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Abstract: In recent years, there has been an increased effort to digitise whole-slide images of cancer
tissue. This effort has opened up a range of new avenues for the application of deep learning
in oncology. One such avenue is virtual staining, where a deep learning model is tasked with
reproducing the appearance of stained tissue sections, conditioned on a different, often times less
expensive, input stain. However, data to train such models in a supervised manner where the input
and output stains are aligned on the same tissue sections are scarce. In this work, we introduce a
dataset of ten whole-slide images of clear cell renal cell carcinoma tissue sections counterstained with
Hoechst 33342, CD3, and CD8 using multiple immunofluorescence. We also provide a set of over
600,000 patches of size 256 x 256 pixels extracted from these images together with cell segmentation
masks in a format amenable to training deep learning models. It is our hope that this dataset will
be used to further the development of deep learning methods for digital pathology by serving as a
dataset for comparing and benchmarking virtual staining models.
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1. Summary

With approximately 13,300 new cases every year, kidney cancer is the seventh-most-
common type of cancer in the U.K. [1]. Clear cell renal cell carcinoma (ccRCC), a subtype of
kidney cancer, whose name is derived from the appearance of its tumour cells under the
microscope, is by far the most prevalent [2,3]. Studying its highly heterogeneous and vas-
cularised tumour microenvironment (TME) is important for improving our understanding
of the disease and its progression [4].

An important technique in clinical oncology and cancer research is the process of
immunostaining, which facilitates the visualisation of various proteins in the cells of cancer
tissue using artificial colouration [5] to distinguish between different cell types. Immunos-
taining assists pathologists in diagnosing cancer and deciding on treatment options [6-8].
Multiple immunofluorescence (mIF) allows different proteins to be visualised simultane-
ously by the enzymatic reaction between fluorescent-coated tyramide and horseradish
peroxidase (HRP) [6,9,10]. In this work, we employed mIF with three different fluorophores
to decorate ccRCC tissue sections for Hoechst 33342, cluster of differentiation 3 (CD3), and
29 cluster of differentiation 8 (CD8). The first is a widely used counterstaining fluorescent
dye used to highlight cell nuclei [11], while the other two highlight specific cell subtypes:
CD3 identifies T lymphocytes, and CD8 marks cytotoxic T lymphocytes.

Digitising whole slide images (WSIs) of tumour tissue as gigapixel images (typically
around 100,000 x 100,000 pixels in size) has become an increasingly common practice in
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the last decade, not only in research, but also clinical settings [12]. The contemporaneous
advent of deep learning, which flourishes with the availability of large amounts of data,
has sparked leaps in the computer vision community. These advancements, combined with
the availability of digital pathology images, pave the way towards developing automated
methods for WSI analysis. Potential applications vary from slide-level tasks such as patient
risk stratification [13,14], to specific image tasks such as detecting cellular subtypes and
their spatial distribution [15-17]. In this setting, deep learning not only has the potential to
help reduce the workload of pathologists, but also to alleviate inter-observer bias, which is
a common problem in pathology [18,19].

In an effort to facilitate deep learning research in digital pathology, we present a
dataset of ten WSIs of ccRCC tissue, alongside the corresponding clinical data. The fact
that our images contain three channels of information (Hoechst 33342, CD3, and CD8)
makes our dataset particularly well-suited to the task of virtual staining [20], where a deep
learning model is tasked with translating from one type of stain to another. In other
words, given an image of stain A, the model should produce an image that appears as
if the tissue section had instead been stained with another stain B. Our dataset, which
is available in the Biolmage Archive (http://www.ebi.ac.uk/bioimage-archive, accessed
on 14 February 2023) under Accession Number S-BIAD605 [21], is presented in a manner
that is suitable for training deep learning models by providing image patches and cell
segmentation masks alongside the raw WSIs. Indeed, our dataset has already been used
for training a modified generative adversarial network (GAN) [22,23] to convert Hoechst
images to CD3 and CD8 [17]. Hoechst staining is significantly less expensive than CD3
and CDS8 [17], so the ability to synthesise the former from the latter could also represent a
significant costs saving.

2. Data Description

Our dataset consists of WSIs digitised from the tumour tissue of ten patients with
ccRCC. The slides were sourced from the Pathology Archive in Lothian NHS (Ethics
Reference 10/51402/33). Using mlIF, the slides were stained with Hoechst, CD3, and CD8
before being scanned at an objective of x40 on an Axioscan Zeiss scanner, resulting in a
dataset of ten WSIs, each with three channels (Hoechst, CD3, and CDS8).

We present the slides in two different formats: as raw WSIs and as preprocessed
non-overlapping image patches of size 256 x 256 pixels covering the entire tissue region of
the WSL. Furthermore, we provide the associated patients’ clinical data in CSV format.

2.1. Raw Whole-Slide Images

We supply all ten WSIs in CZI format named according to the following convention:
ICAIRDXXX_MCM2FITC_CD3CY3_CD8CY5_MCK750.czi, where XXX is the patient ID (referred
to as the iCAIRD number in Section 2.3). As the naming convention suggests, the Hoechst
intensities are captured in the FITC channel, CD3 in the CY3 channel, and CD8 in the CY5
channel. Figure 1 shows a low-resolution thumbnail of one of the WSIs.

2.2. Preprocessed Image Patches

The patches.tar.gz archive (70 G) contains the image patches. There are ten folders,
one for each WSI, named according to the same convention as the raw WSIs in Section 2.1.
For each patch, we supply a JSON file containing the metadata of the patch and the
paths to the various image files associated with that patch. The JSON files are named
ICAIRDXXX_MCM2FITC_CD3CY3_CD8CY5_MCK750 [x=X, y=Y, w=256, h=256].json, where
XXX is the patient ID and X, Y give the location of the patch’s top left edge in the WSI's pixel
coordinates. Listing 1 explains the structure of the JSON file.
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Figure 1. Thumbnail image of one of the WSIs in the dataset, displaying the Hoechst channel in blue,
CD3 in yellow, and CD8 in red. Note that the individual cells are too small to be identified at the low
resolution of this image.

Listing 1. Structure of the JSON file accompanying each patch.

{

"original file": "ICAIRD1007_MCM2FITC_CD3CY3_CD8CY5_MCK750.czi",
"x": 51712,

"y": 51968,

"w": 256,

"h": 256,

"images": [

{

"file": "ICAIRD1007_MCM2FITC_CD3CY3_CD8CY5_MCK750 [...].png",
"mode": "mask",

"channel": "CD3"

},

/).

]

}

In addition to the self-explanatory metadata fields referencing the original WSI file
and patch coordinates, there is a field named images, which contains a list of image files
associated with the patch. Each image file is described by a JSON object with the following
fields: file, mode, and channel. The file field contains the name of the particular image
file (located in the same folder as the JSON file itself). The mode field indicates the type of
image file, which can be either mask (indicating a binary cell mask, i.e., a black and white
image where white pixels represent the detected cells of a specific type) or raw (indicating
a monochrome image with pixel intensities normalised according to Section 3.3.1). Table 1
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lists the seven different image files associated with each patch alongside their respective
mode and channel attributes. Each image is 256 x 256 pixels in size and supplied in
PNG format.

Table 1. Types of image files associated with each patch, alongside their respective mode and
channel attributes.

Mode Channel Description
rav H3342 normalised Hoechst patch
raw Cy3 normalised CD3 patch
raw Cy5 normalised CD8 patch
mask Hoechst segmentation mask of all detected cells
segmentation mask of CD3* cells
mask €3 (subset of Hoechst cells)
segmentation mask of CD8* cells
mask cDs (subset of CD3* cells)
nask unclassified segmentation mask of CD3 cells

(subset of Hoechst cells)

In total, the dataset consists of 627,519 non-overlapping patches. The 256 x 256
pixel patches under 20x magnification correspond to a physical size of about 58 x 58 pum.
Statistics on the representation of each cell type in the dataset are provided in Table 2.

Table 2. Representation of cell subtypes across the dataset. Presence refers to the percentage of
patches that contain at least one cell of the respective subtype. Area coverage means the percentage
of pixels that are occupied by each cell subtype.

Hoechst CD3 CDs8
Total cells 15,956,049 3,390,533 1,894,016
Cells per patch 25.42 5.40 3.02
Presence 99.95% 93.08% 71.61%
Area coverage 26.48% 05.01%  03.02%

2.3. Clinical Data

We provide a CSV file containing clinical data for the ten patients (clinical_data.csv,
571 B). The patients” iCAIRD numbers were used as the identifiers and match up with the
names of the WSIs in Section 2.1 and the patches in Section 2.2. Data include the gender, age
at surgery, five-year recurrence, and number of disease-free months after surgery. We also
include morphological features assessed by a pathologist, including tumour size, lymph
node involvement, and tumour grade, amongst others (Table 3 provides a full list of the
columns).

Table 3. Columns in the clinical data table. Note that the “Disease-free months” column indicates a
lower bound, as some patients may have experienced recurrence after the period of data collection.

Column name Format Description

ICAIRD number ICAIRD_XXX patient ID

Gender MorF gender

Response Oor1 recurrence within 5 years after surgery

Age at surgery whole number age at surgery in years

Disease-free months float number of months with no recurrence

Fuhrman nuclear grade 1-4 Fuhrman grade [24]

ISUP nuclear grade 1-4 ISUP grade [3]

Tumour stage 1a, 1b, 2a, 2b, 3a, 3b, 3¢, or 4 tumour size according to TNM system [25]
Tumour size float tumour size in cm

Node status Oor1 lymph node status according to TNM system [25]
Necrosis Oor1 whether necrosis is detected

Leibovich score (Fuhrman) 0-11 Leibovich score [26] using Fuhrman nuclear grade [24]
Leibovich score (ISUP) 0-11 Leibovich score [26] using ISUP nuclear grade [3]
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3. Methods
3.1. Multiplex Immunofluorescence Protocol

The method of staining the slides and obtaining the WSIs was described in the work of
Wolflein et al. [17], but we include it here for completeness. The Leica BOND RX automated
immunostainer (Leica Microsystems, Milton Keynes, U.K.) was utilised to perform mIF.
The sections were dewaxed at 72 °C using BOND dewax solution (Leica, AR9222) and
rehydrated in absolute alcohol and deionised water, respectively. The sections were treated
with BOND epitope retrieval 1 (ER1) buffer (Leica, AR9961) for 20 min at 100 °C to unmask
the epitopes. The endogenous peroxidase was blocked with peroxide block (Leica, DS9800),
followed by serum-free protein block (Agilent, x090930-2). The sections were incubated
with the first primary antibody (CD8, Agilent, M710301-2, 1:400 dilution) for 40 min at
room temperature, followed by anti-mouse HRP conjugated secondary antibody (Agilent,
K400111-2) for 40 min. Then, the CD8 antigen was visualised by Cy5-conjugated tyra-
mide signal amplification (TSA) (Akoya Bioscience, NEL745001KT). Redundant antibodies,
which were not covalently bound, were stripped off by ER1 buffer at 95 °C for 20 min. Then,
the second primary antibody (CD3, Agilent, A045229-2, 1:400 dilution) was visualised by
TSA Cy3, taking the same steps of the peroxide block to the ER1 buffer stripping of the
first antibody visualisation. Cell nuclei were counterstained by Hoechst 33342 (Thermo
Fisher, H3570, 1:100), and the sections were mounted with prolong gold antifade mountant
(Thermo Fisher, P36930).

3.2. Whole-Slide Image Acquisition

The fluorescence images were captured using a Zeiss Axio Scan Z1 at an objective
of x40 magnification. We used three different fluorescent channels (Hoechst 33342, Cy3,
and Cyb5) simultaneously to capture individual channel images under 20 x object magnifi-
cation with the respective exposure times of 10 ms, 20 ms, and 30 ms. Figure 2 shows the
density curves of the three different channel intensities across the entire dataset.
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Figure 2. Intensity histograms of all 10 WSIs in the dataset (each WSI corresponds to a differently
coloured line).

3.3. Patch Processing
3.3.1. Intensity Normalisation

PNG files store pixels as 8-bit integers, which limits the dynamic range of the images.
However, when examining the intensity histograms in Figure 3, we observed that most
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pixel luminance was concentrated at the lower end of the range. A naive quantisation of
the image to the range [0, 255] would lose most of the important information, specifically
the variation at the lower end. To address this, we applied a form of thresholding.

x10° x10~* x10° x10~*
3. E
10 - ’ l: : BN histogram 0 40 : : BN histogram
1 1 = = thresholds - 25 1 1 = = thresholds 6.0
>, 08 I fitted Gaussian > 30 4 |1 1 fitted Gaussian
9] 1 F20 > & I 1 >
g I 25 I L 4o 2
5, 06 7 1 F15 £ 2 20 A ! T g
g 1 TR g 1 3
£ 04 o 1 1.0 A i 1 A
: 2.0
02 : 107 : »
27 0.5
| |
L |
00 - T — T T T 0.0 00 - T T T T T 0.0
0 4000 8000 12000 16000 0 3000 6000 9000 12000 15000

(a) Hoechst intensity (b) CD3 intensity
Figure 3. Intensity histograms (left axes) and fit normal distributions (right axes) of a sample WSI’s
Hoechst and CD3 channels. The CD8 histograms behave similarly.

Each histogram in Figure 3 exhibits one main peak (disregarding the leftmost max-
imum at an intensity close to zero, corresponding to background pixels). Therefore, we
found it sufficient to assume that the histogram follows a normal distribution (i, o),
the parameters of which we obtained using maximum likelihood estimation. In practice,
most of the important information is contained between the peak and three standard de-
viations to the right, i.e., in the range [y, u 4 3¢], indicated by the red lines in Figure 3.
Eliminating intensities to the left of that peak (x < u) reduces the background noise. More-
over, pixels with high intensities (x > u + 30) are rare and can thus be discarded as well
because they do not add much information. As a result, we transformed the intensities x to
the [0, 1] range by the function:

£(x) = min (1,max (o, x3—0> )

Note that we estimated the parameters p and o derived from the histograms of the
entire WSIs and not on a per-patch basis, due to the height variance between the patches.
Furthermore, the described intensity normalisation procedure was applied to each stain
separately, as illustrated by the sample patch in Figure 4.

3.3.2. Nucleus Segmentation

As indicated in Section 2.2, we supply the normalised image patches of each of the
three channels (Hoechst, CD3, and CD8). However, we also include masks for each of the
three channels (see Table 1), which are generated by a nucleus segmentation algorithm.
These masks can be used to evaluate the quality of virtual staining algorithms [17,20]
or even directly train segmentation models.

Our approach to nucleus segmentation uses the Hoechst channel as the starting point,
instead of directly segmenting cells on the CD3/CD8 channels because those are less
reliable. First, we segmented all nuclei in this channel using the StarDist algorithm [27],
a popular deep-learning-based nucleus segmentation method. We employed StarDist
because it is able to produce plausible non-overlapping masks even in crowded areas
where instance segmentation models such as Mask-RCNN [28] tend to generate blobs
of multiple cells [27]. This is because StarDist represents cells as star-convex polygons,
whereas instance segmentation models simply operate on a pixel level. Figure 4g depicts the
result of StarDist with a probability threshold of 0.6 and no cell expansion, as we employed
it in our pipeline. Following Hoechst cell segmentation, we applied a threshold on the CD3
channel to identify which nuclei in the Hoechst mask were CD3* (Figure 4h). We repeated
this process for the CD8 channel as well (Figure 4i). The entire nucleus segmentation
pipeline (i.e., the aforementioned steps) was implemented as scripts using the QuPath
software [29].
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There were two factors that impacted the quality of the masks. First, Hoechst and CD3
stains may sometimes not align perfectly, which is evident in Figure 4e, where some of the
high-intensity blobs do not match exactly with Figure 4d. This is because, while Hoechst
stains the cell nuclei, CD3 is expressed only in a tiny part of a T cell’s cytoplasm. Analogous
reasoning applies to CD8. The second factor is the thickness of the slides (4 um), which
causes some cells to be out of focus, which becomes evident by the varying intensity levels
in Figure 4a—c. As a result of both of these factors, there may be some cases where CD3* or
CD8* cells may, by mistake, not be classified as such.

(b)

(d)

(®) (h) (i)

Figure 4. A 256 x 256 pixel patch extracted from the WSI in Figure 1, showing raw and normalised
intensities for Hoechst, CD3, and CD8, as well as masks for different cell types. CD8" cells are a
subset of CD3* cells because CD3 highlights all T cells, whereas CD8 binds only to cytotoxic T cells.
(a) Hoechst. (b) CD3. (c¢) CD8. (d) normalised Hoechst. (e) normalised CD3. (f) normalised CD8.
(g) StarDist [27] cell mask. (h) CD3" cells. (i) CD8* cells.
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Abbreviations

The following abbreviations are used in this manuscript:

ccRCC  clear cell renal cell carcinoma

TME tumour microenvironment
mlIF multiplex immunofluorescence
IHC immunohistochemistry

WSI whole-slide image

GAN generative adversarial network
CD3 cluster of differentiation 3

CD8 cluster of differentiation 8

TSA tyramide signal amplification
HRP horseradish peroxidase

JSON  JavaScript object notation

PNG portable network graphics

csv comma-separated values
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