we provide and
discuss a very simple approach to learning from data to speed up searching in sorted tables.
Moreover, we propose a classification of Learned Indexes that includes two new ones as
well as some that are leaders in the literature, i.e., RMI, RS and PGM. In particular, the
first new model, referred to as Learned k-ary Search (KO-US), uses constant space, while
the other new model, referred to as Synoptic RMI (SY-RMI), uses a user-defined amount
of space.

The two models were introduced for the first time in [6], where they also presented
an outline of their evaluation. As stated, this paper is an extended version of a conference
paper [6] and provides the full spectrum of our experiments and evaluations. In regard to
the conference paper [6], Section 2 here accounts for Sections 2, 3.1 and 3.2 in that paper,
with very few additions in detail.

Section 3 provides our experimental methodology, which extends the one recom-
mended in the benchmarking study by Marcus et al. [9]. In particular, in order to provide
an evaluation of how Learned Indexes perform when the input table fits the different levels
of the internal memory hierarchy, we extended the datasets used in the benchmarking
study. This is another methodologically important contribution of this scientific research.
In regard to the mentioned conference paper [6], Section 3 accounts for Section 3.4 of that
paper, which is now considerably extended in terms of experimental details, and we also
include material presented in Appendixes A.2 and A.4.

Section 4 describes and analyses the training phases of the two novel models. In
particular, we focus on how the Synoptic RMI is able to learn, in small space, key features of a
variety of real datasets for the purpose of prediction. Moreover, we report useful indications,
overlooked so far in the literature, for Learned Index designers and practitioners about
model training across different memory levels, shedding additional light on the training
phase of the RS and the PGM. It is useful to recall that the RS was shown to be faster to
train than the PGM only on large datasets [17]. Here, we show that, on small datasets,
this is no longer the case. In regard to the conference paper [6], this section accounts for
Section 4 in that paper, which is now considerably extended in terms of the description of
the training phase experiments with a full discussion of the obtained results.

Section 5 describes and analyzes the Learned Indexes query phase, providing the main
contributions of this paper. In particular, concerning the additional space, we analyze two
possible cases: constant or nearly constant and parametric.

For the case of constant space, our main contribution is the study of the performance
of the Learned k-ary Search Model in comparison with a Cubic Regression Model and
Binary Search alone. Indeed, we anticipated that the Learned k-ary Search Model would
perform better than the Binary Search alone and the Cubic Model, except in the case when
the dataset distribution was very complex to approximate. This issue represents the main
weakness of constant-space models. In addition, the Learned k-ary Search Model was
compared with a top performing Binary-Search routine that uses a layout other than sorted,
i.e., the Eytzinger Layout [23]. Our findings provide evidence that the Eytzinger Layout,
when possible to use, is always competitive with respect to all the models with constant or
nearly constant space—even the Learned k-ary Search. Unfortunately, as indicated in what
follows, such a layout cannot be used within the current Learned-Indexing paradigm.

For the case of parametric space, we provide a confirmation and an extension of the
findings provided in the benchmarking study by Marcus et al. [9]. Indeed, the new models
introduced in the study, i.e., the Synoptic RMI and the bi-criteria PGM, perform better
than the Binary Search alone, across all the datasets and memory levels, using very small
additional space with respect to the input table. Moreover, even the most complex models,
excluding the RS on the lower memory levels, achieve very good performance considering
a bound of at most 10% of additional space.
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We also investigate the time and space relationships of parametric models, showing
that, while their query times can differ by constant factors, the corresponding spaces
can disagree by several orders of magnitude. The main finding is that space seems to
be the real key to the efficiency of a model. This provides additional insight into the
time/space relationship of Learned Indexes, with respect to what is known in the literature.
Our analysis also provides useful guidelines to practitioners interested in using Learned
Indexes. The software and datasets used for this research are available at [48].

In regard to the conference paper [6], Section 5 accounts for Sections 5 and 6 of the
mentioned paper, which now presents the full set of experiments on all datasets together
with an in-depth analysis of the results. Some of the material relevant to this section is in
Appendix A.5.

2. Learning from a Static Sorted Set to Speed Up Searching

Consider a sorted table A of n keys, taken from a universe U. It is well-known that
Sorted Table Search can be phrased as the Predecessor Search Problem: for a given query
element x, return the A[j] such that A[j] ≤ x < A[j + 1]. With reference to such a problem,
in the following, we describe the classic solutions in the literature and how to transform
them into learning-prediction ones.

2.1. Solution with a Sorted Search Routine

It is well-known in algorithmics [1,3,4,49] that the Predecessor Search Problem can be
solved with Sorted Table Search routines, such as Binary and Interpolation Search. For the
aim of this paper and according to the benchmarking study, we use the C++ lower_bound
routine, denoted as BS and informally referred to as Standard. In addition to this method,
we use the best routines that came out of the study by Khuong and Morin [23], i.e., Uniform
Binary Search [3], denoted as US, and Eytzinger Layout Search, denoted as EB.

For the convenience of the reader, details about all the above-mentioned search proce-
dures are given in Appendix A.1. We anticipate that other routines could be considered
in this study, such as Interpolation Search or its variant TIP [50]; however, the extensive
experiments conducted in [51] show that they are not competitive in the Learned Indexing
scenario. Therefore, in order to keep this paper focused on relevant contributions, they are
omitted here.

2.2. Learning from Data to Speed Up Sorted Table Search: A Simple View with an Example

Kraska et al. [2] proposed an approach that transforms the Predecessor Search problem
into a learning-prediction one. With reference to Figure 1, the model learned from the data
is used as a predictor of where a query element may be in the table. To fix ideas, Binary
Search is then performed only on the interval returned by the model.

Query Element

{
1
5
11
14
58
59
60
97
100
101

Model

Figure 1. A general paradigm of Learned Searching in a Sorted Table [9]. The model is trained on
the data in the table. Then, given a query element, it is used to predict the interval in the table of
where to search (included in brackets in the figure).

We now outline the simplest technique that can be used to build a model for A and pro-
vide an example. It relies on Linear Regression, with Mean Square Error Minimization [52].
We start with the example. Consider Figure 2 and the table A in the caption.
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• Ingredient One of Learned Indexing: The Cumulative Distribution Function of a
Sorted Table. With reference to Figure 2a, we can plot the elements of A in a graph,
where the abscissa reports the value of the elements in the table and the ordinates
are their corresponding ranks. The result of the plot is reminiscent of a discrete
Cumulative Distribution Function that underlines the table. The specific construction
exemplified here can be generalized to any sorted table as discussed in Marcus et
al. [9]. In the literature, for a given table, such a discrete curve is referenced as CDF.

• Ingredient Two of Learned Indexing: A Model for the CDF. Now, it is essential to
transform the discrete CDF into a continuous curve. The simplest way to do this
is to fit a straight line of equation F(x) = ax + b to the CDF (this process is shown
in Figure 2b). In this example, we use Linear Regression with Mean Square Error
Minimization in order to obtain a and b. They are 0.01 and 0.85, respectively.

• Ingredient Three of Learned Indexing: The Model Error Correction. Since F is an
approximation of the ranks of the elements in the table, in applying it to an element
in order to predict its rank, we may produce an error e. With reference to Figure 2c,
applying the model to the element 398, we obtain a predicted rank of 4.68, instead of
7, which is the real rank. Thus, the error made by the model F(x) = 0.01× x + 0.85
on this element is e = 7− d4.68e = 2. Therefore, in order to use the equation F to
predict where an element x is in the table, we must correct for this error. Indeed,
we consider the maximum error ε computed as the maximum distance between the
real rank of the elements in the table and the corresponding rank predicted by the
model. The maximum error ε is used to set the search interval of an element x to be
[F(x)− ε, F(x) + ε]. In the example we are discussing, ε is 3.

More in general, in order to perform a query, the model is consulted, and an interval
in which to search is returned. Then, Binary Search is performed on that interval. Different
models may use different schemes to determine the required range as outlined in Section 2.3.
The reader interested in a rigorous presentation of those ideas can consult Marcus et al. [12].
In this paper, we characterize the accuracy in the prediction of a model via the reduction
factor: the percentage of the table that is no longer considered for searching after the
prediction of a rank.

Regarding the diversity across models to determine the search interval and in order to
place all models on par, we empirically estimate the reduction factor of a model. With the
use of the model and over a batch of queries, we determine the length of the interval to
search into for each query. Based on this, we can immediately compute the reduction factor
for that query. Then, we take the average of those reduction factors over the entire set of
queries as the reduction factor of the model for the given table.
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Figure 2. The Process of Learning a Simple Model via Linear Regression. Let table A be
[47, 105, 140, 289, 316, 358, 386, 398, 819, 939]. (a) the empirical CDF of A; (b) the line (in orange)
associated with a linear model obtained via Linear Regression; and (c) the error e made by the model
in predicting the query element 398.

2.3. A Classification of Learned Indexing Models

With the exception of the Eytzinger Binary Search, all procedures mentioned in Section 2.1
have a natural learned version. Indeed, all models currently known in the literature naturally
fit sorted table layouts for the final search stage; however, for that purpose, array layouts other
than sorted or more complex data structures cannot be used. Given a learned version of the
two mentioned procedures, the time and space performances depend critically on the model
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used to predict the interval to search into. Here, we propose a classification of models that
comprises four classes.

The first two classes, shown in Figure 3, consist of models that use constant space,
while the other two, shown in Figure 4, consist of models that use space as a function of
some model parameters. For each of them, the reduction factor is determined as described
in Section 2. Moreover, as already indicated, the Learned k-ary Search and the Synoptic
RMI models are new and fit quite naturally in the classification that we present.

(a) {

1
5
11
14
58
59
60
97
100
101

Cubic (b)
Cubic Linear Quadratic

1 5 11 14 59 60 97 10058

Figure 3. Examples of various Learned Indexes that use constant space. (a) An Atomic Model,
where the box cubic means that the CDF of the entire dataset is estimated by a cubic function via
regression, in analogy with the linear approximation exemplified in Figure 2. (b) An example of a
KO-US, with k = 3. The top part divides the table into three segments, and it is used to determine
the model to pick at the second stage. Each box indicates which atomic model is used for prediction
on the relevant portion of the table.
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Figure 4. Examples of various Learned Indexes that use space in functions of parameters (see
also [9]). (Left) An example of an RMI with two layers and branching factor equal to b. The top box
indicates that the lower models are selected via a linear function. As for the leaf boxes, each indicates
which Atomic Model is used for prediction on the relevant portion of the table. (Center) An example
of a PGM Index. At the bottom, the table is divided into three parts. A new table is thus constructed,
and the process is iterated. (Right) An example of an RS Index. At the top are the buckets where
elements fall based on their three most significant digits. At the bottom, a linear spline approximating
the CDF of the data is shown, including suitably chosen spline points. Each bucket points to a spline
point so that, if a query element falls in a bucket (say six), the search interval is limited by the spline
points pointed to by that bucket and the one preceding it (five in our case).

2.3.1. Atomic Models: One Level and No Branching Factor

• Simple Regression [52]. We use linear, quadratic and cubic regression models. Each
can be thought of as an Atomic Model in the sense that it cannot be divided into
“sub-models". Figure 3a provides an example. We report that the most appropriate
regression model in terms of the query times and a reduction factor is the cubic
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one. We omit those results for brevity and to keep our contribution focused on the
important findings. However, they can be found in [51]. For this reason, the cubic
model, indicated in the rest of the manuscript by C, is the only one that is included in
what follows.

2.3.2. A Two-Level Hybrid Model with a Constant Branching Factor

• KO-US: Learned k-ary Search. This model partitions the table into a fixed number
of segments, bounded by a small constant, i.e., at most 20 in this study, in analogy
with a single iteration of the k-ary Search routine [53,54]. An example is provided
in Figure 3b. For each segment, Atomic Models are computed to approximate the
CDF of the table elements in that segment. Finally, the model that guarantees the best
reduction factor is assigned to each segment. As for the prediction, a sequential search
is performed for the second level segment to pick and the corresponding model is
used for the prediction, followed by Uniform Binary Search, since it is superior to
the Standard one (data not reported and available upon request). We anticipate that,
for the experiments conducted in this study, k is chosen in the interval [3, 20]. For
conciseness, only results for the model with k = 15 are reported, since it is the value
with the best performance in terms of query time (data not reported and available
upon request). Accordingly, from now on, KO-US indicates the model with k = 15.

2.3.3. Two-Level RMIs with Parametric Branching Factor

• Heuristically Optimized RMIs. Informally, an RMI is a multi-level, directed graph,
with Atomic Models at its nodes. When searching for a given key and starting with the
first level, a prediction at each level identifies the model of the next level to use for the
next prediction. This process continues until a final level model is reached. This latter
is used to predict the table interval to search into. As indicated in the benchmarking
study, in most applications, a generic RMI with two layers, a tree-like structure and a
branching factor b suffices. An example is provided in Figure 4 on the left. It is to be
noted that the Atomic Models are RMIs. Moreover, the difference between Learned
k-ary Search and RMIs is that the first level in the former partitions the table, while
that same level in the latter partitions the universe of the elements.
Following the benchmarking study and for a given table, we use two-layer RMIs
that we obtain using the optimization software provided in CDFShop, which returns
up to ten versions of the generic RMI for a given input table. For each model, the
optimization software picks an appropriate branching factor and the type of regression
to use within each part of the model—the latter quantities being the parameters
that control the precision of its prediction as well as its space occupancy. It is also
to be remarked, as indicated in [12], that the optimization process provides only
approximations to the real optimum and is heuristic in nature with no theoretic
approximation performance guarantees. The problem of finding an optimal model in
polynomial time is open.

• SY-RMI: A Synoptic RMI. For a given set of tables of approximately the same size,
we use CDFShop as above to obtain a set of models (at most 10 for each table). For
the entire set of models thus obtained and each model in it, we compute the ratio
(branching factor)/(model space), and we take the median of those ratios as a measure
of the branching factor per unit of model space, denoted as UB. Among the RMIs
returned by CDFShop, we pick the relative majority winner, i.e., the one that provides
the best query time, averaged over a set of simulations. When one uses such a model
on tables of approximately the same size as the ones used as input to CDFShop,
we set the branching factor to be a multiple of UB, which depends on how much
space the model is expected to use relative to the input table size. This model can
be intuitively considered as the one that best summarizes the output of CDFShop
in terms of the query time for the given set of tables. The final model is informally
referred to as Synoptic.
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2.3.4. CDF Approximation-Controlled Models

• PGM [13]. This is also a multi-stage model, built bottom-up and queried top-down. It
uses a user-defined approximation parameter ε, which controls the prediction error at
each stage. With reference to Figure 4 in the center, the table is subdivided into three
pieces. A prediction in each piece can be provided via a linear model guaranteeing
an error of ε. A new table is formed by selecting the minimum values in each of the
three pieces. This new table is possibly again partitioned into pieces, in which a linear
model can make a prediction within the given error.
The process is iterated until only one linear model suffices, as in the case in the
figure. A query is processed via a series of predictions, starting at the root of the tree.
Furthermore, in this case, for a given table, at most ten models were built as prescribed
in the benchmarking study with the use of the parameters, software and methods
provided there, i.e, SOSD. It is to be noted that the PGM index, in its bi-criteria
version, is able to return the best query time index, within the given amount of space
that the model is supposed to use. Experiments are also performed with this version of
the PGM, denoted for brevity as B-PGM. The interested reader can find a discussion
regarding more variants of this PGM version in [51].

• RS [17]. This is a two-stage model. It also uses a user-defined approximation parame-
ter ε. With reference to Figure 4 on the right, a spline curve approximating the CDF of
the data is built. Then, the radix table is used to identify spline points to use to refine
the search interval. Furthermore, in this case, we performed the training as described
in the benchmarking study.

In what follows, for ease of reference, models in the first two classes are referred to as
constant-space models, while the ones in the remaining classes are parametric-space models.

3. Experimental Methodology

Our experimental setup closely follows the one outlined in the already mentioned
benchmarking study by Marcus et al. [9]. Since an intent of this study is to gain deeper
insights regarding the circumstances in which learned versions of Sorted Table Search
procedure and indexes are profitable in small additional space with respect to the one
taken by the input table, across the main memory hierarchy, we derive our own benchmark
datasets from the ones in the study by Marcus et al. [9].

3.1. Hardware

All the experiments were performed on a workstation equipped with an Intel Core
i7-8700 3.2GHz CPU with three levels of cache memory: (a) 64 kb of L1 cache; (b) 256 kb
of L2 cache; and (c) 12 Mb of shared L3 cache. The total amount of system memory is
32 Gbytes of DDR4. The operating system is Ubuntu LTS 20.04.

3.2. Datasets

The same real datasets of the benchmarking study are used. In particular, attention is
restricted to integers only, each represented with 64 bits unless otherwise specified. For
the convenience of the reader, a list of those datasets, with an outline of their content, is
provided next.

• amzn: book popularity data from Amazon. Each key represents the popularity of
a particular book. Although two versions of this dataset, i.e., 32-bit and 64-bit, are
used in the benchmarking, no particular differences were observed in the results of
our experiments, and, for this reason, we report only those for the 64-bit dataset. The
interested reader can find the results for the 32-bit version in [51].

• face: randomly sampled Facebook user IDs. Each key uniquely identifies a user.
• osm: cell IDs from Open Street Map. Each key represents an embedded location.
• wiki: timestamps of edits from Wikipedia. Each key represents the time an edit

was committed.
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Moreover, for the purpose of this research, as already mentioned above, additional
datasets were extracted from the ones just mentioned. For each of those datasets, three new
ones were obtained in order to fit each lower level of the internal memory hierarchy. In
particular, each new dataset was obtained by sampling the original one so that the CDF was
similar to the original one. The interested reader can find more details of this extraction
procedure in Appendix A.2. Letting n be the number of elements in a table, for the computer
architecture that was used, the details of the generated tables are the following.

• Fitting in L1 cache: cache size 64 Kb. Therefore, n = 3.7K was chosen.
• Fitting in L2 cache: cache size 256 Kb. Therefore, n = 31.5K was chosen.
• Fitting in L3 cache: cache size 8 Mb. Therefore, n = 750K was chosen.
• Fitting in PC main memory (L4): memory size 32 Gb. Therefore, n = 200M was

chosen, i.e., the entire dataset.

The rationale for the choice of those datasets, in particular the ones coming from the
benchmarking study, is that they provide different Empirical CDFs, as shown in Figure 5a,
and this allows us to measure the performance of Learned Indexes considering different
possible characteristics of real-world data. It is to be noted that the face dataset is somewhat
special. Indeed, the shape of its CDF (see Figure 5a) is determined by 21 outliers at the end
of the table: all the elements of that dataset, up to the first outlier, have essentially the same
distance between consecutive elements—that is, they are all in a straight line.

This regularity breaks with the first outlier that, together with the other ones, does
not follow such a nice pattern. For lower memory levels, the CDF of the corresponding
face datasets becomes a straight line, as exemplified in Figure 5b for the L3 memory level.
As for the remaining datasets, their smaller versions closely follow the CDF of the largest
datasets as again exemplified in Figure 5b for the L3 memory level.
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Figure 5. The CDF of the main datasets. For each dataset coming from the benchmarking study, the
value of each of its elements is reported on the abscissa and its position on the ordinate. In particular,
Figure (a) is referred to the L4 memory level, while (b) to L3.

As for query dataset generation, for each of the tables built as described above, we
extract uniformly and at random (with replacement) from the universe U, a total of two
million elements, 50% of which are present and 50% absent, in each table. For coherence, all
of the query experiments were performed within SOSD, suitably modified to accommodate
all Learned Indexes used in this research. The query time that we report is an average taken
on a batch of two million queries executed by a search routine or a Learned Index.

This is essential for Learned Indexes: a measure of a single query performance would
be unreliable [55], and in fact SOSD does not allow it, while the method we chose is
compliant with the literature [9]. Such a limitation makes it unreliable to measure certain
relevant performance parameters of a Learned Index, such as, for each query, the amount
of time spent for prediction and the amount of time spent for searching.

In fact, to the best of our knowledge, none of the papers reporting on Learned Indexing
provided such a breakdown. Rather they concentrated on the accuracy of the predictions.
For completeness, we mention that the query time estimates adopted in the current state of
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the art and followed here, are accurate—that is, the processing time of a batch of queries
is subject to very little standard deviation when averaged over independent executions.
Although not perceived as essential in previous work, we provide a highlight of such an
assessment using the new and the RMI, PGM and RS models on the amzn datasets. The
results are reported in Table A8 of Appendix A.4. Finally, in terms of theoretic worst-case
analysis, the prediction for the RMIs used here takes O(1) time and O(logn) time for the
PGM and the RS.

4. Training of the Novel Models: Analysis and Insights into Model Training

We now focus on the training phase of the novel models, and we compare their
performance with the literature standards included in this research. In order to assess
how well a Learned Index model can be trained, three indicators are important: the time
required for learning, the reduction factor that one obtains and the time needed to perform
the prediction. A quantification of the first parameter is provided and discussed here. The
other two indicators are strongly dependent on each other, with the reduction factor being
related to space. In turn, those two indicators affect the query time. Therefore, they are
best discussed in Section 5. We anticipate that our analysis of the training time performed
here provides useful and novel insights into model training for Learned Indexing. All the
training experiments were performed on the datasets mentioned in Section 3.2 across all
internal memory levels.

4.1. Mining SOSD Output for the Synoptic RMI

As anticipated in Section 2.3, in order to set the levels and UB of the Synoptic RMI,
it is necessary to process the output of SOSD for each dataset and memory level. Indeed,
as described in Section 2.3, once we set a space budget for the model, the corresponding
branching factor was computed by multiplying it by UB. In particular, we computed three
versions of a Synoptic RMI using a percentage of space of 0.05%, 0.7% and 2% with respect
to the input table size.

With regard to the layers choice, the simulation to identify the relative majority RMIs
was performed on query datasets extracted as described in the previous Section but using
only 1% of the number of query elements specified there. The statistics regarding the results
of such a simulation are summarized in Figure 6. In particular, for each memory level, we
report the computed UB. Furthermore, limited to the top layer of an RMI, we also report
the models associated with the best ones. The time it took to identify the proper Synoptic
RMI (average time per element, over all the RMIs returned by CDFShop, denoted as the
mining time) is also reported, together with the same time required to obtain the output
of CDFShop.

As is evident, the mining time is comparable with the performance of CDFShop. It is
also evident from that figure that the variety of best-performing models represents various
challenges for the learning of the CDF of real datasets. Therefore, given such a variety, it
is far from obvious that the median UB is the same for each memory level. Moreover, the
relative majority model is also the same across memory levels, i.e., linear spline, with linear
models for each segment of the second layer.
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Figure 6. Time and UB for the identification of the Synoptic RMIs. For each memory level, only
the top layer of the various models is indicated in the abscissa, while the ordinate indicates the
number of times, in percentage, that the given model is the best in terms of the query performance
on a table. On top of each histogram, we report the branching factor per unit of space as well as the
mining time (in seconds) to build the synoptic models. For comparison, we also report the same time
spent in obtaining the output of CDFShop.

4.2. Training Time Comparison Between Novel Models and the State of the Art

In what follows, we divide the training-time comparison into two groups: constant-
and parametric-space models. For the first group, we consider the new model and only the
Cubic Atomic Model, excluding the linear and quadratic ones for the reasons mentioned
earlier in this paper. For the Cubic Model, the training time on a given dataset is due to
the computation of its parameters via polynomial regression. As for the Learned k-ary
Search Model, its training consists of partitioning the table into k segments. Then, for each
segment, Atomic Models are used to approximate the local CDF of the elements belonging
to that segment, and, among them, the model with the best reduction factor is chosen.

For each dataset and each memory level, the resulting training times are reported in
Table 1 and Tables A2–A4 of Appendix A.3. As expected, the Learned k-ary Search Model
is slower than the Cubic Atomic Model; however, the important fact is that the slowdown
is due to constant multiplicative factors rather than being of an order of magnitude—that
is, the slow-down is tolerable. Another additional and counter-intuitive finding is that
the training time of both models, on average, is better for the cases of large datasets with
respect to smaller ones. We analyzed the training code in order to obtain insight into such a
fact. We found that the cost of the matrix products involved in the training computation
of both models depends on the size of the involved operands. As the size of the dataset
grows, such a cost is amortized on a larger and larger number of elements.
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Table 1. Constant-space model training time for the L4 tables. The first column indicates the
datasets. The remaining columns indicate the model used for the learning phase. Each entry reports
the training time in seconds and per element.

KO-US C

amzn 3.7× 10−8 1.4× 10−8

face 3.6× 10−8 1.4× 10−8

osm 3.6× 10−8 1.4× 10−8

wiki 3.6× 10−8 1.4× 10−8

Regarding the second group, we consider the new model and the ones described in
Section 2.3, i.e., RMI, PGM and RS. The training time was computed using two different
platforms: CDFShop in the case of the Synoptic RMI and RMI as well as SOSD for PGM
and RS. It is useful to recall that, in the case of the state-of-the-art models, the result of a
single execution of those two platforms returns a batch of up to ten models, and thus the
reported times refer to the execution of the entire learning suite—that is, the training of
those models consists of a batch of model instances from which a user can choose.

On the other hand, for the Synoptic RMI, this refers to the training of a single RMI
with a given branching factor and layer composition. For each dataset and each memory
level, the results are reported in Table 2 and Tables A5–A7 of Appendix A.3. The time
needed to train the Synoptic RMI is comparable to the one needed to train a batch of
RMI models. This latter, as already known, is worse than the time to train a batch of RS
or PGM models. Such results are not considered problematic for the deployment of the
RMI in application contexts, and the training time of the Synoptic RMI is in-line with the
mentioned literature standards. For completeness, we mention that the reason for which
the time needed to train a unique Synoptic RMI model is very close to the training of a
batch on RMI models is due to the library start-up overhead time.

Such a time is mitigated for the case of the training of a batch of models, while it
becomes dominant in training a single model. Fortunately, the CDFShop or the SOSD
training executions are a “one-time-only" processes, in which the output can then be reused
over and over again, suggesting that this overhead time is of little relevance for the case of
a production environment.

Table 2. Parametric-model training time for the L4 tables. The first column indicates the datasets.
The remaining columns indicate the model used for the learning phase. In particular, each entry
reports the time to train the Synoptic RMI and an entire batch of models via the CDFShop and the
SOSD libraries as specified in the main text. The time is in seconds and per element.

CDFShop
SY-RMI 2% CDFShop RMI SOSD RS SOSD PGM

amzn 1.1× 10−6 2.2× 10−6 2.1× 10−7 5.0× 10−7

face 1.3× 10−6 2.5× 10−6 2.1× 10−7 6.5× 10−7

osm 1.2× 10−6 2.5× 10−6 2.2× 10−7 7.4× 10−6

wiki 1.1× 10−6 2.2× 10−6 1.9× 10−7 4.1× 10−7

4.3. Insights into the Training Time of the RS and PGM Models

Another important contribution that this research provides is a more refined assess-
ment of the relation between the RS and PGM indexes, in terms of the training time. In
Table 3, for each dataset and memory level, we report the training times of those two
indexes. As discussed in [17], those two Learned Indexes can both be built in one pass
over the input with important implications: one being that they can be trained faster than
the RMIs—even one order of magnitude sped up. However, in that study as well as
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in the benchmarking one, the RS was reported as superior to the PGM in terms of the
training time.

It is to be noted that the datasets that they used are the largest ones in this study. With
reference to Table 3, our experiments confirm such a finding. On the other hand, the PGM
is more effective in terms of the training time across the lower memory hierarchy. The
reason may be the following. Those two indexes both use streaming procedures in order to
approximate the CDF of the input dataset within a parameter ε via the use of straight-line
segments that partition the universe. The main difference between the two is that the
latter finds an optimal partition, determined via a well-known algorithm (see references
in [13]), while the former finds a partition that approximates the optimal as described
in [18]. Such an approximation algorithm is supposed to be faster than the optimal one;
however, apparently, this speed pays off on large datasets.

Table 3. Comparison between the RS and PGM training times. For each dataset and memory level,
we report the training times for the RS and PGM models in seconds. Panel (a) refers to memory
levels L1 and L2, while Panel (b) refers to L3 and L4.

Panel (a)

L1 L2

SOSD RS SOSD PGM SOSD RS SOSD PGM

amzn 3.5× 10−6 5.0× 10−7 3.5× 10−7 5.0× 10−8

face 1.1× 10−6 3.9× 10−7 1.1× 10−7 3.9× 10−8

osm 6.9× 10−6 4.0× 10−7 6.9× 10−7 4.0× 10−8

wiki 1.0× 10−5 3.7× 10−7 1.0× 10−6 3.7× 10−8

Panel (b)

L3 L4

SOSD RS SOSD PGM SOSD RS SOSD PGM

amzn 2.4× 10−8 3.4× 10−8 2.1× 10−7 5.0× 10−7

face 1.4× 10−8 2.4× 10−8 2.1× 10−7 6.5× 10−7

osm 3.5× 10−8 3.8× 10−8 2.2× 10−7 7.4× 10−7

wiki 5.1× 10−8 3.7× 10−8 1.9× 10−7 4.1× 10−7

5. Query Experiments

The query experiments were performed using all the methods described in Sections 2.1
and 2.3. The query datasets were generated as described in Section 3.2, and the models
were trained as described in Section 4. Following that section, we divided the presentation
of the query experiments and the relative discussion into two groups. For both groups,
for conciseness, we report here only the experiments for the amzn and the osm datasets
since they are representative of two different levels of difficulty in learning their CDFs. The
results regarding the other datasets are reported in Appendix A.5.

5.1. Constant-Space Models

The results of the experiments for this group of models are reported in Figures 7
and 8 for the amzn and the osm datasets, respectively, and in Figures A2 and A3 of the
Appendix A.5, for the remaining ones. In those figures, only the query time for Uniform
Binary Search is reported, since the results are analogous to the ones obtained by using
the Standard routine. In addition, the query time for the Eytzinger Binary Search is
also reported as a useful baseline due to its superiority among the classic routines that
take constant additional space with respect to the size of the input table as discussed
in [23]. From the mentioned figures, it is evident that the query performance of each model
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considered here is highly influenced by how difficult to learn the CDF of the input table is
as explained next.

• The Cubic Model achieved a high reduction factor, i.e., ≈ 99%, on the versions of the
face dataset for the first three levels of the internal memory hierarchy, and it was
also the best performing, even compared to the Eytzinger Layout routine. This is a
quite remarkable achievement; however, the involved datasets had an almost uniform
CDF, while a few outliers disrupt this uniformity on the L4 version of that dataset (see
Figure 5 and the discussion regarding the face dataset in Section 3.2).

• The Learned k-ary Search Model achieved a high reduction factor on all versions of
the amzn and the wiki datasets, i.e., ≈ 99.73 and was faster than the Uniform Binary
Search and the Cubic Model. Those datasets have a regular CDF across all the internal
memory levels. It is to be noted that the Eytzinger Layout routine is competitive with
the Learned k-ary Search Model.

• No constant space Learned Model won on the difficult-to-learn dataset. The osm
dataset has a difficult-to-learn CDF (see Figure 5), and such a characteristic is preserved
across the internal memory levels. The Learned k-ary Search Model achieved a
respectable reduction factor, i.e.,≈ 98%, but no speed increase with respect to Uniform
Binary Search. In order to obtain insights into such a counter-intuitive behavior, we
performed an additional experiment.
For each representative dataset and as far as the Learned k-ary Search Model is
concerned, we computed two kinds of reduction factors: the first was the global one,
achieved considering the size of the entire table, while the second was the local one,
computed as the average among the reduction factors of each segment. Those results
are reported in Table 4. For the osm dataset, it is evident that the local reduction
factors are consistently lower than the global ones, highlighting that its CDF is also
locally difficult to approximate, which, in turn, implies an ineffective use of the local
prediction for the Learned k-ary Search, resulting in poor time performance. Finally, it
is to be noted that the Eytzinger Layout routine was the best performing.

In conclusion, in applications where there is a constant space constraint with respect
to the input table and where a layout other than sorted can be used, then the Eytzinger
Binary Search is still the best choice unless the CDF of the input dataset is particularly
easy to approximate. If such a layout cannot be afforded, the best choice is the use of a
constant-space model, in particular the Learned k-ary Search Model only for datasets with
a CDF that is simple to approximate, otherwise the use of Uniform Binary Search alone
is indicated.

Our research extends the results in [23] regarding the Eytzinger Binary Search routine:
even compared to Learned Indexes that use constant space, it still results as competitive
and many times superior to the others.

Table 4. Global and local reduction factors. For the two representative datasets, i.e., amzn and osm,
and for each memory level, in each entry, we report the global reduction factor (left) and the local
one (right).

amzn osm

L1 99.94−99.48 98.12−86.70

L2 99.98−99.56 98.07−86.57

L3 99.98−99.53 97.98−86.43

L4 99.98−99.54 98.03−86.57
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Figure 7. Constant-space-model query times for the amzn dataset. For each memory level, the blue
bar reports the average query time in seconds of Uniform Binary Search using, from left to right, no
model, Cubic model and KO-US. In addition, we report the average query time also for the Eytzinger
Binary Search in the orange bar.
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Figure 8. Constant-space-model query times for the osm dataset. The figure legend is as in Figure 7.
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5.2. Parametric-Space Models

For the convenience of the reader, we recall that the model classes involved are: RMI,
RS, PGM, the Synoptic RMI and the bi-criteria PGM, which are trained on the input
datasets (see Section 3.2) as reported in Section 4. The batch of queries used here was
obtained as described in Section 3.2 and, for the query time, we took the average per
element as specified in that section. For each of the first three model classes, we considered,
among the trained models, the fastest in terms of the query time and those taking less than
10% of space with respect to the the space taken by the input table.

For the other two model classes, we considered three increasing bounds on space, i.e.,
0.05%, 0.7% and 2%, with respect to the space of the table alone. Moreover, as a measure
of the Learned Indexes speed up, we also report the query time of the Uniform Binary
Search. The results of the corresponding experiments are reported in Figures 9 and 10 for
the amzn and osm datasets, respectively, and in Figures A4 and A5 of the Appendix A.5
for the remaining ones.

An interesting finding is that both the Synoptic RMI and the bi-criteria PGM per-
formed better than Uniform Binary Search across datasets and memory levels using very
little additional space—that is, one can enjoy the speed of Learned Indexes with a very
small space penalty. Moreover, it is important to note that, except for the L1 memory level,
the space of those two models is very close to the user-defined bound. Furthermore, in
terms of query performances, such two models seem to be complementary. In fact, the
bi-criteria PGM performed better on the L1 and L4 memory levels, while the Synoptic RMI
performed better on the remaining ones. This complementary and effective control of space
makes these two models quite useful in practice.
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Figure 9. Query times for the amzn dataset on Learned Indexes in small space. The methods are
the ones in the legend (the middle of the four panels; the notation is as in the main text, and each
method has a distinct color). For each memory level, the abscissa reports methods grouped by space
occupancy as specified in the main text. When no model in a class output by SOSD took at most 10%
of additional space, that class was left absent. The ordinate reports the average query time in seconds,
with Uniform Binary Search executed in SOSD as a baseline (horizontal lines).
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Figure 10. Query times for the osm dataset on Learned Indexes in small space. The figure legend
is as in Figure 9.

In addition to those findings, our research provides some more insights into the time–
space relation in Learned Indexes, thereby, extending the results of the benchmark study as
we now discuss.

• Space Constraints and the Models Provided by SOSD. We fixed a rather small space
budget, i.e., at most 10% of additional space in order for a model returned by SOSD
to be considered. The RS Index was not competitive with respect to the other Learned
Indexes. Those latter consistently use less space and time across datasets and memory
levels. As for the RMIs coming out of SOSD, they were not able to operate in a small
space at the L1 memory level. On the other memory levels, they were competitive
with respect to the bi-criteria PGM and the Synoptic RMI; however, they required
more space with respect to them.

• Space, Time and Accuracy of Models. As stated in the benchmarking study, a com-
mon view of Learned Indexing Data Structures is as a CDF lossy compressor; see
also [2,13]. In this view, the quality of a Learned Index can be judged by the size of the
structure and its reduction factor. In that study, it was also argued that this view does
not provide an accurate selection criterion for Learned Indexes. Indeed, it may very
well be that an index structure with an excellent reduction factor takes a long time to
produce a search bound, while an index structure with a worse reduction factor that
quickly generates an accurate search bound may be of better use. In the benchmarking
study, they also provided evidence that the space–time trade-off is the key factor in
determining which model to choose.
Our contribution is to provide additional results supporting those findings. To this
end, we conducted several experiments, whose results are reported in Tables 5 and 6
and Tables A9 and A10 in the Appendix A.5. In these Tables, for each dataset, we
report a synopsis of three parameters, i.e., the query time and space used in addition
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by the model and reduction factor, across all datasets and memory levels. In particular,
for each dataset, we compare the best-performing model with all the ones that use
small space, taking, for each parameter, the ratio of the model/best model. The ratio
values are reported from the second row of the table, and the first row shows the
average values of the parameters for the best model.
First, it is useful to note that, even in a small-space model, it is possible to obtain a
good, if not nearly perfect, prediction (i.e., a very high reduction factor). However,
prediction power is somewhat marginal to assess performance. Indeed, across memory
levels, we see a space classification of model configurations. The most striking feature
of this classification is that the gain in query time between the best model and the
others is within small constant factors, while the difference in space occupancy may
be, in most cases, several orders of magnitude different—that is, space is the key
to efficiency.

Table 5. A synoptic table of space, time and accuracy of the models on the amzn dataset. For each
memory level, we report, in the first row, the best performing method for that memory level. The
columns named time, space and reduction factor indicate, for this best model, the average query time
in seconds, the average additional space used in Kb and the average of the empirical reduction factor.
In the second row, we report the versions of the RMI, RS, PGM and Synoptic RMI models that use
the least space. In particular, the number next to the models represents, in percentage, the bound on
the used space with respect to the input dataset. The columns indicate the ratio of the model/best
model of the time, space and reduction factor.

L1

Time Space Reduction Factor

Best RMI 1.89× 10−8 3.09 99.84

B-PGM 0.05 4.03 1.30× 10−2 2.50× 10−1

SY-RMI 0.05 3.77 2.85× 10−2 1.75× 10−1

RS < 10 2.58 7.06× 10−1 9.29× 10−1

Best RMI 1.00 1.00 1.00

L2

Time Space Reduction Factor

Best RMI 2.51× 10−8 6.16 99.97

B-PGM 0.05 3.78 1.62× 10−2 9.16× 10−1

SY-RMI 0.05 3.74 2.60× 10−2 6.44× 10−1

Best RS < 10 2.38 3.68× 10−1 9.92× 10−1

Best RMI 1.00 1.00 1.00

L3

Time Space Reduction Factor

Best RMI 4.70× 10−8 6.29× 103 100.00

B-PGM 0.05 2.07 3.05× 10−4 1.00

SY-RMI 0.05 1.49 4.79× 10−4 9.99× 10−1

RS < 10 1.59 4.00× 10−2 1.00

RMI < 10 1.03 6.25× 10−2 1.00
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Table 5. Cont.

L4

Time Space Reduction Factor

Best RMI 1.51× 10−7 2.01× 105 100.00

B-PGM 0.05 1.85 3.93× 10−3 1.00

SY-RMI 0.05 1.18 3.97× 10−3 1.00

Best RS 1.19 7.16× 10−2 1.00

RMI < 10 1.03 5.00× 10−1 1.00

Table 6. A synoptic table of space, time and accuracy of the models on the osm dataset. The legend
is as in Table 5.

L1

Time Space Reduction Factor

Best RMI 2.72× 10−8 1.15× 103 99.87

B-PGM 0.05 2.31 3.49× 10−5 1.74× 10−1

SY-RMI 0.05 2.60 7.67× 10−5 2.30× 10−1

Best RMI 1.00 1.00 1.00

Best RS 1.19 4.33× 10 9.99× 10−1

L2

Time Space Reduction Factor

Best RMI 3.93× 10−8 1.84× 103 99.97

B-PGM 0.05 2.68 5.45× 10−5 7.75× 10−1

SY-RMI 0.05 3.11 8.72× 10−5 7.24× 10−1

RMI < 10 1.73 6.71× 10−3 9.87× 10−1

RS < 10 1.93 1.36× 10−2 9.79× 10−1

L3

Time Space Reduction Factor

Best RS 7.06× 10−8 4.63× 104 100.00

B-PGM 0.05 2.40 6.22× 10−5 9.98× 10−1

SY-RMI 0.05 2.63 6.52× 10−5 9.31× 10−1

RMI < 10 1.75 2.12× 10−3 9.97× 10−1

RS < 10 1.55 2.31× 10−3 1.00

L4

Time Space Reduction Factor

Best RS 2.04× 10−7 5.08× 105 100.00

SY-RMI 0.05 2.52 1.57× 10−3 9.99× 10−1

B-PGM 0.05 2.03 1.59× 10−3 1.00

RMI < 10 1.18 1.98× 10−1 1.00

RS < 10 1.05 2.50× 10−1 1.00

6. Conclusions and Future Directions

In this research, we provided a systematic experimental analysis regarding the ability
of Learned Model Indexes to perform better than Binary Search in small space. This is
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the first step forward in the full characterization of the time/space trade-off spectrum
of Learned Indexes, with respect to Sorted Table Search routines that use constant addi-
tional space.

In particular, in regard to the first question stated in Section 1.2, i.e., how space-
demanding should be a predictive model in order to speed up Sorted Table Search proce-
dures, we show that constant-space models may grant such a speeding up with respect to
classic versions of Binary Search unless the data CDF to be learned is complex. In addition,
we also show that models using a small percentage of additional space with respect to the
Sorted Table guarantee consistent speed ups of sorted layout Binary Search procedures
across Learned Indexes and datasets with different levels of CDF complexity to learn.

In regard to the second question, i.e., to what extent one can enjoy the speed up of
the search procedures provided by Learned Indexes with respect to the additional space
one needs to use, our experiments bring to light the existence of a large gap between the
best-performing methods and the others that we considered and that operate in small space.
Indeed, the query time performance of the latter with respect to the former is bounded by
small constants, while the space usage may differ even by five orders of magnitude.

These findings bring to light the acute need to investigate the existence of small-space
models that should close the time gap mentioned earlier. Another important aspect, with
potential practical impacts, is to devise models that can work on layouts other than Sorted,
i.e., Eytzinger. Indeed, since the Eytzinger layout is consistently faster than the sorted
ones [23], it would be of interest to provide models that take advantage of this layout rather
than the sorted ones.
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Abbreviations

The following abbreviations are used in this manuscript:
CDF Cumulative Distribution Function
RMI Recursive Model Index
PGM Piece-wise Geometric Model Index
RS Radix Spline index
ALEX Adaptive Learned index
SOSD Searching on Sorted Data
KO-US Learned k-ary Search
SY-RMI Synoptic RMI
BS lower_bound search routine
US Uniform Binary Search
EB Eytzinger Layout Search
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C Cubic regression model
B-PGM Bicriteria Piece-wise Geometric Model Index
L1 cache of size 64kb
L2 cache of size 256kb
L3 cache of size 12Mb
L4 memory size 32Gb
amzn the Amazon dataset
face the Facebook dataset
osm the OpenStreetMap dataset
wiki the Wikipedia dataset

Appendix A. Methods and Results: Additional Material

Appendix A.1. Binary Search and Its Variants

With reference to the routines mentioned in the main text (Section 2.1) and following
the research in [23], we provide more details about two kind of layouts.

1 Sorted. We use two versions of Binary Search for this layout. The template of the
lower_bound routine is provided in Algorithm A1, while the Uniform Binary Search
implementation is given in Algorithm A2. In particular, this implementation of Binary
Search is as found in [23].

2 Eytzinger Layout [23]. The sorted table is now seen as stored in a virtual complete
balanced binary search tree. Such a tree is laid out in Breadth-First Search order in
an array. An example is provided in Figure A1. The implementation is reported in
Algorithm A3.

Algorithm A1 lower_bound Template.

1: ForwardIterator lower_bound (ForwardIterator first, ForwardIterator last, const T&
val){

2: ForwardIterator it;
3: iterator_traits<ForwardIterator>::difference_type count, step;
4: count = distance(first,last);
5: while (count>0){
6: it = first; step=count/2; advance (it,step);
7: if (*it<val){
8: first=++it;
9: count-=step+1;

10: }
11: else count=step;
12: }
13: return first;
14: }

5
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13

153

16
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19
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21

25

22 27

2016 9 21 5 13 19 25 3 7 11 15 18 22 27

Figure A1. An example of Eyzinger layout of a table with 15 elements. Nodes with the same color
in the tree are contiguous in the array. See also [23].



Data 2023, 8, 56 24 of 33

Algorithm A2 Implementation of Uniform Binary Search. The code is as in [23] (see
also [3,54]).

1: int UniformBinarySearch(int *A, int x, int left, int right){
2: const int *base = A;
3: int n = right;
4: while (n > 1) {
5: const int half = n / 2;
6: __builtin_prefetch(base + half/2, 0, 0);
7: __builtin_prefetch(base + half + half/2, 0, 0);
8: base = (base[half] < x) ? &base[half] : base;
9: n -= half;

10: }
11: return (*base < x) + base - A;
12: }

Algorithm A3 Uniform Binary Search with Eytzinger layout. The code is as in [23].

int EytzingerLayoutSearch(int *A, int x, int left, int right){
int i = 0;

3: int n = right;
while (i < n){
__builtin_prefetch(A+(multiplier*i + offset));

6: i = (x <= A[i]) ? (2*i + 1) : (2*i + 2);
}
int j = (i+1) >> __builtin_ffs(∼(i+1));

9: return (j == 0) ? n : j-1;
}

Appendix A.2. Datasets: Details

With reference to the datasets mentioned in the main text (Section 3.2), we produce
sorted tables of varying sizes so that each fits into a level of the internal memory hierarchy
as follows. Letting n be the number of elements in a table, for the computer architecture we
are using, the details of the tables we generate are as follows.

• Fitting in L1 cache: cache size 64 Kb. Therefore, we choose n = 3.7K. For each
dataset, the table corresponding to this type is denoted with the prefix L1, e.g.,
L1_amzn, when needed. For each dataset, in order to obtain a CDF that resem-
bles one of the original tables, we proceed as follows. Concentrating on amzn, since
for the other datasets the procedure is analogous, we extract uniformly and at random
a sample of the data of the required size. For each sample, we compute its CDF. Then,
we use the Kolmogorov–Smirnov test [57] in order to assess whether the CDF of the
sample is different than the amzn CDF.
If the test returns that we cannot exclude such a possibility, we compute the PDF of
the sample and compute its KL divergence [58] from the PDF of amzn. We repeat
such a process 100 times and, for our experiments, we use the sample dataset with the
smallest KL divergence.

• Fitting in L2 cache: cache size 256 Kb. Therefore, we choose n = 31.5K. For each
dataset, the table corresponding to this type is denoted with the prefix L2, when
needed. For each dataset, the generation procedure is the same as the one of the
L1 dataset.

• Fitting in L3 cache: cache size 8 Mb. Therefore, we choose n = 750K. For each
dataset, the table corresponding to this type is denoted with the prefix L3, when
needed. For each dataset, the generation procedure is the same as the one of the
L1 dataset.
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• Fitting in PC main memory: memory size 32 Gb. Therefore, we choose n = 200M,
i.e., the entire dataset. For each dataset, the table corresponding to this type is denoted
with the prefix L4.

For completeness, the results of the Kolmogorov–Smirnov Test as well as KL diver-
gence computation are reported in Table A1. For each memory level (first row) and each
original dataset (first column), we report the percentage of times in which the Kolmogorov–
Smirnov test failed to report a difference between the CDFs of the dataset extracted uni-
formly and at random from the original one and this latter, over 100 extractions. Moreover,
the KL divergence between the PDFs of the chosen generated dataset and the original one
is also reported. From these results, it is evident that the PDF of the original datasets is
quite close to the one of the extracted datasets.

Table A1. Results of the Kolmogorov–Smirnov test. For each memory level and each dataset, the
results of the Kolmogorov–Smirnov test (%succ columns) and of the KL divergence computation
(KLdiv columns) are reported.

L1 L2 L3

Datasets %succ KLdiv %succ KLdiv %succ KLdiv

amzn 100 9.54× 10−6 ±
7.27× 10−14 100 7.88× 10−5 ±

7.97× 10−13 100 1.88× 10−3 ±
1.52× 10−11

face 100 1.98× 10−5 ±
1.00× 10−12 100 7.98× 10−5 ±

4.43× 10−13 100 1.88× 10−3 ±
1.24× 10−11

osm 100 9.38× 10−6 ±
4.51× 10−14 100 7.88× 10−5 ±

3.46× 10−13 100 1.88× 10−3 ±
9.55× 10−12

wiki 100 9.47× 10−6 ±
5.27× 10−14 100 7.87× 10−5 ±

5.64× 10−13 100 1.88× 10−3 ±
1.25× 10−11

Appendix A.3. Training of the Novel Models: Analysis and Insights into Model
Training—Additional Results

Following the same approach as used in Section 4 of the main text, we divide the
training time analysis into two groups: constant- and parametric-space models.

• Tables A2–A4 report the experiments concerning the constant-space models for the
datasets L1, L2 and L3.

• Tables A5–A7 report the experiments concerning the parametric-space models for the
datasets L1, L2 and L3.

Table A2. Constant-space model training time for L1 Tables. The first column indicates the datasets.
The remaining columns indicate the models used for the learning phase. Each entry reports the
training time in seconds and per element.

KO-US C

amzn 5.3× 10−7 1.0× 10−7

face 5.5× 10−7 8.5× 10−8

osm 4.6× 10−7 9.9× 10−8

wiki 9.0× 10−7 7.9× 10−8
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Table A3. Constant-space model training time for L2 Tables. The table legend is as in Table A2.

KO-BFS C

amzn 1.8× 10−7 3.1× 10−7

face 1.0× 10−7 2.8× 10−7

osm 1.2× 10−7 2.9× 10−7

wiki 1.0× 10−7 2.7× 10−7

Table A4. Constant-space model training time for L3 Tables. The table legend is as in Table A2.

KO-US C

amzn 6.3× 10−8 1.9× 10−8

face 3.9× 10−8 1.9× 10−8

osm 4.4× 10−8 2.0× 10−8

wiki 4.1× 10−8 1.9× 10−8

Table A5. Parametric-space model training time for L1 Tables. The first column indicates the
datasets. The remaining columns indicate the models used for the learning phase. In particular,
each entry reports the time used by the CDFShop and SOSD libraries to train the entire batch of
parametric models in seconds and per element.

CDFShop
SY-RMI 2% CDFShop RMI SOSD RS SOSD PGM

amzn 5.2× 10−6 5.6× 10−6 3.5× 10−6 5.0× 10−7

face 4.1× 10−6 4.6× 10−6 1.1× 10−6 3.9× 10−7

osm 2.8× 10−4 2.9× 10−4 6.9× 10−6 4.0× 10−7

wiki 7.8× 10−6 9.3× 10−6 1.0× 10−5 3.7× 10−7

Table A6. Parametric-space model training time for L2 Tables. The table legend is as in Table A5.

CDFShop
SY-RMI 2% CDFShop RMI SOSD RS SOSD PGM

amzn 5.2× 10−6 5.6× 10−7 3.5× 10−7 5.0× 10−8

face 4.1× 10−6 4.6× 10−7 1.1× 10−7 3.9× 10−8

osm 2.8× 10−4 2.9× 10−5 6.9× 10−7 4.0× 10−8

wiki 7.8× 10−6 9.3× 10−7 1.0× 10−6 3.7× 10−8

Table A7. Parametric-space model training time for L3 Tables. The table legend is as in Table A5.

CDFShop
SY-RMI 2% CDFShop RMI SOSD RS SOSD PGM

amzn 1.5× 10−6 1.3× 10−7 2.4× 10−8 3.4× 10−8

face 1.5× 10−5 1.6× 10−6 1.4× 10−8 2.4× 10−8

osm 1.2× 10−5 1.3× 10−6 3.5× 10−8 3.8× 10−8

wiki 2.3× 10−6 2.2× 10−7 5.1× 10−8 3.7× 10−8
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Appendix A.4. Accuracy of Query Time Evaluation

With reference to Section 3.2 of the main text, we provide a highlight that the processing
time for a batch of queries, over independent executions, is stable. In particular, we
concentrate on the amzn datasets and on the Learned k-are Search, the Synoptic RMI,
the RMI, the PGM and the RS models. A query batch of 2 million elements, obtained as
specified in Section 3.2 of the main text, is processed 10 times. In Table A8, we report the
average batch-query time processing (with the standard deviation), which is indeed low.

Table A8. Batch-query time processing over independent executions. The first row indicates the
model, while the memory level is indicated by the first column. Each entry in the table indicates
the average time (in seconds) to execute 10 times the same batch of queries together with the
corresponding standard deviation.

RMI PGM RS SY-RMI 0.05 KO-US

L1 2.35× 10−2 ±
5.56× 10−4

3.27× 10−2 ±
1.49× 10−3

2.61× 10−2 ±
3.69× 10−4

2.34× 10−2 ±
3.69× 10−4

2.90× 10−1 ±
1.1× 10−2

L2 3.02× 10−2 ±
4.20× 10−4

3.88× 10−2 ±
9.93× 10−4

3.44× 10−2 ±
2.89× 10−4

3.02× 10−2 ±
4.20× 10−4

2.99× 10−1 ±
8.04× 10−3

L3 6.78× 10−2 ±
1.02× 10−3

7.16× 10−2 ±
1.31× 10−3

8.33× 10−2 ±
1.40× 10−3

6.78× 10−2 ±
1.02× 10−3

3.81× 10−1 ±
1.09× 10−2

L4 1.66× 10−1 ±
3.93× 10−3

1.67× 10−1 ±
1.90× 10−3

1.62× 10−1 ±
1.53× 10−3

1.66× 10−1 ±
3.94× 10−3

7.37× 10−1 ±
5.40× 10−3

Appendix A.5. Query Experiments—Additional Results

In this section, we report the experiments described and discussed in Section 5 of the
main text for the face and wiki datasets.

• Figures A2 and A3 report the experiments concerning the constant-space models as
in Section 5.1.

• Figures A4 and A5 report the experiments concerning the parametric-space models
as in Section 5.2.

• Tables A9 and A10 report a synopsis of three parameters, i.e., the query time, space
used in addition by the model and reduction factor as described in Section 5.2.
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Figure A2. Constant-space-model query times for the face dataset. For each memory level, the blue
bar reports the average query time in seconds of Uniform Binary Search using, from left to right,
no model, the Cubic model and KO-US. In addition, we also report the average query time for the
Eytzinger Binary Search in the orange bar.
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Figure A3. Constant-space-model query times for the wiki dataset. The legend is as in Figure A2.
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Figure A4. Query times for the face dataset on Learned Indexes in small space. The methods
are the ones in the legend (middle of the four panels, the notation is as in the main text and each
method has a distinct colour). For each memory level, the abscissa reports methods grouped by space
occupancy, as specified in the main text. When no model in a class output by SOSD takes at most
10% of additional space, that class is absent. The ordinate reports the average query time in seconds,
with Uniform Binary Search executed in SOSD as baseline (horizontal lines).
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Table A9. A synoptic table of space, time and accuracy of the models on the face dataset. For each
memory level, we report, in the first row, the best performing method for that memory level. The
columns named time, space and reduction factor indicate, for this best model, the average query time
in seconds, the average additional space used and the average of the empirical reduction factor. From
the second row, we report the versions of the RMI, RS, PGM and Synoptic RMI models that use the
least space. In particular, the numbers next to the models represent the percentage of the used space
with respect to the input dataset. The columns indicate the ratio of the model/best model of the time,
space and reduction factor.

L1

Time Space Reduction Factor

Best PGM 2.26× 10−8 4.00× 10−2 99.52

Best PGM 1.00 1.00 1.00

SY-RMI 0.05 2.33 2.20 6.30× 10−1

Best RMI 1.16 7.72× 101 1.00

Best RS 1.17 5.90× 104 1.00

L2

Time Space Reduction Factor

Best RMI 3.02× 10−8 1.23× 10 99.98

B-PGM 0.05 1.89 8.13× 10−3 9.98× 10−1

SY-RMI 0.05 1.89 1.30× 10−2 9.40× 10−1

Best RMI 1.00 1.00 1.00

Best RS 1.10 1.92× 102 1.00

L3

Time Space Reduction Factor

Best RMI 6.11× 10−8 7.86× 102 100.00

B-PGM 0.05 1.57 3.33× 10−3 1.00

RMI < 10 1.19 3.13× 10−2 1.00

SY-RMI 0.7 1.22 5.62××10−2 1.00

RS < 10 1.53 7.54× 10−1 1.00

L4

Time Space Reduction Factor

Best RMI 1.80× 10−7 2.01× 105 100.00

SY-RMI 0.05 3.74 3.97× 10−3 1.32× 10−2

B-PGM 0.05 2.14 3.98× 10−3 1.00

Best RS 2.21 3.96× 10−2 1.00

RMI < 10 1.06 5.00× 10−1 1.00
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Table A10. A synoptic table of space, time and accuracy of the models on the wiki dataset. The
legend is as in Table A9.

L1

Time Space Reduction Factor

Best RMI 2.55× 10−8 3.09 99.84

B-PGM 0.05 2.50 1.30× 10−2 2.06× 10−1

SY-RMI 0.05 2.24 2.85× 10−2 8.52× 10−1

Best RMI 1.00 1.00 1.00

Best RS 1.70 2.40 9.77× 10−1

L2

Time Space Reduction Factor

Best RMI 3.32× 10−8 9.83× 101 99.98

B-PGM 0.05 2.66 1.02× 10−3 9.26× 10−1

SY-RMI 0.05 2.59 1.63× 10−3 9.57× 10−1

Best RS 1.60 7.77× 10−2 9.97× 10−1

RMI < 10 1.05 2.50× 10−1 1.00

L3

Time Space Reduction Factor

Best RMI 5.16× 10−8 7.86× 102 100.00

B-PGM 0.05 2.26 3.76× 10−3 1.00

SY-RMI 0.05 2.01 3.83× 10−3 1.00

Best RS 1.74 3.82× 10−2 1.00

RMI < 10 1.14 5.00× 10−1 1.00

L4

Time Space Reduction Factor

SY-RMI 2 1.61× 10−7 3.20× 104 100.00

SY-RMI 0.05 1.39 2.50× 10−2 1.00

B-PGM 0.05 1.82 2.53× 10−2 1.00

Best RS 1.30 4.97× 10−1 1.00

RMI < 10 1.02 7.86× 10−1 1.00
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