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Abstract: The classification of savanna woodland tree species from high-resolution Remotely Piloted
Aircraft Systems (RPAS) imagery is a complex and challenging task. Difficulties for both traditional
remote sensing algorithms and human observers arise due to low interspecies variability (species
difficult to discriminate because they are morphologically similar) and high intraspecies variability
(individuals of the same species varying to the extent that they can be misclassified), and the loss
of some taxonomic features commonly used for identification when observing trees from above.
Deep neural networks are increasingly being used to overcome challenges in image recognition tasks.
However, supervised deep learning algorithms require high-quality annotated and labelled training
data that must be verified by subject matter experts. While training datasets for trees have been
generated and made publicly available, they are mostly acquired in the Northern Hemisphere and
lack species-level information. We present a training dataset of tropical Northern Australia savanna
woodland tree species that was generated using RPAS and on-ground surveys to confirm species
labels. RPAS-derived imagery was annotated, resulting in 2547 polygons representing 36 tree species.
A baseline dataset was produced consisting of: (i) seven orthomosaics that were used for in-field
labelling; (ii) a tiled dataset at 1024 × 1024 pixel size in Common Objects in Context (COCO) format
that can be used for deep learning model training; (iii) and the annotations.

Dataset: https://doi.org/10.5281/zenodo.7094916

Dataset License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Keywords: RPAS; drones; tropical savanna; savanna woodlands; Kakadu National Park;
artificial intelligence

1. Summary

The savanna woodlands of Northern Australia are highly complex systems. They
are characterised by a discontinuous overstory tree composition and a continuous grassy
understory [1]. They have high levels of intraspecies variability as well as low levels of
interspecies variability in some cases, and are morphologically heterogenous in branching
structure, crown shape and height [2]. There has been increasing effort to quantify woody
cover within savanna ecosystems [3–5]. Using aerial imagery collected from satellites, light
aircraft and Remotely Pilot Aircraft Systems (RPAS) or drones, woody cover measurements
can be performed at the site or landscape scale. Measurements of individual trees in savanna
ecosystems at the landscape scale are pertinent for quantifying reference ecosystems to
assess ecosystem restoration efforts at the same scale [6] and developing standards for
mine site ecosystem restoration in those environments [7]. Whilst considerable progress
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has been made in determining the woody cover from aerial imagery [7], there has been
limited success in assigning species-level classification to trees within savanna ecosystems.
Success has mostly been achieved using multi- and hyperspectral sensors deployed often
in combination with LiDAR data [8–10] which adds layers of data-processing complexity
when developing automated classification systems. Due to the significant inter- and
intraspecific morphological variation in some tree species when observed from above,
traditional remote sensing algorithms such as support vector machine and regression trees
are suboptimal when attempting to generalize classification for multiple species at the
landscape scale.

Deep learning algorithms such as Convolution Neural Networks (CNNs) can detect
patterns in nonlinear data and, increasingly, are being applied in the field of computer
vision [11]. Supervised deep learning requires the labour-intensive generation of annotated
and labelled training datasets by domain-experts that are used to train a CNN. Whilst many
large training datasets are made publicly available such as ImageNet [12] which started with
3.2 million images and Common Objects in Context (COCO) with 328,000 images [13], these
datasets are often developed and optimized for detecting a wide range of general objects,
not specifically tree species. There are fewer publicly available training datasets curated
for trees. One includes 2848 hand-annotated trees using bounding boxes supplemented
with 434,551 computer-generated annotations that correspond to coregistered RGB, LiDAR
and hyperspectral aerial imagery [14]. Another training dataset comprises ~30,000 labelled
trees consisting of mixed aerial and ground-level photos [15]. However, these datasets
were curated mostly in Northern Hemisphere forests and scenarios where tree species are
distinct and easily distinguishable, compared to Northern Australia savanna woodlands
with morphologically similar tree species.

The visual classification of savanna tree species from RPAS-derived imagery is a
difficult task without prior knowledge or experience in matching aerial imagery with the
botanical features typically used for species identification from the ground.

We aimed to generate an annotated and labelled training dataset for common savanna
tree species in Kakadu National Park, Northern Territory, Australia. The classification of
trees in RPAS imagery needed to be confirmed by expert botanists to ensure individual
tree crowns were correctly delineated and species were labelled for every tree. This
dataset can be used to train CNNs for instance segmentation, object detection and image
classification. The dataset forms a baseline that can more broadly be used for: an inventory
of savanna tree species at the landscape scale; assessing ecosystem restoration efforts;
savanna tree ecology research; and computer vision. As the majority of individual trees
remain fixed in their position through time (an exception is change through disturbance),
the tree species annotations can be georeferenced to aerial imagery across different time
periods (years) and seasons, and applied to higher-resolution imagery when it becomes
available without having to repeat intensive ground-truth field surveys. The savanna tree
AI dataset is made publicly available; orthomosaics can be accessed at www.geonadir.com
(accessed on 22 June 2021) and a tiled dataset in COCO format can be accessed at https:
//doi.org/10.5281/zenodo.7094916. We provide methods to perform model training with
the dataset and present preliminary results.

2. Data Description

This dataset consists of seven orthorectified mosaics (Red, Green, and Blue) and seven
shape files which include hand-annotated polygons which delineate the tree canopies in
the imagery. All imagery was collected from seven 1 ha sites in Kakadu National Park,
Northern Territory, Australia (Figure 1).

The variation amongst sites in savanna woodland tree community composition is
described in Table 1. Overall, Eucalyptus tetrodonta, Eucalyptus miniata and Acacia mimula
were the most dominant species present amongst the seven sites surveyed and recorded
the greatest number of polygons compared to other tree species.

www.geonadir.com
https://doi.org/10.5281/zenodo.7094916
https://doi.org/10.5281/zenodo.7094916
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Figure 1. Location of sites for imagery collected in Kakadu National Park, Northern
Territory, Australia.

Table 1. Description of plots surveyed, number of polygons, overall stem densities (trees) and top 3
dominant tree species.

Plot Number of Polygons [Classes] Top Three Dominant Tree Species Per Plot

Site 1 219 [13] Eucalyptus tetrodonta, Xanthostemon paradoxus, and Corymbia porrecta
Site 2 322 [17] Acacia mimula, Eucalyptus tetrodonta, and Persoonia falcata

Site 3 169 [15] Eucalyptus tetrodonta, Eucalyptus miniata, and Acacia mimula
Site 4 402 [18] Eucalyptus tetrodonta, Eucalyptus miniata, and Erythrophleum chlorostachys
Site 5 538 [20] Eucalyptus tetrodonta, Acacia lamprocarpa, and Acacia mimula
Site 6 365 [7] Acacia mimula, Eucalyptus miniata, and Eucalyptus tetrodonta
Site 7 532 [17] Eucalyptus tetrodonta, Erythrophleum chlorostachys, and Corymbia porrecta
Total 2547 [36] Eucalyptus tetrodonta, Acacia mimula, and Eucalyptus miniata

The shape file includes an attribute containing the species-level identification of
trees for each polygon that was verified through on-ground vegetation surveys (Table 2).
Ground-truthed species identifications were further validated by a botanist on a desktop
workstation after on-ground surveys were conducted. On-ground vegetation surveys were
conducted in April and June 2021 where 2547 polygons for 36 tree species were collected.
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Table 2. Species distribution for all plots combined with species code used in shape file and Common
Objects in Context (COCO) format. Total number of annotations (polygons) for each class is included.

Species Code (in Shape File) Number of Polygons

Acacia dimidiata ACDIM 6
Acacia lamprocarpa ACLAM 2

Acacia mimula ACMIM 308
Acacia oncinocarpa ACONC 8

Brachychiton megaphyllus BRMEG 0
Buchanania obovata BUOBO 27
Calytrix exstipulata CAEXS 37

Cochlospermum fraseri COFRA 34
Coelospermum reticulatum CORET 3

Corymbia bleeseri COBLE 2
Corymbia ferruginea COFER 1
Corymbia polycarpa COPOC 1
Corymbia polysciada COPOS 2
Corymbia porrecta COPOR 176
Denhamia obscura DEOBS 3

Erythrophleum chlorostachys ERCHL 261
Eucalyptus miniata EUMIN 598

Eucalyptus tetrodonta EUTET 597
Ficus aculeata FIACU 2

Gardenia megasperma GAMEG 10
Grevillea pteridifolia GRPTE 2

Livistona humilis LIHUM 54
Owenia vernicosa OWVER 7
Pandanus spiralis PASPI 62

Persoonia falcata PEFAL 17
Petalostigma pubescens PEPUB 4

Petalostigma quadriloculare PEQUA 2
Planchonella arnhemica PLARN 1

Planchonia careya PLCAR 14

Premna acuminata PRACU 1
Stenocarpus acacioides STACA 2

Syzygium eucalyptoides subsp. bleeseri SYEUB 1
Syzygium eucalyptoides subsp. eucalyptoides SYEUE 1

Terminalia ferdinandiana TEFER 101
Terminalia grandiflora TEGRA 6

Xanthostemon paradoxus XAPAR 194

3. Methods

We outline the methods used to collect, preprocess, label and use the dataset to
train deep neural networks for the instance segmentation, object detection and image
classification of savanna woodland tree species. The architecture used for this project is
outlined in Figure 2.

3.1. Plot Setup

Before aerial imagery was collected, tape was placed to mark the perimeter of each
survey area, 100 m × 100 m in size. Pink, red and yellow marker cones were then positioned
within the survey area in a grid-like manner, spaced ~20 m apart. The placement of tape
and cones was to provide identifiable features in the mosaic that could be used by field
teams to correctly identify the tree being labelled (Figure 3).

3.2. Image Capture

The aerial imagery was collected using a DJI Matrice M200 RPAS mounted with a
DJI Zenmuse X5S 20.8 MP CMOS (4/3 inch) sensor (DJI Sky City, No.55 Xianyuan Road,
Nanshan District, Shenzhen, China) and DJI MFT 15 mm f1.7 lens. The RPAS was operated
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at approximately 80 m above ground level, resulting in a ground sample distance of almost
2 cm (Table 3). All imagery was collected between 11:00 and 15:30 to reduce the effects
of shadows on the imagery. For each flight, there was an image overlap of 85% and 75%,
forward and side, respectively. All imagery, except for Site 1, was acquired in mid- to late
June 2021. Site 1 data were collected in April 2021.

Figure 2. Data-processing pipeline for generating tree species dataset and training deep
learning models.

Figure 3. Examples of field referencing methods for labelling tree species: (a) tape line; (b) cones;
(c) and real-time GPS.

Table 3. Drone image capture details.

Site (Mosaic) Date and Time Flight Height (m) No. Images GSD (cm)

Site 1 12 April 2021 15:10 82 233 1.8
Site 2 21 June 2021 11:30 87 260 1.9
Site 3 22 June 2021 11:20 82 203 1.8
Site 4 14 June 2021 14:20 87 112 1.9
Site 5 15 June 2021 12:30 90 342 2.0
Site 6 21 June 2021 11:35 82 270 1.8
Site 7 17 June 2021 12:30 78 198 1.7
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The imagery was processed using the standard photogrammetric workflow within the
Correlator 3D software application (SimActive, Montreal, QC, Canada) and geometrically
corrected orthomosaics were generated.

3.3. Field-Based Image Labelling

The mosaics were visualized in ArcGIS Pro v2.5 on laptops to enable labelling in
the field. Within the ArcGIS Pro tooling, a feature class was created in the project’s file
geodatabase. With the feature class selected, the tool to create polygons was selected within
the table. Using the aerial imagery, reference markers and real-time GPS integrated with
ArcGIS, field teams navigated to the trees in the field to perform species-level identification
and draw a polygon around the canopy of the tree (Figure 4). Species labels were entered
into a class column in the file geodatabase. To assist with navigation in the field, the
GPS function was activated in ArcGIS for real-time geographical positioning. Due to the
complex morphology of savanna tree branching structures, care was taken to ensure the
correct boundary of the polygon matched the ‘real’ extent in the imagery. For multistem
trees, polygons were created around the individual canopies when distinguishable in the
imagery. Otherwise, one polygon was created for the cluster and it was noted that it was
multistemmed. For instances where canopies of different tree species were overlapping,
the field team attempted to keep polygons from overlapping and tried to distinguish the
canopies as best as practicable.

Figure 4. Example of tree annotations and labels: (a) at the scale of a plot; (b) species-level polygons;
and (c) Eucalyptus miniata at the dimensions of the bounding box annotation.

3.4. Preparing Plot Data for Deep Learning

Deep neural networks are commonly trained on smaller image sizes such as 256 × 256
or 512 × 512 pixels to maintain computational efficiency and as a standard scale for objects
of interest in an image to be learnt by a network [16,17]. As such, the mosaics which ranged
in size from 16,840 × 15,112 to 30,170 × 28,020 pixels needed to be tiled for model training.

Mosaic images were tiled at 1024 × 1024 pixel size with a 512-pixel step size (overlap)
to attempt to include the larger-sized tree canopies in at least one of the tiles. The tiling
process resulted in some images without polygons bound around every tree in the image
due to sparsity in the annotations generated on the edge of the survey (Figure 4a) and small
shrubs (<1.5 m) not targeted during in-field labelling (Figure 5). Species annotations in
the shape file that corresponded to each tile were converted to Microsoft Common Objects
in Context (MS COCO) format and combined into one .json file. For object detection and
instance segmentation model training the data from plots 1, 2, 3, 5, 6 and 7 were aggregated
into one training dataset and plot 4 data were used as a validation dataset.
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Figure 5. Examples of tiled (1024 × 1024) training data with: (a) all trees bound by polygons;
(b) missing some shrubs; and (c) on the edge of the survey area including canopies that were
not annotated.

3.5. Deep Learning Model Training and Preliminary Results

Deep CNNs were trained using Azure Machine Learning services AutoML [18] and
Custom Vision platforms [19]. AutoML is an end-to-end machine learning tool that enables
automated CNN model training for computer vision tasks. It supports state-of-the-art
CNN models for computer vision and automated hyperparameter tuning to sweep across
all the possible parameters and optimize performance. AutoML was used to train instance
segmentation and object detection models.

Azure’s Custom Vision platform was used to train an image classification model.
Custom Vision is an AI service and end-to-end platform for labelling and training deep
learning models. The platform optimizes model training and hyperparameter tuning based
on the data. An image classification project with multiclass (single tag per image) tagging
was created for model training.

Three evaluation metrics were reported to assess the performance of models trained:
(1) precision: the probability that a detected class was the correct class; (2) recall: the
probability that out of all the classes that should be predicted, the model made the correct
prediction; and (3) average precision: the area under the curve of precision and recall. The
mean average precision is reported as the mean of the average precision calculated for all
classes in the model.

3.5.1. Instance Segmentation

An instance segmentation model was trained using 2885 images, each with
1024 × 1024 pixel size, on one class (tree). The model architecture used was Mask R-CNN
with a ResNet50-FPN backbone [20]. A learning rate of 0.005 and training batch size of 2
were used in conjunction with the early stopping feature which ceases training when the
model is no longer learning from the dataset. The model was validated against a validation
dataset of 449 images consisting of unseen images from the training data. Measures of
precision and recall by the model at each training epoch step are presented in Figure 6. One
epoch represents a forward and backward pass of the entire dataset through the neural
network. The best combination of precision, recall and mean average precision were 25.5%,
61.4% and 34.5% measured at epoch 4 and the early stopping feature was initialized at
epoch 10. As model training progressed, precision increased, while recall decreased.
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Figure 6. Calculations of: (a) recall; (b) precision; and (c) mean average precision at each epoch step
during instance segmentation model training on one class (tree).

When visualizing model predictions on the test imagery, patterns were evident in the
predictive performance. When the trees were sparse, smaller trees were often undetected
(Figure 7a). When the tree canopies were dense, and with minimal overlap, the model was
able to detect and mask most tree crowns (Figure 7b), and when there was a high degree of
canopy overlap, the model attempted to combine multiple tree canopies into one (Figure 7c).
Most large tree canopies were detected in the test imagery when visualizing predictions,
contrasting with the low metrics of precision generated during the model training. This
may be due to predictions made on the unannotated trees present in the validation dataset,
resulting from the tiling process (see Section 3.4), which were recorded as False Positive
(FP) predictions and lowered the calculations of precision. The calculations of recall (61.4%)
were double that of precision, indicating more than half the trees in the validation dataset
were detected by the model.

Figure 7. Instance segmentation model predictions on 1024 × 1024 test images demonstrating
examples of: (a) sparse tree coverage; (b) dense but isolated tree canopies; and (c) connected or
overlapping tree canopies.

3.5.2. Object Detection

An object detection model was trained using 2885 images, each with
1024 × 1024 pixel size, on one class (tree). The model architecture used was Faster R-
CNN with a ResNet50-FPN backbone [20]. A learning rate of 0.005 and training batch size
of 2 were used with the early stopping feature which ceases training when the model is no
longer learning from the dataset. The model was validated against a validation dataset of
449 images consisting of unseen images from the training data.

Measures of precision and recall by the model at each training epoch step are presented
in Figure 8. The best combination of precision, recall and mean average precision were



Data 2023, 8, 44 9 of 13

24.1%, 65.1% and 37.0% measured at epoch 5 and the early stopping feature was initialized
at epoch 11. As the model training progressed, precision increased, while recall decreased.

Figure 8. Calculations of: (a) recall; (b) precision; and (c) mean average precision at each epoch step
during object detection model training on one class (tree).

The object detection model performed similarly to instance segmentation (see
Section 3.5.1) with slightly higher recall. The visualisation of model predictions also
revealed similar detection patterns with the occasional missed tree canopy when tree
crowns were closer or overlapping (e.g., the tree canopy in the top of Figure 9c).

Figure 9. Object detection model predictions on 1024 × 1024 test images demonstrating examples
of: (a) sparse tree coverage; (b) dense but isolated tree canopies; and (c) connected or overlapping
tree canopies.

3.5.3. Image Classification (Multiclass)

An image classification model was trained using 2280 images with 17 classes (tree
species) that were selected with sufficient training data (>5 images per species) to train
CNN models in the Custom Vision platform. Training data were generated by clipping
each tree at the dimension of the bounding box for each species annotation (Figure 4c). The
model selection, validation dataset and hyperparameters were chosen by the platform and
training was undertaken for 2 h of computing time. The mean average precision, precision
and recall were 76.7%, 75.4% and 67.8%, respectively.

Measures of precision and recall were calculated at 1% confidence intervals between 0
and 100% (Figure 10). The area under the curve (AUC) or trade-off between precision and
recall demonstrates a generalized model was trained with ~50% recall when constraining
predictions to a high (99%) confidence threshold.

Metrics for each of the tree species are presented in Table 4. The probability threshold
for accepting predictions with the test dataset was 50%, which is supported by the precision–
recall curve (Figure 10) as a suitable threshold for high levels of recall or classification of
tree species.



Data 2023, 8, 44 10 of 13

Figure 10. Calculations of precision and recall at confidence thresholds between 0 and 100% at
1% intervals.

Table 4. Species-wise average precision, precision and recall results from image classification model
training in Custom Vision.

Species No. of Images Used for Training Average Precision (%) Precision (%) Recall (%)

Acacia mimula 304 58.6 60.6 65.6
Acacia oncinocarpa 7 0.4 0 0
Buchanania obovata 23 10.9 33.3 20
Calytrix exstipulata 13 100 75 100

Cochlospermum fraseri 9 83.3 100 50
Corymbia porrecta 170 36.4 42.1 23.5

Erythrophleum chlorostachys 246 83.9 80 73.5
Eucalyptus miniata 517 85 82.7 77.9

Eucalyptus tetrodonta 558 83.4 76.2 68.8
Gardenia megasperma 10 2.8 0 0

Livistona humilis 53 91.1 90.9 100
Pandanus spiralis 58 100 100 100
Persoonia falcata 17 38 25 25

Planchonia careya 14 0.0 0.0 2.5
Terminalia ferdinandiana 95 92.2 94.1 84.2

Terminalia grandiflora 5 50 0 0
Xanthostemon paradoxus 181 83.8 78.8 72.2

The highest average precision of 100% was observed in P. spiralis and C. exstipulata
with 58 and 13 images, respectively, and the lowest average precision of 0% was observed
in P. careya with 14 images. Species that recorded an average precision equal to or less
than 50% also had a low number of images used for training (<23), except for C. porrecta
with 170 images and 36.4% average precision. Tree species with an average precision
greater than 50% generally had higher numbers of images for training (>50), except for C.
exstipulata and C. fraseri with 13 and 9 images, respectively. The exceptions noted above
may be explained by either their comparative morphological uniqueness or similarity
in the training data. For example, C. exstipulata was the only species with bright-purple
flowers in all training data images (Figure 11). While the number of training images was
low (13), the low levels of intraspecies variation and high degree of interspecies variation
for C. exstipulata within the training data resulted in higher evaluation metrics, meaning
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it was easily learnt and distinguished by the model. Similarly, training data for C. fraseri
represented small trees with bright-green leaves that were (Figure 11) not represented in
other tree species and resulted in higher evaluation metrics.

Figure 11. Examples for training data for species included in the image classification model.

C. porrecta demonstrated an opposite effect to C. exstipulata and C. fraseri where there
were a high number of training images (170). High degrees of intraspecies variation—due
to small and large tree canopies in the training data—combined with greater interspecies
similarity with taxa such as E. tetrodonta (Figure 11) resulted in poorer model detectability.
This is evident in the confusion matrix of model predictions in Figure 12 where 8 out of
the 32 test images for C. porrecta were predicted correctly, and 13 and 7 predictions were
attributed to the similar-looking species E. tetrodonta and E. miniata, respectively. Visually
unique tree species such as L. humilis and P. spiralis (Figure 11) had fewer misidentifications
for other species (Figure 8) compared to visually similar species such E. tetrodonta, A.
mimuli, C. porrecta and E. tetrodonta, which had higher numbers of relative misidentifications
(Figure 12).

Figure 12. Confusion matrix of actual and predicted tree species from the image classification model.
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4. Conclusions

We generated an annotated and labelled training dataset for common savanna tree
species in Kakadu National Park, Northern Territory, Australia using aerial imagery col-
lected from an off-the-shelf RPAS. The dataset was created by expert botanists and remote
sensing experts and can be used to train convolution neural networks for instance seg-
mentation, object detection, and image classification. The dataset is a valuable resource
for an inventory of savanna tree species at the landscape scale using RPAS-derived very-
high-resolution imagery. The use of deep learning algorithms, specifically CNNs, shows
promising results in classifying savanna tree species, even in the presence of significant
inter- and intraspecific morphological variation. The visualisation of object detection and
instance segmentation model predictions indicates the delineation of tree crowns performed
best when trees were isolated and further training data were required to detect both small
and large tree canopies in the same image and where significant amounts of overlap in the
tree canopy occurred. Image classification models confidently distinguished 9 of 17 species
included in this study at an 80% average precision or higher. Future work will focus
on using higher-resolution sensors to provide increased detail in addressing some of the
limitations identified in the dataset. This study highlights the potential for using CNNs to
classify savanna tree species and the importance of creating annotated and labelled training
datasets in the development of automated classification systems.

5. User Notes

To quickly get started with this dataset, go to ajansenn/SavannaTreeAI (github.com)
to access the resources for model training using the Azure Machine Learning service with
cloud computing. Scripts to preprocess the dataset are also available.
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