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Abstract: Reverse vaccinology (RV) is a computer-aided approach for vaccine development that
identifies a subset of pathogen proteins as protective antigens (PAgs) or potential vaccine candi-
dates. Machine learning (ML)-based RV is promising, but requires a dataset of PAgs (positives) and
non-protective protein sequences (negatives). This study aimed to create an ML dataset, VPAgs-
Dataset4ML, to predict viral PAgs based on PAgs obtained from Protegen. We performed seven
steps to identify PAgs from the Protegen website and non-protective protein sequences from Univer-
sal Protein Resource (UniProt). The seven steps included downloading viral PAgs from Protegen,
performing quality checks on PAgs using the standard BLASTp identity check ≤30% via MMseqs2,
and computational steps running on Google Colaboratory and the Ubuntu terminal to retrieve and
perform quality checks (similar to the PAgs) on non-protective protein sequences as negatives from
UniProt. VPAgs-Dataset4ML contains 2145 viral protein sequences, with 210 PAgs in positive.fasta and
1935 non-protective protein sequences in negative.fasta. This dataset can be used to train ML models
to predict antigens for various viral pathogens with the aim of developing effective vaccines.

Dataset: https://doi.org/10.17632/w78tyrjz4z.1

Dataset License: CC BY 4.0

Keywords: viruses; antigens; machine learning; reverse vaccinology; vaccinology; vaccines; bioinformatics

1. Introduction

Infectious diseases are a significant public health concern, accounting for an average
of ~177.07 deaths per 100,000 people worldwide annually [1,2]. Approximately 60% of all
human infectious diseases have been identified, and 75% of the 30 new infectious diseases
that have affected humanity over the last three decades are zoonotic [3,4]. The causative
agents of these infections are disease-causing pathogens, such as viruses, bacteria, parasites,
or fungi. The lack of a specific effective cure, treatment, and broadly protective vaccine
makes combating these infections difficult. Viral pathogens, such as influenza type A
(H1N1) virus, Ebola virus, human immunodeficiency virus (HIV), severe acute respiratory
syndrome coronavirus 1 (SARS-CoV or SARS-CoV-1), and recently, SARS-CoV-2, have
caused major pandemics and epidemics [5–14].

Vaccines are effective global public health interventions for controlling infectious
diseases. Globally, vaccines save 386 million life years and 96 million disability-adjusted life
years (DALYs), preventing nearly six million deaths annually [15]. Furthermore, vaccina-
tions administered between 2021 and 2030 are expected to prevent an estimated 51 million
deaths worldwide caused by various pathogens [16]. The Centers for Disease Control
and Prevention (CDC) report that over 25 safe and effective vaccines are available to help
prevent diseases [17]. Vaccines are available for viral diseases, such as influenza, hepatitis A,
Ebola virus disease, COVID-19, Zika virus infection, polio, and smallpox [17,18]. However,
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more effective vaccines against these diseases are required to keep up with the emergence
and spread of the viral variants. Additionally, despite advances in vaccination, no vaccines
are available for numerous infectious diseases, including herpes, hepatitis C, and acquired
immunodeficiency syndrome (AIDS) caused by HIV [18]. An innovative genome-based
vaccine-design approach known as reverse vaccinology (RV), developed in the early 1990s,
is promising for developing effective vaccines [19].

RV employs the computerized screening of pathogen protein sequences as the first
step in vaccine development for selecting a subset of proteins as promising antigens, also
known as potential vaccine candidates (PVCs) [20]. Following the identification of PVCs in
this first step in the RV process, (i) the PVCs are purified and used to immunize animals,
and (ii) the PVCs with experimentally proven protective potential and adjuvants are chosen
for the clinical phase of vaccine development [20]. RV has three significant advantages
over traditional vaccinology: (i) RV vaccine development takes 1–2 years, compared to
5–15 years in traditional vaccinology; (ii) the pathogen does not need to be grown in a
laboratory; and (iii) all possible antigens, including those not expressed in vitro, can be
identified [19]. The first RV study in 2000 selected and validated 28 immunogenic proteins
in Group B meningococcus [21]. These proteins have been tested experimentally [21]. The
Bexsero® vaccine, created using five of the 28 protein candidates, is licensed in Europe and
the United States of America (USA) [22,23]. RV has been an active area of research since
the success of Bexsero®, including the development and use of specialized bioinformatic
tools known as RV prediction tools for vaccine candidate prediction.

RV prediction tools are computer software or online websites that can be broadly
classified into two main categories based on their algorithmic approaches: rule-based
filtering and machine learning (ML) [20,24]. Both types take pathogen protein sequences as
inputs and output a subset as PVCs or non-PVCs [20].

Rule-based filtering is a traditional programming approach that uses predefined rules
to filter input sequences and identify the PVCs [20]. On the other hand, ML is a data-
driven approach that utilizes algorithms to identify patterns in a dataset of pathogen
protein sequences [20]. The dataset used in ML is labeled as protective antigens (PAgs)
for those sequences with experimental evidence (proven to generate a protective immune
response in a laboratory animal model) and non-protective protein sequences otherwise.
Supervised ML algorithms [25], such as Support Vector Machines (SVMs) [26,27], can be
used to train models on a subset of the dataset (‘train set’) and then evaluate the model’s
performance using a different subset of the data (‘test set’). An ML model is robust if it
performs well on both the training and test sets. The PAgs are known as ‘positive data’ and
non-protective protein sequences as ‘negative data’ in a binary classification ML setting.
This binary classification setting was chosen because the aim was to try to distinguish
between protective sequences and those that are not, similar to previous ML-based RV
studies [24,28–32]. Other methods, such as cross-validation techniques, including k-fold
cross-validation [33], can be used to evaluate the robustness of the model and prevent
overfitting (where a model cannot generalize and instead fits closely to the training dataset).
It is important to note that not all ML algorithms may be suitable for RV prediction, and
choosing the correct algorithm depends on the specifics of the dataset and research goal.
Furthermore, other methods, such as the filtering-based method, can be used alongside ML
instead of depending on the research context.

Examples of rule-based filtering RV programs include (i) the new enhanced reverse vac-
cinology environment (NERVE) [34], (ii) Vaxign [35], (iii) Jenner-Predict [36], and (iv) Vac-
Sol [37]. The ML-based RV software includes (i) VaxiJen [28], (ii) ANTIGENpro [29], (iii) the
model that Bowman et al. [30] developed and was revised by Heinson et al. [31], (iv) Anti-
genic [32], and (v) Vaxign-ML [24]. Vaxign2 [38] incorporates both the filtering-based
method and ML.

ML is more powerful than the rule-based filtering approach for developing RV pro-
grams because ML establishes the rules from the data, whereas the programming used
for rule-based filtering requires manual code rules. However, as previously stated, ML
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requires a training dataset of pathogen PAgs for positive data and non-protective protein
sequences for negative data, which is difficult to obtain. Although PAgs may be found
through a laborious manual curation of the literature, non-protective protein sequences
(candidate proteins that failed preclinical testing) are not publicly available. To address
this, a common approach is to artificially select a random set of proteins as non-protective
protein sequences (non-PAgs) or to identify proteins with little similarity to all selected
proteins as the ‘non-protective protein sequences’ and the PAgs [24,28,30,31].

Current ML-based RV programs were published between 2007 and 2020 and focused
primarily on bacterial prediction. VaxiJen [28], ANTIGENpro [29], and Antigenic [32] are
the only ML tools that predict viral PAgs. VaxiJen, published in 2007, includes pathogen-
specific prediction models for viruses, bacteria, parasites, fungi, and tumors. VaxiJen’s
authors predicted PAgs for their viral model using 200 viral protein sequence data (100 pos-
itives and 100 negatives) from the literature. However, the VaxiJen paper does not include
the actual protein sequence data file(s) used to build the viral ML model. Only Swiss-Prot
identifiers of the positive and negative data are provided in the paper’s supplementary
Excel file.

Later, in 2010, Magnan et al. [29] developed a generic model, ANTIGENpro, for
PAgs of any pathogen type. The authors used a dataset with a size of 1324 (576 PAgs and
748 non-protective protein sequences) to train the model. These included 100 viral PAgs
referenced from VaxiJen in this dataset, and the remaining PAgs were from bacteria, fungi,
and parasites. Their dataset contained no viral non-protective protein sequences (748 non-
protective protein sequences were from non-viral pathogens). ANTIGENpro researchers,
like the authors of VaxiJen, did not make their dataset public. In 2019, Rahman et al. [32]
created a Random Forest-based generic model, Antigenic, for predicting the PAgs of any
pathogen category. The dataset from ANTIGENpro’s study was used to create Antigenic.
Because the dataset was not publicly available, the authors of Antigenic requested it from
Magnan et al. [29], who provided it to them through private communication, as stated in
their article. Although Rahman et al. [32] made this dataset publicly accessible, there are
still no viral non-protective protein sequences (negatives) available for ML.

It is vital to create and publicize a dataset (including viral PAgs as positive and non-
protective protein sequences as negatives) to predict viral PAgs for ML-based RV. This
dataset can be incorporated into existing ML RV models [24,28–32] for potentially improved
viral vaccine design or can be used by researchers to build robust new ML models. Such
models can be used to predict novel PVCs, which may aid vaccinologists as a guide for
vaccine development against various viral pathogens. Protegen (https://violinet.org/
protegen/) (accessed on 9 November 2022) [39] is the only publicly accessible web-based
PAg database, published in 2011. Protegen [39] contains 1371 manually curated PAgs from
peer-reviewed articles in the literature for over 200 infectious diseases caused by different
pathogens (bacteria, viruses, parasites, and fungi) and non-infectious diseases, including
allergies, arthritis, cancer, and diabetes. Each of these collected PAgs is an antigen capable
of eliciting a protective immune response, as demonstrated in at least one laboratory animal
model. However, to our knowledge, no study has been published in which Protegen’s viral
PAgs were used as a basis to create an ML dataset. Therefore, this study aimed to develop an
ML dataset for predicting viral protective antigens (PAgs), called viral protective antigens
(VPAgs) dataset for machine learning (VPAgs-Dataset4ML), for ML-based RV based on
Protegen. Viral non-protective protein sequences were selected through computational
steps from Universal Protein Resource (UniProt) [40]. Our contributions are listed in the
context of the availability of datasets to predict viral PAgs for ML-based RV (Table 1).

The remainder of this paper is organized as follows. Section 2 provides an overview
of the methods, including the seven-step workflow for creating the VPAgs-Dataset4ML.
The VPAgs-Dataset4ML dataset is described in Section 3. Section 4 contains user notes for
researchers who intend to use VPAgs-Dataset4ML. Finally, Section 5 concludes the study.

https://violinet.org/protegen/
https://violinet.org/protegen/
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Table 1. Availability of datasets to predict viral protective antigens for machine learning-based
reverse vaccinology.

Year Dataset Dataset
Size

Protective
Antigens (PAgs)

(Positives)

Non-Protective
Protein Sequences

(Negatives)

Viral Protein Sequence Data
File(s)Available for Positives

and Negatives?

2007 In: VaxiJen [28] 200 100 100 No
2010 In: ANTIGENpro [29] 1324 * 576 * 748 * No
2019 In: Antigenic [32] 1324 * 576 * 748 * No

2023 VPAgs-Dataset4ML
(Our dataset) 2145 210 1935 Yes

* Includes viral, bacterial, parasitic, and fungal proteins. There were only 100 viral PAgs (positives) in the dataset
(referencing VaxiJen’s dataset), with zero viral non-protective protein sequences (negatives).

2. Methods

The VPAgs-Dataset4ML dataset was created using the following seven steps. The
dataset creation process is illustrated in Figure 1. The complete source code of the scripts
and outputs after each step, as mentioned in this section, is available in the GitHub
repository: https://github.com/ZakiaSalod/VPAgs-Dataset4ML (accessed on 9 November
2022). The VPAgs-Dataset4ML dataset is publicly available to the research community on
Mendeley Data at https://doi.org/10.17632/w78tyrjz4z.1 (accessed on 9 November 2022).
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Figure 1. Workflow of the seven steps for creating the VPAgs-Dataset4ML dataset (positive.fasta
and negative.fasta). Abbreviations: PAg: protective antigen; BLASTp: basic local alignment search
tool protein–protein; MMseqs2: many-against-many sequence; Google Colab: Google Colaboratory;
VPAgs-Dataset4ML: viral protective antigens dataset for machine learning.

https://github.com/ZakiaSalod/VPAgs-Dataset4ML
https://doi.org/10.17632/w78tyrjz4z.1


Data 2023, 8, 41 5 of 12

2.1. Step 1: Download Viral Protective Antigen (PAg) Protein Sequences from Protegen

We downloaded viral PAgs with experimental evidence (protegen-virus-4.0-2019-01-
09.faa) from the Protegen database (https://violinet.org/protegen/download/index.php)
(accessed on 1 September 2022) [39] as a FASTA file called protegen-virus-4.0-2019-01-09.fasta
on 1 September 2022. As of 1 September 2022, Protegen contained 414 PAgs from 112
pathogenic viruses.

2.2. Step 2: Perform BLASTp ≤ 30% Identity Check on protegen-virus-4.0-2019-01-09.fasta via
Many-Against-Many Sequence (MMseqs2) on the Ubuntu Terminal

The PAgs with a basic local alignment search tool (BLAST) [41] (specifically, BLASTp)
identity check of over 30% similarity were deemed homologous proteins and eliminated
from this analysis to remove any potential bias. The 30% cut-off is a standard bioinformatics
test for homologous proteins [42]. We used Conda [43] to download the many-against-
many sequence searching 2 (MMseqs2) [44] Python package and ran it on the Ubuntu
terminal to access the BLAST. The FASTA file, protegen-virus-4.0-2019-01-09.fasta, was used
as the input for MMseqs2, and we ran the following command on the Ubuntu terminal:

mmseqs easy-cluster protegen-virus-4.0-2019-01-09.fasta_rep_seq.fasta
positive.fasta logs -c 0.5 --min-seq-id 0.3

Representative sequences in FASTA file format (positive.fasta_rep_seq.fasta) were out-
put. We renamed positive.fasta_rep_seq.fasta as positive.fasta for better clarity as the final
positive FASTA file. The final number of positive samples decreased from 414 out of
112 pathogenic viruses in protegen-virus-4.0-2019-01-09.fasta to 210 PAgs in positive.fasta
from 81 pathogenic viruses.

2.2.1. A Brief Overview of BLAST

BLAST [41] is a bioinformatics algorithm for comparing a biological sequence, such as
a deoxyribonucleic acid (DNA) or protein sequence, to a database of sequences. Several
algorithms are available, including BLASTn (neucleotide–nucleotide), BLASTp (protein–
protein), and BLASTx (translated nucleotide–protein). BLAST is commonly used to identify
similar sequences in a database and can be used to infer functional and evolutionary
relationships among sequences. The algorithm works by finding regions of high similarity
between the query sequence and sequences in the database and then uses statistical methods
to determine the significance of the similarities. In BLAST, there is also the option to ‘align
two or more sequences’, which refers to the process of comparing multiple sequences to
each other to identify regions of similarity. This option is particularly useful when preparing
a dataset, such as the VPAgs-Dataset4ML, for RV. BLAST is one of the most widely used
bioinformatics tools and is available in a variety of forms, including a command-line
version, web-based version, and as a library for use in other software.

2.2.2. A Brief Overview of MMseqs2

MMseqs2 [44] is a bioinformatics tool used for analyzing and comparing large sets of
protein or nucleotide sequences. The tool is an update to the original MMseqs [45] package
and includes several improvements in terms of speed and accuracy. MMseqs2 can be used
for tasks such as clustering, database searches, and profile–profile alignment, and creates
sensitive and fast sequence searches. MMseqs2 is useful for preparing a dataset, such as
VPAgs-Dataset4ML for RV, as it is a quicker method of conducting sequence similarity
checks compared with using BLAST [41] directly. It is designed to be highly efficient, both
in terms of memory usage and computational time, making it well suited for processing
large-scale datasets. MMseqs2 is based on a novel indexing strategy and a parallelized
algorithm that allows it to process millions of sequences in minutes. MMseqs2 software is
open-source and can be run on a variety of platforms, including Linux, MacOS, and (as
a beta version, via cygwin) Windows. To this end, although we had access to Ubuntu (a
Linux distribution) and Windows platforms, we ran our MMseqs2 commands on Ubuntu

https://violinet.org/protegen/download/index.php
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for this study because the MMseqs2 implementation is stable on this platform, whereas the
tool is in the beta version for Windows.

The -c parameter in the MMseqs2 command line was used to specify the level of clus-
tering that should be performed on the input sequences. This sets the minimum coverage
of the sequences in a cluster. Coverage is defined as the percentage of the length of the
longest sequence in a cluster that has to be aligned. For example, in our study, we used a
value of 0.5 for this -c parameter, which means that at least 50% of the longest sequence in
a cluster must be aligned with the other sequences in the cluster for them to be considered
as part of the same cluster. In other words, this parameter sets a threshold for the similarity
of the sequences in a cluster, with higher values resulting in more stringent clustering (i.e.,
fewer, larger clusters) and lower values resulting in less stringent clustering (i.e., more,
smaller clusters).

2.3. Step 3: Create Web Crawler on Google Colab to Scrape Statistical Data (Including Taxonomy
ID) of PAgs from Protegen

We used Python version 3.7.15 to create a web crawler to scrape Protegen’s statistics
webpage (https://violinet.org/protegen/stat.php) (accessed on 5 September 2022) to re-
trieve the statistical data of the positive.fasta file. Python script (VPAgs-Dataset4ML.ipynb)
included the use of Python packages Pandas version 1.3.5 [46–48] for data processing and
Beautiful Soup version 4.11.0 [49] for web scraping, and it ran in the browser on Google Re-
search’s free Jupyter Notebook environment (.ipynb files) called Google Colaboratory (also
known as ‘Colab’ for short) [50]. The output from this script is shown in Supplementary
Tables S1 (shows data for all 414 viruses from Protegen) and S2 (shows data for 210 viruses
as per Step 2). This result is also significant because it contains the ‘taxonomy id’ of the
PAgs species, a requirement for the next steps in generating the negative dataset.

2.4. Step 4: Download Proteome FASTA Files from UniProt Based on Taxonomy ID

A set of ‘gold-standard’ non-protective protein sequences did not exist. As a result,
negative samples were chosen based on their sequence dissimilarity to the PAgs (in pos-
itive.fasta) and the list of all sequences chosen as the negative samples, as described in
previous ML-based RV prediction studies [24,28,30,31]. We downloaded the pathogen
proteome (all protein sequences) FASTA files from the UniProt database [40], based on the
distinct taxonomy ids listed in Supplementary Table S2. If the pan proteome of the taxon-
omy id was not available on UniProt, we chose a reference proteome, and as a last resort, we
chose a proteome under ‘other proteome’ for the ‘taxonomy_id’. Briefly, the pan proteome
is the entire set of proteins found in multiple strains of the same species [51]. The reference
proteome is a collection of protein sequences that covers a wide range of species [51]. The
‘other proteome’ contains any sequences for that species that are available [51]. As we
downloaded the proteomes, we updated the ‘uniprot_proteome_id’ column in Supplemen-
tary Table S2 with the proteome id values obtained from the UniProt downloaded files
for tracking purposes. If no proteome was found in UniProt for a given taxonomy id, we
noted it in Supplementary Table S2 by entering ‘FILE_NOT_FOUND_IN_UNIPROT’ in the
‘uniprot_proteome_id’ column. A total of 95 proteome FASTA files were downloaded, with
10 proteomes missing from UniProt.

2.5. Step 5: Merge Proteome FASTA Files and positive.fasta as combined.fasta

We placed the 95 proteome FASTA files and positive.fasta into the same directory in
Ubuntu. Subsequently, we used the Ubuntu terminal to run the following command to
combine all 96 files into a single file called combined.fasta, which was required for the
next step:

cat *.fasta > combined.fasta

The combined.fasta file had 31,411 protein sequences.

https://violinet.org/protegen/stat.php
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2.6. Step 6: Perform BLASTp ≤30% Identity Check on combined.fasta via MMseqs2 on
Ubuntu Terminal

Similar to Step 2 above, as part of the quality checks in selecting the negative dataset,
we used the Ubuntu terminal to run the following command with combined.fasta as input
for MMseqs2 to remove protein sequences in combined.fasta with more than 30% similarity
to those in positive.fasta:

mmseqs easy-cluster combined.fasta combined_mmseqs2.fasta logs -c 0.5
--min-seq-id 0.3

The combined_mmseqs2.fasta_rep_seq.fasta representative sequence FASTA file was out-
putted with 2088 protein sequences. This step ensured that the protein sequences in com-
bined.fasta that were very similar to those in positive.fasta were eliminated.

2.7. Step 7: Remove PAg Protein Sequences from combined_mmseqs2.fasta_rep_seq.fasta

On Google Colaboratory, we wrote a Python script (Biopython_Remove_Positives_(PAgs).
ipynb) that used the Biopython [52] package to read in combined_mmseqs2.fasta_rep_seq.fasta
and output a new FASTA file called negative.fasta, excluding 131 protein sequences that
had the word ‘Protegen’ in combined_mmseqs2.fasta_rep_seq.fasta and 22 protein sequences
that had matching entries in protegen-virus-4.0-2019-01-09.fasta (Biopython_Remove_Positives_
(PAgs)_Helper.ipynb). This ensured the exclusion of all PAgs (positive). After removing
153 PAgs, the final negative samples in negative.fasta contained 1935 protein sequences.

The VPAgs-Dataset4ML dataset is composed of positive.fasta and negative.fasta. A
description of the dataset is provided in Section 3.

2.8. Ethics and Permission

This study only used secondary data and did not include patient information. There-
fore, no ethical approval was required for this data descriptor. Nevertheless, this study was
part of a larger research project submitted to the Biomedical Research Ethics Committee
(BREC) of the University of KwaZulu-Natal (UKZN) in Durban, KwaZulu-Natal, South
Africa for ethical considerations. On 31 March 2022, the BREC granted exemption from the
ethics review of this project.

3. Data Description
3.1. Quantitative Overview of VPAgs-Dataset4ML

There are 2145 protein sequences in the VPAgs-Dataset4ML dataset, made up of
positive.fasta and negative.fasta. The positive.fasta file had 210 (VPAgs-Dataset4ML: 210/2145;
10%) protein sequences, and the negative.fasta file had 1935 (VPAgs-Dataset4ML: 1935/2145;
90%) protein sequences from various viral pathogens.

3.2. A Snapshot of VPAgs-Dataset4ML

Samples of the first five sequences were tabulated from positive.fasta (Table 2) and
negative.fasta (Table 3). The five protein sequences in the respective tables are shown in
the FASTA file format (Tables 2 and 3). FASTA is a text-based bioinformatics standard
format for displaying amino acid (protein) sequences. This file format depicts each protein
sequence with a “>” symbol (greater-than-sign). The first line of every protein sequence
in a FASTA file is the sequence header, starting with “>”, and the data that follow this
symbol is a unique description of the sequence. In Table 2, for example, “>Protegen:
579|VO: VO_0011168|NP_056918.1 nucleocapsid protein [Measles morbillivirus]” is the first
sequence, indicating the different identifiers of the sequence, for instance, the Protegen
identifier, the protein name is “nucleocapsid protein”, and “[Measles morbillivirus]” is the
name of the viral pathogen. Following this first line, the actual sequence of a standard
one-letter character string is shown. The next sequence in Table 2 is: “>Protegen: 580|VO:
VO_0011169|NP_056919.1 phosphoprotein [Measles morbillivirus]”, and so on, totaling five
sequences.
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Table 2. Sample of the first five protein sequence data of protective antigens (PAgs) (positives) from
the positive.fasta FASTA file.

>Protegen: 579|VO: VO_0011168|NP_056918.1 nucleocapsid protein [Measles morbillivirus]
MATLLRSLALFKRNKDKPPITSGSGGAIRGIKHIIIVPIPGDSSITTRSRLLDRLVRLIGNPDVSGPKLTGALIGILSLFVESPGQLIQRITD
DPDVSIRLLEVVQSDQSQSGLTFASRGTNMEDEADQYFSHDDPSSSDQSRSGWFENKEISDIEVQDPEGFNMILGTILAQIWVLLAK
AVTAPDTAADSELRRWIKYTQQRRVVGEFRLERKWLDVVRNRIAEDLSLRRFMVALILDIKRTPGNKPRIAEMICDIDTYIVEAGLA
SFILTIKFGIETMYPALGLHEFAGELSTLESLMNLYQQMGETAPYMVILENSIQNKFSAGSYPLLWSYAMGVGVELENSMGGLNFGR
SYFDPAYFRLGQEMVRRSAGKVSSTLASELGITAEDARLVSEIAMHTTEDRISRARQAQVSFLHGDQSENELPGLGGKEDRRVKQG
RGEARESYRETGSSRASDARAAHPPTSMPLDIDTASESGQDPQDSRRSADALLVGPRLQAMAGILEEQGSDTDTPRVYNDRDLLD
>Protegen: 580|VO: VO_0011169|NP_056919.1 phosphoprotein [Measles morbillivirus]
MAEEQARHVKNGLECIRALKAEPIGSLAVEEAMAAWSEISDNPGQDRATCKEEEAGSSGLSKPCLSAIGSTEGGAPRIRGQGSGES
DDDAETLGIPSRNLQASSTGLQCYHVYDHSGEAVKGIQDADSIMVQSGLDGDSTLSGGDDESENSDVDIGEPDTEGYAITDRGSAP
ISMGFRASDVETAEGGEIHELLKLQSRGNNFPKLGKTLNVPPPPNPSRASTSETPIKKGTDARLASFGTEIASLLTGGATQCARKSPS
EPSGPGAPAGNVPECVSNAALIQEWTPESGTTISPRSQNNEEGGDYYDDELFSDVQDIKTALAKIHEDNQKIISKLESLLLLKGEVE
SIKKQINRQNISISTLEGHLSSIMIAIPGLGKDPNDPTADVELNPDLKPIIGRDSGRALAEVLKKPVASRQLQGMTNGRTSSRGQLLK
EFQLKPIGKKVSSAVGFVPDTGPASRSVIRSIIKSSRLEEDRKRYLMTLLDDIKGANDLAKFHQMLMKIIMK
>Protegen: 581|VO: VO_0011170|NP_056921.1 matrix protein [Measles morbillivirus]
MTEIYDFDKSAWDIKGSIAPIQPTTYSDGRLVPQVRVIDPGLGDRKDECFMYMFLLGVVEDSDPLGPPIGRAFGSLPLGVGRSTAKP
EELLKEATELDIVVRRTAGLNEKLVFYNNTPLTLLTPWRKVLTTGSVFNANQVCNAVNLIPLDTPQRFRVVYMSITRLSDNGYYTV
PRRMLEFRSVNAVAFNLLVTLRIDKAIGPGKIIDNAEQLPEATFMVHIGNFRRKKSEVYSADYCKMKIEKMGLVFALGGIGGTSLHI
RSTGKMSKTLHAQLGFKKTLCYPLMDINEDLNRLLWRSRCKIVRIQAVLQPSVPQEFRIYDDVIINDDQGLFKVL
>Protegen: 648|VO: VO_0011232|NP_056793.1 nucleoprotein N [Rabies lyssavirus]
MDADKIVFKVNNQVVSLKPEIIVDQYEYKYPAIKDLKKPCITLGKAPDLNKAYKSVLSCMSAAKLDPDDVCSYLAAAMQFFEGTC
PEDWTSYGIVIARKGDKITPGSLVEIKRTDVEGNWALTGGMELTRDPTVPEHASLVGLLLSLYRLSKISGQSTGNYKTNIADRIEQIFE
TAPFVKIVEHHTLMTTHKMCANWSTIPNFRFLAGTYDMFFSRIEHLYSAIRVGTVVTAYEDCSGLVSFTGFIKQINLTAREAILYFFH
KNFEEEIRRMFEPGQETAVPHSYFIHFRSLGLSGKSPYSSNAVGHVFNLIHFVGCYMGQVRSLNATVIAACAPHEMSVLGGYLGEE
FFGKGTFERRFFRDEKELQEYEAAELTKTDVALADDGTVNSDDEDYFSGETRSPEAVYTRIIMNGGRLKRSHIRRYVSVSSNHQA
RPNSFAEFLNKTYSSDS
>Protegen: 654|VO: VO_0011238|CAA09075.1 gB, partial [Suid alphaherpesvirus 1]
ESEDPDAL

Table 3. Sample of the first five protein sequence data of non-protective protein sequences (negatives)
from the negative.fasta FASTA file.

>tr|Q3I803|Q3I803_MONPV Uncharacterized protein OS=Monkeypox virus OX=10244 GN=MPXV_LIB1970_184_168 PE=4 SV=1
UPId=UP000127566 PPId=UP000000344
MMFIHCVVFPDLSNPSKTINAPRDILVNLTYFLQFMRIIKLKIIYGHPRRLGLSTFIDHG
>tr|A0A650BTW0|A0A650BTW0_MONPV Uncharacterized protein OS=Monkeypox virus OX=10244 GN=PDLMKLCO_00006
PE=4 SV=1 UPId=UP000424348 PPId=UP000000344
MILSINLLTVPFSHTINYDDQTYDNDIKSLLEVTTRFHRHYHN
>tr|A0A650BUA7|A0A650BUA7_MONPV A-type inclusion protein A25 OS=Monkeypox virus OX=10244
GN=PDLMKLCO_00143 PE=4 SV=1 UPId=UP000424348 PPId=UP000000344
MLQRLQSRISDLEIQLNDCERNNEINADMEKR
>tr|A0A650BUV3|A0A650BUV3_MONPV A-type inclusion protein OS=Monkeypox virus OX=10244 GN=PDLMKLCO_00142
PE=4 SV=1 UPId=UP000424348 PPId=UP000000344
MDLDRHLNDCKNGNGASSEEVNRLKTRIRDLERSLEIFSKDESELYSAYKTELGNAREQI
SNLQESLRRERESDKTDSYYRRELTRERNKIVELKKRT
>tr|E2FL62|E2FL62_MONPV Uncharacterized protein OS=Monkeypox virus OX=10244 PE=4 SV=1 UPId=UP000168391
PPId=UP000000344
MYIIYRHLSFLTMNSLIENSVLHVRKLLYMIHFNDIDHAPTTATSRNCEDQYLKK

4. User Notes
4.1. Usage of the VPAgs-Dataset4ML Dataset

The VPAgs-Dataset4ML, which includes PAgs in positive.fasta and non-protective
protein sequences in negative.fasta, can be used to train ML models to predict protective
antigens (PVCs) for various viral pathogens. The positive data were PAgs, whereas the
negative data were non-protective protein sequences. For ML, only the sequence data from
the positive.fasta and negative.fasta files are required, and the sequence header line beginning
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with “>” can be ignored. The goal would be to predict the PAgs independent variable as
‘PVC’, denoted by a label (or dependent variable) set to ‘1’ (positive), and the non-protective
protein sequences as ‘not-PVC’ as indicated by the label set as ‘0’ (negative). To do so,
the positive.fasta and negative.fasta files should be read in a script. The Biopython [52]
package in Python can be used to load these files into a Python script as the first step in
the ML process. Researchers with ML expertise can then use Python ML tools, such as
Tensorflow [53], scikit-learn [54], and PyTorch [55], to create and compare various ML
models to predict viral protective antigens. In addition to these Python-based ML tools,
the Weka [56], KNIME [57,58], Orange [59], dplyr [60], and caret [61] tools in the R [62]
programming language are other options available to perform ML.

4.2. Imbalanced Data

As is common in medical datasets, VPAgs-Dataset4ML has a significant bias (referred
to as ‘class imbalance’ in ML) toward one of the categories. Non-protective protein se-
quences accounted for 90% of the data (1935 of 2145), whereas PAgs accounted for 10% of
the total dataset (210 of 2145). In ML, this may result in a high prediction accuracy driven
by the majority category at the expense of the poor performance of the minority category.
Therefore, anyone using this dataset should be aware of this issue and address it using
standard data- or algorithm-level techniques. A sampling technique, such as random over-
sampling, the Synthetic Minority Over Sampling Technique (SMOTE) [63], or the Adaptive
Synthetic Sampling Approach (ADASYN) [64] (with k-nearest neighbors default parameter
k = 5, which may be amended as required) for oversampling, random undersampling, a
clustering-based strategy [65], or Tomek link (T-link) [66] for undersampling can be used in
the data-level approach. At the algorithmic level, an ML algorithm with balancing steps,
such as Balanced Random Forest [67], or bagging classifiers with additional balancing, such
as Over-Bagging [68], must be used.

5. Conclusions

This data descriptor study presented the VPAgs-Dataset4ML, a dataset created with
quality checks based on experimentally validated viral PAgs from Protegen and computa-
tional steps conducted to select a representative set of non-protective protein sequences
from proteomes taken from UniProt, based on the taxonomy id of the PAgs species. There
were 2145 protein sequences in the VPAgs-Dataset4ML dataset (210/2145; 10% in posi-
tive.fasta and 1935/2145; 90% in negative.fasta). Researchers can incorporate the VPAgs-
Dataset4ML into existing ML RV models, such as VaxiJen, which may enable improved
vaccine design, or conduct new ML-based RV studies to predict viral PAgs. Although the
VPAgs-Dataset4ML is imbalanced, we have provided suggestions in Section 4, pointing
out that standard methods researchers could use to handle the imbalance to create more
robust ML models. To the best of our knowledge, this is the first dataset made publicly
available and ready to perform ML for predicting viral PAgs in RV, with the added ben-
efit of providing details of all steps conducted and the code and outputs in each step of
the dataset creation process. The PAgs constituted positive data, and the non-protective
protein sequences were negative data for ML. The ML models developed using the VPAgs-
Dataset4ML have implications for identifying potential vaccine candidates (PAgs) for
various viral pathogens. Vaccinologists may use this information to guide the development
of novel and effective vaccines that could assist in saving the lives of patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/data8020041/s1, Table S1: Statistical data of 414 PAgs from
Protegen; Table S2: Statistical data of 210 PAgs from Protegen with UniProt Proteome ID.
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