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Abstract: Agricultural drought monitoring in Niger is relevant for the implementation of effective
early warning systems and for improving climate change adaptation strategies. However, the scarcity
of in situ data hampers an efficient analysis of drought in the country. The present dataset was
created for agricultural drought characterization in the Sahelian climate zone of Niger. The dataset
comprises the three-month scale and monthly time series of a composite drought index (CDI) and their
corresponding drought classes at a spatial resolution of 1 km2 for the period 2000–2020. The CDI was
generated from remote sensing data, namely CHIRPS (Climate Hazards Group InfraRed Precipitation
with Stations), normalized difference vegetation index (NDVI) and land surface temperature (LST)
from MODIS (Moderate Resolution Imaging Spectroradiometer). A weighing technique combining
entropy and Euclidian distance was applied in the CDI derivation. From the present dataset, the
extraction of the CDI time series can be performed for any location of the study area using its
geographic coordinates. Therefore, seasonal drought characteristics, such as onset, end, duration,
severity and frequency can be computed from the CDI time series using the theory of runs. The
availability of the present dataset is relevant for the socio-economic assessment of drought impacts
at small spatial scales, such as district and household level. This dataset is also important for the
assessment of drought characteristics in remote areas or areas inaccessible due to civil insecurity in
the country as it was entirely generated from remote sensing data. Finally, by including temperature
data, the dataset enables drought modelling under global warming.
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1. Introduction

Drought is one of the most complex and costliest natural hazards. It is difficult to
accurately identify its onset and end, as it generally starts slowly and gradually. The
impacts of drought are context-dependent, they are mostly diffuse, both direct and indirect,
short-term and long-term [1].

According to the International Disaster Database [2], over 1.1 billion people were
affected by droughts, globally, between 1994 and 2013. In this period, the African continent
registered about 131 droughts, being the most affected continent [3]. In the Sahel region,
drought remains a key driver of food insecurity. The Sahelian droughts of the 1970s and
1980s is clear evidence of how droughts could affect livestock and crop productivity, causing
food insecurity and mass migration [4,5]. These unprecedented droughts also contributed
to land degradation and increasing desertification. Due to its socioeconomic context, the
Sahel region is considered one of the most vulnerable regions to climate change [6].

In the Sahel region, drought is often combined with locust infestation, conflicts and
political instability, causing emergency situations. For example, in 2009, drought in Niger
was combined with locust infestation, leading to approximately 805 million USD of losses,
which corresponds to 30% of the GDP of the country [7]. Moreover, the 2010 drought in the
country affected the food security of about 40% of the population [7].
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To effectively respond to drought, a comprehensive assessment of its socioeconomic
and environmental impacts is required. However, to understand drought impacts its
spatiotemporal characterization is necessary. This is traditionally achieved by using drought
indicators or indices. There are over 100 different indices used to measure drought [8]. The
computation of these indices requires historical hydroclimatic data collected from ground
stations, which are generally scarce in the Sahel region. Furthermore, the use of drought
indices based only on one input variable, such as the precipitation anomalies, quantiles or
the standardized precipitation index (SPI) [9] may fail to assess the joined characteristics of
different types of droughts (e.g., meteorological, agricultural and hydrological drought).

In recent years, earth observation data have been used as an alternative to in situ mea-
surement of hydroclimatic and land data to compute drought indices [10–13]. Additionally,
the use of composite drought indices (CDI) has enabled the characterization of combined
droughts effects [10,14,15].

The present data article aims to generate a database of drought characteristics based on
a composite index derived from remotely sensed data, namely precipitation, temperature
and vegetation at 1 km2 resolution for Niger.

The availability of drought data, at 1 km2 resolution, based entirely on remote sensing
data is relevant for drought characterization and impacts assessment at small spatial scale
in the country.

2. Data and Methods
2.1. Study Area

Niger is a country located in West Africa at the southern edge of the hyper arid Sahara
Desert. The economy of the country is mainly based on rainfed agriculture, livestock raising
and mining. Agriculture is practiced in the Sahelian zone (Figure 1) of the country which
is characterised by a semi-arid climate. The Sahel region, in general, is recognised as one
of the regions that is highly vulnerable to the adverse effects of climate change. In the
Sahelian climate zone, the rainy season is short (Jun to September) with annual rainfall
amount of about 350 to 850 from north to south. Rainfall data in the country is recorded by
a network of 15 climate stations and about 200 rain gages for an area of 1.2 million km2.
Currently, a high-density network of uniformly distributed rain gauges is scarce and many
of the climate stations are out of service; therefore, large parts of the country lack rainfall
information. Mean daily temperatures in the country increase from south to north between
9 ◦C and 45 ◦C depending on the season. Recurrent droughts are among the main factors
that slow down the economic development of the country.
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Several studies have linked the 1970s and 1980s droughts in the Sahel region to
large-scale climate indices, such as El Niño-Southern Oscillation (ENSO) or sea surface
temperature of the Tropical Atlantic Ocean [16–19]. However, further research is needed to
investigate the dynamic of the link between drought in this region and large-scale climate
indices, such as ENSO.

2.2. Input Data Description

Remote sensing data of rainfall, temperature and vegetation were used to compute
the CDI for agricultural drought characterization in Niger. These input variables are,
respectively, the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) [20],
the normalized difference vegetation index (NDVI) [21,22] and the land surface temperature
(LST) [23] from MODIS (Moderate Resolution Imaging Spectroradiometer) lunched by
the National Aeronautic and Space Administration (NASA, Washington, DC, USA). The
MODIS instruments were built by Santa Barbara Remote Sensing (Santa Barbara, California).
All the input variables cover the period 2000–2020. Figures 2–4 show the average seasonal
(July–September) CHIRPS rainfall amount, the mean seasonal NDVI and the mean daytime
LST over the period 2000–2020, respectively, for the Sahelian climate zone of Niger.
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The CHIRPS rainfall products are bias-corrected using ground observation data. Ac-
cording to [24], the CHIRPS data provide reasonable rainfall estimates compared to other
satellite products over the Sahel region. The monthly CHIRPS rainfall data were retrieved
from the University of California website (https://chc.ucsb.edu/data/chirps, accessed on
15 April 2022). The data were spatially resampled from 0.05◦ × 0.05◦ Longitude/Latitude
to 1 km × 1 km by conserving the rainfall amount in the original grid box.

The main source of uncertainty in the MODIS NDVI, used herein, is the presence
of aerosol that may impact its accuracy mainly over arid bright surfaces [22]. The over-
all accuracy of the MODIS vegetation indices is within ±0.025 in optimal observation
conditions—such as clear, no sub-pixel cloud or low aerosol [22]. The MODIS NDVI has
been successfully used by [25] to assess vegetation fluctuations in the Sahel region.

As for the MODIS LST at 1 km2 resolution, several studies—based on initial validation
or uncertainty simulations—have shown its accuracy over all land cover types regardless
to the atmospheric conditions [26–28].

The NDVI and LST data were retrieved from the USGS (United States Geological
Survey) website (https://lpdaac.usgs.gov/tools/appeears/, accessed on 18 April 2022)
using the AppEEARS (Application for Extracting and Exploring Analysis Ready Samples)
tool. In this tool, the Sahel climate zone of Niger was delineated, and the temporal coverage
was specified.

2.3. Development of the Composite Drought Index

Prior to the CDI computation, the input variables were grouped into two categories.
The computation was carried out separately for the monthly CDI and the three-month scale
CDI, hereinafter CDI-3. The first category, A, contains the LST data as it is proportional to
drought occurrence, and the second category, B, contains the precipitation and NDVI data
as they contribute to wet spells.

The first step of the CDI computation consisted of the determination of the entropy
weights. To attribute objective weights, the input variables were normalised using Equation (1)
as follows:

rki = xki/
m

∑
i=1

xki (1)

rki is the normalised value and xki corresponds to the value of the kth input variable
with time index i (i = 1, 2, . . . , m).

After the data normalisation, the entropy measure, ek, of each variable was determined
as follows:

ek =
−∑m

i=1 rki ln(rki)

ln(m)
(2)

https://chc.ucsb.edu/data/chirps
https://lpdaac.usgs.gov/tools/appeears/
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For rik = 0, Equation (2) becomes ek = rki
∑m

i=1 rki
.

In the next step, the degree of diversification of each input was computed by applying
the following expression:

Dk = 1− ek (3)

Then, the entropy weight of each input variable was obtained using Equation (4):

Ewk =
Dk

∑k
j=1 Dk

(4)

Ewk is the entropy weight which ranges from 0 to 1 so that
k
∑

j=1
Dk = 1.

Once the entropy weight is computed, the next step consists of determining the
maximum driest condition (MDC) and the maximum wettest condition (MWC). For the
variables in A category (LST), MDC and MWC correspond to the maximum and minimum
values of the normalised series (rki), respectively. As for the precipitation and NDVI,
belonging to B category, MDC and MWC correspond to the minimum and maximum
values of rki, respectively.

MDCk = {max(rki), k ∈ A; min(rki), k ∈ B} (5)

MWCk = {min(rki), k ∈ A; max(rki), k ∈ B} (6)

The weighted Euclidian distance between the present condition (PC), which is the
value of the normalised indicator at time ti, PC = (r1i, r2i, . . . rki), and the MDC and MWC
were computed using Equations (7) and (8), respectively:

S−i =

√
n

∑
k=1

Ewk[rki −MDCk]
2 (7)

S+i =

√
n

∑
k=1

Ewk[rki −MWCk]
2 (8)

S−i is the weighted Euclidian distance between PC and MDC and S+i is the weighted
Euclidian distance between PC and MWC.

Finally, the time series of the CDI is computed using Equation (9) following [29]:

CDIi =
S−i

S−i + S+i
(9)

The CDI values ranges between 0 and 1. The computation of the CDI was carried out
in Python software [30].

3. Data Description

The generated dataset was published in a Mendeley repository, and contains:
A NetCDF file named “cdi_3.nc.zip” of the CDI-3 time series and the corresponding

drought classes from 2000 to 2020.
A folder named “Input data to the CDI-3” containing each of the input variables

(CHIRPS, NDVI and LST) to the CDI-3 in NetCDF format for 2000–2020.
A folder named “Monthly CDI” containing three subfolders of the monthly CDI and

the inputs variables for July, August and September, and
Map files of Niger in ESRI shapefile format.
These data are available in a Mendeley repository under the name “Dataset of a

composite drought index based on remote sensing data for Niger” at the following address:
https://data.mendeley.com/datasets/47ydz8v6nd, accessed on 20 September 2022.

https://data.mendeley.com/datasets/47ydz8v6nd
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Overall, the dataset has a spatial resolution of 1 km2 and covers the territory of Niger,
except the Sahara Desert, for the period 2000–2020. For instance, a description of the
variables, coordinates and dimensions of the CDI-3 is given in Figure 5. In this figure, a
screenshot of the data read in Python version 3.8.2 [30] using the “xarray” library is shown.
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Additionally, drought maps can be generated for each year of the study period (2000–
2020) and for the months of July, August and September, as explained in the steps for
reproducing the data in the data source (https://data.mendeley.com/datasets/47ydz8v6nd,
accessed 20 September 2022). For instance, Figure 6 shows the seasonal drought intensity
of the 2000 based the CDI-3 series.
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To understand the map of Figure 6, the drought classification based on the CDI values
is needed (Table 1).
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Table 1. Drought clases based on the CDI values following [10,29].

CDI Interval Classification

<0.1 Extreme Drought

0.1–0.2 Severe Drought

0.2–0.3 Moderate Drought

0.3–0.4 Mild Drought

0.4–0.5 Near Normal

>0.5 Above Normal

From Table 1, drought occurs when the CDI value is below 0.4.
Moreover, from the drought dataset, drought intensities can be extracted using geo-

graphic coordinates for a given location or an area of interest. Thus, from the CDI time
series, drought characteristics, such as onset, end, duration, spatial spread and frequency
can be computed following [10].

The python codes to exploit the data are given in the “Steps to reproduce” in the
Mendeley repository. In these steps, the algorithms for the extraction of the CDI times
series at a given location or for a specific area are explained. For instance, Table 2 presents
the CDI-3 times series and drought classes at a location with latitude of 13.5 degree and
longitude of 3.00 degree.

Table 2. CDI and drought classes at latitude = 13.5 degree and longitude = 3.00 degree.

Year CDI-3 Drought Class

2000 0.313 Mild drought

2001 0.478 Near normal

2002 0.403 Near normal

2003 0.368 Mild drought

2004 0.368 Mild drought

2005 0.511 Above normal

2006 0.642 Above normal

2007 0.528 Above normal

2008 0.409 Near normal

2009 0.454 Near normal

2010 0.442 Near normal

2011 0.000 Extreme drought

2012 0.601 Above normal

2013 0.604 Above normal

2014 0.261 Moderate drought

2015 0.722 Above normal

2016 0.350 Mild drought

2017 0.447 Near normal

2018 0.590 Above normal

2019 0.447 Near normal

2020 0.780 Above normal

The drought characteristics derived from the CDI-3 time series of Table 2 are shown in
Table 3.
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Table 3. Drought characteristics at latitude = 13.5 degree and longitude = 3.00 degree.

Event Order Onset End Duration
(Year) Severity Average Return

Period (Year)

1 2000 2000 1 0.087

3.332 2003 2004 2 0.064

3 2011 2011 1 0.400

4 2014 2014 1 0.139

As for the quality control, reference drought indices, mainly the standardised pre-
cipitation index (SPI) and the standardised precipitation evapotranspiration index (SPEI)
computed from station data were used to validate the CDI. A good correlation coefficient
was found between the CDI-3 and these reference drought indices (Table 4).

Table 4. Pearson correlation coefficients between the CDI-3 and station-based references drought indices.

Station Name Longitude Latitude
Correlation Coefficients

CDI-SPI CDI-SPEI

Niamey-Aero 2.17 13.48 0.64 0.7

Tahoua 5.30 14.90 0.74 0.78

Diffa 12.62 13.42 0.73 0.77

Zinder 8.98 13.78 0.66 0.67

Additionally, the ability of the CDI to monitor agricultural drought was checked by
performing a correlation analysis between the CDI-3 time series and production data of
millet and sorghum from the FAOSTAT database [31]. Pearson correlation coefficients of
0.58 and 0.57 were found between the areal mean of the CDI-3 and production data of
millet and sorghum, respectively.

The comparison between the CDI, SPI and SPEI drought classes (Figure 7) showed
that the CDI agrees with ground observation-based indices; however, the CDI performs
better in terms of sensitivity as it detects more drought classes.
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Furthermore, the availability of the CDI at monthly time scale enables the assessment
of seasonal changes in drought patterns.

4. Conclusions

The present dataset, which was generated entirely from remote sensing data, is an
alternative for ground-observation-based drought indices for understanding drought dy-
namics in Niger. With a spatial resolution of 1 km2, this dataset is a useful tool for assessing
drought characteristics and its impact at rural district and household levels. By includ-
ing precipitation, vegetation and temperature data in the computation of the composite
drought index (CDI), the combined impacts of meteorological and agricultural droughts
can be assessed with more accuracy. The current dataset also enables the assessment of
drought dynamics under a context of climate change as it includes temperature data. All
the input data to the computation of the CDI are freely available on many online platforms
of Earth observation data. Moreover, the tool used for the computation, namely the Python
software, is open source. Therefore, the proposed methodology can be reproduced and
further research on this topic can be carried out without any difficulty. Finally, the dataset
and its input variables are freely accessible on a Mendeley repository.
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