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Abstract: Land cover classification, generated from satellite imagery through semantic segmentation,
has become fundamental for monitoring land use and land cover change (LULCC). The tropical
Andes territory provides opportunities due to its significance in the provision of ecosystem ser-
vices. However, the lack of reliable data for this region, coupled with challenges arising from its
mountainous topography and diverse ecosystems, hinders the description of its coverage. Therefore,
this research proposes the Tropical Andes Land Cover Dataset (TALANDCOVER). It is constructed
from three sample strategies: aleatory, minimum 50%, and 70% of representation per class, which
address imbalanced geographic data. Additionally, the U-Net deep learning model is applied for
enhanced and tailored classification of land covers. Using high-resolution data from the NICFI
program, our analysis focuses on the Department of Antioquia in Colombia. The TALANDCOVER
dataset, presented in TIF format, comprises multiband R-G-B-NIR images paired with six labels
(dense forest, grasslands, heterogeneous agricultural areas, bodies of water, built-up areas, and
bare-degraded lands) with an estimated 0.76 F1 score compared to ground truth data by expert
knowledge and surpassing the precision of existing global cover maps for the study area. To the best
of our knowledge, this work is a pioneer in its release of open-source data for segmenting coverages
with pixel-wise labeled NICFI imagery at a 4.77 m resolution. The experiments carried out with
the application of the sample strategies and models show F1 score values of 0.70, 0.72, and 0.74 for
aleatory, balanced 50%, and balanced 70%, respectively, over the expert segmented sample (ground
truth), which suggests that the personalized application of our deep learning model, together with the
TALANDCOVER dataset offers different possibilities that facilitate the training of deep architectures
for the classification of large-scale covers in complex areas, such as the tropical Andes. This advance
has significant potential for decision making, emphasizing sustainable land use and the conservation
of natural resources.

Keywords: semantic segmentation; land cover classification; tropical Andean region; U-Net
convolutional network; Colombia

1. Introduction

Satellite images are a highly valuable information source for land cover segmentation,
an essential task for sustainable development, agriculture, forestry, and urban planning.
Compared to images typically used in computer vision, this information source is under-
researched in the deep learning (DL) area [1]. However, in recent years, significant advances
have been made [2], and their availability on a global, regional, and local scale enable not
only the construction of large training sets but also the evaluation of the performance of
different DL architectures.

Specifically, studies have been conducted with medium and low-resolution images
(30–500 m) [3–5]. Based on the improved spatial and temporal resolution of data from [6]
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and the analytical capabilities available for image processing, there is potential to establish
new datasets and machine learning models (ML) [7,8]. Some examples of empirical methods
are currently being used to monitor compliance with the Sustainable Development Goals
(SDGs) for the year 2030 [9,10].

Datasets for training machine-learning-based models have predominantly been con-
structed in European geographic contexts or high-latitude zones [11], and for specific tasks
of image classification and object detection. Concurrently, the primary study objective
corresponds to urban areas [12,13]. Therefore, it is crucial to direct research efforts towards
rural areas using data representing the geographic diversity of the tropical region, specifi-
cally mountainous areas like the Andean region, given its importance in the provision of
ecosystem services on which the population depends [14–16].

Several datasets have been proposed in the literature, such as SENT12MS [17], BigEarth-
Net [18], and MLRSNet [19]. Advances in computer vision, particularly in the areas of
object detection and scene classification [12], have been made possible thanks to the avail-
ability of these datasets. In addition to these areas, in semantic segmentation, it is important
to have a pixel-level labeled dataset [12], a complex task in which images originating from
remote sensors are highly dependent on expert knowledge. The accuracy of the algorithms
is highly dependent on the number of classes considered, as well as the spectral/spatial
distinction between classes [12,20].

In order to improve the application of DL models, primarily in the tropical region,
the TALANDCOVER dataset (Tropical Andes Land Cover Dataset) is proposed using
different strategies to deal with imbalanced geographic data. The dataset pertains to the
department of Antioquia, Colombia and was developed with the NICFI satellite data
program. This program provides complimentary access to high-spatial-resolution mosaics
(4.7 m) optimized for analysis in the tropical region, offering substantial potential for
mapping cover in extensively transformed ecosystems. The dataset comprises multiband
R-G-B-NIR images for training and testing, in addition to the label masks associated with
six covers: dense forest, grasslands, heterogeneous agricultural areas, bodies of water,
built-up areas, and bare-degraded lands.

2. Previous Work

In the field of remote sensing, the classification of observed data has convention-
ally been executed through manual means, based on expert knowledge. However, this
approach presents a constraint due to the vast amount of information that needs to be
processed [21,22]. A potential approach could involve the training of a computational
artificial intelligence (AI)-based model through the utilization of expert-provided labels,
which would enable the autonomous prediction of diverse land cover categories.

The ISPRS project (International Society for Photogrammetry and Remote Sensing) [13,23]
with the Vaihingen and Potsdam datasets has been instrumental in advancing the field of
semantic segmentation by being pioneers in providing an open-access dataset with labeled
satellite images. Other datasets, such as SpaceNet [24], DynamicEarthNet [25], Dynamic
World [26], and ESA WorldCover [27], have made noteworthy contributions to the field of
semantic segmentation and the global mapping of land cover; however, due to their global
scale, local patterns could be missed. Studies with specific data, from a particular geographical
area, which in Latin America has been carried out mainly in Brazil [28,29], could contribute
and be a complement to the construction of new models or used for the validation of existing
ones.

The utilization of statistical classifiers, such as maximum likelihood [30], was one of
the initial methods adopted for satellite image categorization following the establishment
of the Landsat program in 1972. The maximum likelihood method employs a supervised
classification technique, assuming that the spectral characteristics of each class adhere to a
Gaussian distribution [31]. Recent research has employed this classifier and is prevalent in
the remote sensing field; however, it necessitates assumptions about data distribution and
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demonstrates overfitting for the more representative classes [4,5,32,33]. Such constraints
underline the requirement for more advanced methods, such as ML or DL [5,34].

There exists a substantial body of research in which various ML methods have
been compared for land cover classification and change prediction based on satellite im-
agery [35–39]. The studies conducted emphasize superior accuracy with the random forests
method [40]. This method has been further explored with different sample configurations
and hyperparameter combinations [41] and employed to ascertain the significance of a set
of predictor variables based on the respective evaluation criterion [42,43]. Random forests
can depict nonlinear relationships, are relatively insensitive to correlated predictors and
have been successfully applied in various remote sensing contexts [44].

Satellite imagery has been effectively analyzed using other conventional classification
algorithms, such as support vector machines (SVMs) and multilayer perceptrons (MLPs).
Since 2014, advances in DL have received greater attention from the remote sensing com-
munity due to the ability that different architectures have shown in pattern recognition,
such as convolutional neural networks (CNNs) [45], recurrent neural networks (RNNs) [46],
and autoencoders (AEs) [47], among others, which marked a significant turning point in
the field of DL [12].

The efficacy of CNNs in domains that are inherent to computer vision has resulted in
the assimilation and amplification of these networks for addressing issues in the realm of
remote sensing, as per the findings in [2]. According to the reference framework, CNNs
have gained significant popularity owing to their ability to process data in the form of
multiple matrices [48]. This makes them a suitable choice for processing multiband images
that have regular arrays of pixels. Moreover, deep learning algorithms exhibit the capability
to capture nonlinear patterns in spatial and temporal domains [49].

The U-Net framework, which is frequently utilized in the segmentation of medical
images [50], has been applied in multiple research endeavors involving satellite imagery,
demonstrating satisfactory outcomes. According to [51], a level of accuracy of around
90% was attained in the mapping of the occurrence or non-occurrence of trees and shrubs
in Queensland, Australia. In [52], a comparative study of three distinct architectures,
namely U-Net, ResNet, and DenseNet, was conducted to map forested and non-forested
regions utilizing radar imagery. The findings indicate that the U-Net framework exhibited
enhanced accuracy. Several studies and comparative analyses [28] have documented
better performance of U-Net in comparison to conventional techniques [49,53,54] and other
CNN architectures. Diverse studies emphasize the significance of algorithm design in the
effective classification of multiple classes or types of land cover.

Furthermore, the efficacy of U-Net for the task of satellite image segmentation has
promoted its investigation. In [55] introduced an integrated framework that combines
enhanced versions of the U-Net and SegNet models to enhance the accuracy and perfor-
mance of high-resolution image segmentation. Enhanced versions of U-Net have been
utilized to analyze the spatial distribution of palm canopy and its relationship with human
disturbance and soil conditions [56]; they have also been employed for the assessment of
mining activities, a primary cause of deforestation, land use change, and pollution [57],
as well as for mapping the inundation status of forested wetlands by integrating spectral
bands, topographic data, and lidar information [58].

CNN architectures require a large amount of data for training [59], and the con-
struction of a labeled dataset for coverage segmentation from satellite image represents a
challenge [20]. Despite the great efforts that have been made and the existence of different
datasets [11,19], a strong bias in the literature has been developed toward urban areas [12]
in the Northern Hemisphere. Thus, the tropical Andes region is underrepresented, which
hinders the development of models that help monitoring LULCC. On the other hand,
careful choice and preprocessing of data are crucial to avoid unwanted biases in the models.
TALANDCOVER, in addition to representing a tropical mountainous region, presents sam-
pling strategies as a different option to the data augmentation method used in DL [60,61]
for addressing imbalanced data, allowing exploration and comparative analysis, not only
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between datasets but also between architectures and fine-tuning processes with the aim of
obtaining models with greater generalization capacity, which adapt to the geographical
characteristics of the study area.

The plethora of sensors available and their variations in spectral and spatial charac-
teristics present an opportunity for mapping, quantifying, and detecting changes through
DL methods. Recent studies encompass the analysis of various sensors [62,63] and spec-
tral bands, finding the NIR and SWIR bands to be of greater significance in land cover
classification. Conversely, the blue band was identified as the least significant variable.
In [49,64], DL was employed for optical and fused classification using synthetic aperture
radar (SAR) imagery; these studies demonstrated that when using combined data, the
accuracy surpasses that of individual datasets. In [65], the potential in the joint analysis of
multiple sensors for delineating forest cover across various ecosystems located in Germany
was highlighted.

Recently, the dataset from the NICFI program was published, in which various or-
ganizations, including Planet, Airbus, and Kongsberg Satellite Service, released free and
analysis-ready high-resolution base maps (4.77 m per pixel). This dataset serve as a valu-
able information source for monitoring landscapes in tropical areas; however, only a few
studies have utilized these data, and notable examples in Latin America include those
in Brazil, aiming to predict the mortality risk of trees in eucalyptus forests [66] and for
land cover classification using random forests [63], as well as in Peru, which assessed the
dataset’s efficacy in land cover mapping. At the continental level, efforts are underway in
Africa [67,68].

The study of image segmentation is a subject that has been extensively researched.
The Segment Anything Model (SAM) was recently introduced [69], this model has demon-
strated impressive performance in various tasks and has outperformed fully supervised
approaches. Especially in the fields of geography, remote sensing, and segmentation of
high-spatial-resolution images (orthophotos), the SAM proves to be effective [70]. Despite
the limited application of this model in satellite imagery, additional experimentation is
required, particularly in the optimization of hyperparameters. Nevertheless, the SAM
presents a promising avenue for the automatic generation of masks as input for the creation
of labeled data and the development of DL models like U-Net.

3. Materials and Methods

The general methodology employed in this study consists of five stages, encompassing
the collection of raw satellite images, which are preprocessed and labeled in the following
two phases. Subsequently, a DL model was designed and trained in the subsequent stage,
and the performance was evaluated using a set of carefully selected metrics, considering
the task of semantic segmentation and accounting for the high levels of class imbalance
present in the data (see Figure 1).
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3.1. Study Area Definition

The Department of Antioquia in Colombia is in the northwest region of the country.
Its geographic coordinates span from approximately 5.4◦ N to 8.8◦ N latitude and 73.8◦ W
to 77.5◦ W longitude (see Figure 2). It spans an area of approximately 63.612 km2. It is
bordered by several neighboring departments, including Cordoba and Bolivar to the north,
Santander and Boyacá to the east, Caldas y Risaralda to the south, and Chocó to the west.
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The Antioquia department has a significant administrative division within the country,
comprising 125 municipalities and serving as a relevant economic and cultural hub in
Colombia.
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Figure 2. Geographical Location of the Study Region.

Land use patterns in Antioquia reflect its economic importance and environmental
diversity. The department ranges from mountainous regions, dense forests, and protected
areas to fertile valleys and extensive agricultural lands that include coffee plantations,
banana zones, and cattle grazing areas.

During the period of 1990 to 2015, the forest cover in Antioquia decreased from
2,700,000 ha to 2,212,000 ha [71], with an approximate annual loss of 19,520 ha. For the
Andean forest (>1000 m above sea level), it is reported that the coverage decreased from
1,210,000 ha to 530,000 ha over the same twenty-five (25) year period; this signifies a
reduction of 56.19%, with an annual deforestation rate of 27,200 ha, making it one of the
most affected ecosystems, following dry forests [71].

In the department, new road infrastructure projects have been developed, aiming to
enhance connectivity with the north of the country [72]. Additionally, it is the leading gold
producer in Colombia [73]. This range of conditions and socioeconomic dynamics make it
a significant area for the analysis of LULCC based on high-spatial-resolution imagery.

3.2. Raw Satellite Imagery

Numerous Earth observation programs provide open-access datasets, such as NASA’s
Landsat and ESA’s (European Space Agency) Copernicus, and the products of this programs
were among the first to be explored due to their availability and have been the primary input
in constructing datasets for training deep networks in classification and object detection
tasks [74]. In Brazil, progress has been made, consolidating a dataset with images classified
in a binary manner (forest, non-forest) [28], which limits data use. Therefore, with this
research, we aim to have an open-access, labeled dataset that represents the geographical
diversity of classes in the tropical region.

Recently, in 2020, images from the NICFI satellite data program were published. This
initiative aims to provide support for reducing tropical forest loss. It represents the first
open-access dataset at a resolution of 4.77 m, covering the entire tropical region between
30◦ north and 30◦ south, encompassing approximately 45 million square kilometers [75];
therefore, given its characteristics, such as a higher spatial resolution, with respect to other
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products, spectral resolution (red–green–blue near infrared), availability, and geographic
coverage, NICFI images were chosen for the development of the present investigation.

3.3. Preprocessing

A Python script was written in conjunction with the Planet Scope API to access tiles based
on the data and boundary box of the Antioquia department in Colombia. This resulted in an
acquisition of approximately 392 tiles. These tiles correspond to composite images taken in the
first half of 2019, with the specific product being ‘planet_medres_normalized_analytic_2018-
12_2019-05_mosaic’. This product was chosen since its dates align well with available land
cover maps, which were used to construct the image labels. After filtering the tiles using the
study area’s geometry, a final set of 114 tiles was identified. These tiles are entirely encapsu-
lated within the predetermined study area, with each tile measuring 4096 × 4096 pixels.

To ensure compatibility with deep learning models, each tile was divided into image
sections with dimensions of 128 × 128 pixels. Typically, datasets used for training deep
learning models have dimensions that align with powers of two (e.g., 128, 256, 512).
Dimensions of 128 × 128 were chosen to strike a balance between the volume of training
data and the spatial context size [76]. Additionally, a random selection of approximately
5% of the image sections contained within the 114 tiles was conducted. This was conducted
with the intent of constructing a random dataset for model training (see Figure 3).
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3.3.1. Image Labelling

The construction of a labeled dataset for training is very important for land cover
mapping at fine spatial resolution. Field data collection has the highest accuracy and
reliability; however, this method is costly and time-consuming, especially for both long-
term and large-scale land cover mapping. Additionally, fieldwork limitations exist in
some areas with public order problems. In fact, visual interpretation or the use of open
data, such as existing coverage maps, are currently the most widely used data collection
method [68,77].

Recently, the ESRI (Environmental Systems Research Institute) [78], the European
Agency-ESA [27], Google [26], and the University of Maryland-Global Land Analysis and
Discovery (GLAD) laboratory [79] have published global cover maps using Sentinel and
Landsat images. These layers constitute a valuable input for the analysis of LULCC, and



Data 2023, 8, 185 7 of 23

compared to other global products (Copernicus Global Land Cover 100, MODIS Land
Cover Type Yearly Global 500 m), they present better spatial resolution (<100 m).

On the other hand, there are forest cover products (forest/non-forest) at a global level
with spatial resolutions of 50 m [80], 30 m [81], and 25 m [82], which represent a very
valuable contribution to the monitoring of forests in the tropical region. However, some
studies when comparing global maps with local maps show an overestimation of forest
cover [83].

In [28], a dataset for monitoring the Amazon rainforest based on Sentinel images
(10 m) with the R-G-B-NIR bands and a binary forest/non-forest label was constructed;
however, the study acknowledges certain limitations, such as the relatively small size of the
dataset, which can impact the performance of certain CNN architectures. Additionally, the
authors consider that the binary label is not an optimal solution in terms of the applicability
of the results.

This paper, in contrast to the previously described approaches, presents a higher
spatial resolution (4.7 m) and a pixel-wise multiclass label representing six types of land
cover. In general, promoting analysis with high-resolution satellite images and continuous
monitoring is essential throughout the tropical region to evaluate trends in LULCC.

To associate a pixel-level label with the 128 × 128 image sections, we reviewed the
characteristics of different datasets and the availability of land cover layers. Figure 4
presents a scheme that summarizes the main characteristics of the products selected in the
previous evaluation.
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To compare the selected products and define which of them is the most suitable for
the construction of the label, the products were reclassified into 6 classes according to the
geographical characteristics of the study area.

• Bare-degraded land: corresponds to terrain surfaces devoid of vegetation or with scant
vegetation cover due to the occurrence of natural and human-induced processes.

• Dense forest: corresponds to a vegetation community dominated by typical tree ele-
ments, which form a continuous or semi-continuous canopy.

• Agricultural heterogeneous areas: corresponds to areas dedicated to permanent, transient,
and mixed crops with natural spaces, such as open tree cover.

• Grasslands: corresponds to lands where pastures have been structured with little
vegetation presence.

• Water bodies: corresponds to permanent bodies of water.
• Built-up areas: corresponds to territories covered by urban areas, including parks and

urban green areas.
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To select the dataset to be used as the backbone of this research, a test of the level of
agreement between the global covers and the expert sampled images interpretation was
conducted. In total, 174 images, equivalent to 2,850,816 pixels, were digitized.

3.3.2. Construction of Balanced Dataset

In ML, it is common to perform random sampling to construct a training set. However,
applying this type of sampling in the analysis of geographical data from satellite images
is not appropriate due to the issue of class imbalance. Different strategies have been pro-
posed in the literature to address the problem of imbalance, both from data augmentation
techniques [60,61] and from models with new loss functions [84].

In this investigation, to ensure that all land cover classes have sufficient representation,
a sampling strategy called minimum percentage per class was employed. This means that
each class has a minimum percentage of representation in each image section; for this,
the present work employs a georeferenced sliding window technique to scan images and
identify specific sections that meet a predetermined minimum threshold of a chosen land
cover category. Simultaneously, the sliding window eliminates sections that display any
form of overlap.

The identification and categorization of land cover classes is based on their level of
representativeness within the images. Using a sliding window approach, a predetermined
number of image segments is identified based on land cover thresholds, set at both 50%
and 70%. The dataset construction process involves selecting the minimum number of
image sections by class that meet the established threshold and the number of images
corresponding to the least represented class.

As a crucial component of the quality assessment procedure, image segments that
contain inaccuracies, such as uniform pixel values throughout the image, are methodically
eliminated.

The image sections that have been selected are then divided into two datasets, namely
training and test datasets, with a ratio of 80% for training and 20% for testing. This ratio
guarantees that the deep learning algorithm is provided with a sufficient amount of data to
facilitate learning [85], while simultaneously preserving a distinct dataset for the purpose
of validating its performance. It is important to highlight that the testing data were not
used for any training purposes and were only used for accuracy assessment.

3.4. Deep Learnig Model Architecture and Train

Several DL architectures have been developed with the specific purpose of segmenting
satellite images [2]. Regardless of the type of architecture employed, it is necessary to
consider crucial factors, such as class imbalance and the availability of data for training.

In the present study, a U-Net-like network was proposed based on [50]. The network
is founded on convolutional architectures and encompasses four stages of contraction
and expansion (see Figure 5). The development of the model was executed utilizing the
programming language Python, as well as the Keras [86] and Tensorflow [87] libraries.
The model was adapted to accommodate the input data dimensions of 128 × 128. We
introduced modifications to the number of filters, ranging from 16 to 128, and incorporated
dropout techniques with values of 0.1 and 0.2 in the convolutional layers to address the
issue of overfitting.
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Preprocessing procedures were executed on the data prior to the training phase.
The data were standardized through a process of subtracting the mean value of each
band and dividing it by its corresponding standard deviation. This could help to address
possible instabilities in training arising from the different input data scale and the difference
in lighting conditions and could make the model less sensitive to outliers compared to
min–max scaling [88]. Furthermore, we employed Keras he_normal initializer without
incorporating a specific seed value. Consequently, there are pragmatic discrepancies in the
weight initialization process for all the models.

3.5. Classification Validation and Evaluation

In order to evaluate the performance of the proposed land cover classification model,
several metrics are used. Considering land cover classification as a highly unbalanced
problem, it is important to use metrics that can handle the class imbalance effectively.

The F1 score is used as the primary metric for evaluating the model’s performance.
The F1 score is a measure of the balance between precision and recall, and it provides a
single metric that combines both of these important aspects into a single value.

Precision =
True Positives

(True Positives + False Positives)
(1)

Recall =
True Positives

(True Positives + False Negatives)
(2)

F1 =
2(Precision)(Recall)
(Precision + Recall)

(3)

mIoU =
1
N

N

∑
i=1

TPi
TPi + FPi + FNi

(4)

Other metrics, such as precision, recall, and Intersection over Union are also used
to assess the model’s performance. Precision measures the proportion of true positive
predictions out of all positive predictions, while recall measures the proportion of true
positive predictions out of all actual positive cases.

4. Results
4.1. Image Labelling

Regarding the evaluation of the selected products for the construction of the label, the
following analysis is obtained (see Figure 6).
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The national map (Corine Land Cover) was discarded because its vector format is
at a scale of 1:100,000 and with a minimum mappable area of 25 ha for rural areas [89].
Therefore, detail and precision are lost when converting the national map to raster, and
given its coarse scale, we consider it incompatible with what is interpreted in the 4.77 m
NICFI images.

According to the visual interpretation of the NICFI images in true color (RGB) and
false color (NIR-R-G), the ESA map overestimates both grasslands and forest in agricultural
areas. On the contrary, small areas and linear shapes that are part of the water bodies
present a better delimitation (see Figure 6).

The ESRI map shows cloud coverage towards the west area; likewise, the Google map,
which was built in Google Earth Engine with a composite of images for the year 2019,
does not yield classification results on several sectors since according to the methodology
proposed by Google [26], a filter is performed which discards pixels that exceed 35% cloud
cover within a given period of time. Both the ESRI and Google maps overestimate the
urban area and forest cover over agricultural areas.

In general, a greater overestimation in forest cover is observed for the ESA, ESRI, and
Google maps. A possible reason for this is the technical challenge of separating the woody
and herbaceous components [90], although a more rigorous evaluation is required. There
are several studies that highlight the difficulties of individually applying global coverage
maps at the regional level [68,83].

The label construction (Talandcover map) was based on the GLAD map (Global Land
Analysis and Discovery) [76] and the ESA map [27] (see Table 1). The GLAD map was
chosen because it incorporates information on canopy height [81] and vegetation cover
percentage. It offers greater flexibility in delineating dense forest cover compared to
other products that solely rely on spectral information and that consider only a few cover
classes. The ESA map, on the other hand, utilizing radar images such as Sentinel 1, better
represents linear elements such as rivers. Consequently, manual editing and adaptation of
the reference data were necessary to align the selected maps with the spatial resolution of



Data 2023, 8, 185 11 of 23

the images and to correct certain areas of the map. The adaptation process relied on the
visual interpretation conducted by experts.

Table 1. Land cover maps used and their accuracies compared to the respective annotated ground
truth.

Product Accuracy F1_Score

Google_2019 0.56 0.56
Esri_2019 0.59 0.56
Esa_2020 0.61 0.60

Glad_2019 0.69 0.67
Talandcover map 0.75 0.76

Each image section in the dataset comes with a corresponding mask, which is a matrix
with values ranging from 0 to 5. These values indicate the index of land cover class (see
Figure 7).
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The representation of land cover for the geographical area considered in the construc-
tion of the dataset is as follows:

• Bare-degraded lands: 0.61%
• Dense forest: 48.65%
• Heterogeneous agricultural areas: 22.66%
• Grasslands: 25.8%
• Water bodies: 1.09%
• Built-up areas: 1.20%

4.2. Balanced Dataset

The balanced selection of the image set was facilitated through the utilization of a
Python script that incorporated the GDAL and OGR libraries, and the script produced a
sliding window of dimensions 128 × 128 that was georeferenced and applied to scan the
tiles or image mosaics. The spatial frames that met a predetermined minimum threshold of
the selected coverage were retained, while those that displayed overlap were discarded.

The spatial frames that were chosen were utilized to extract the pixel values from
the satellite images and their corresponding labels. The determination of image sections
for each class was based on their representativeness. This suggests that, of all the images
examined, only those that met the established criteria of containing either 50% or 70% of
pixels corresponding to a particular class were selected. After this filtering, an excess of
spatial frames from the dominant cover were found, and these arise from the imbalance
observed in the data. To counteract this imbalance, the number of images from the least
represented class was used as a benchmark to determine the quantity of images for each
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class in the training dataset. For the 50% and 70% thresholds, 234 and 122 images were
selected per class, respectively (see Table 2). During the review process, image sections
that displayed a singular value across all pixels were discarded. Ultimately, employing an
80/20 split for training and testing, a total of 1389 and 731 images were utilized for the 50%
and 70% thresholds, respectively.

Table 2. Quantity of image sections that comply with a minimum presence percentage by coverage,
i.e., 50% and 70%.

Coverage Type 50% 70%

Bare-degraded lands 234 122
Grasslands 22,515 10,228

Heterogeneous agricultural
areas 26,225 7414

Dense forest 61,610 45,617
Bodies of water 670 343
Built-up areas 1004 689

Training 1111 584
Test 278 147
Total 1389 731

Table 3 present pixel distribution for random samples, 50% balanced samples, and
70% balanced samples. The random sample model had 4000 training and 1000 test images,
the 50% sample model had 1111 training and 278 test images, while the 70% sample model
used 584 training and 147 test images.

Table 3. Comparison of sampled pixel distribution for different land classes across the three sampling
models.

Random Sample 50% Sample 70% Sample

Class Training Test Training Test Training Test

Bare-degraded
lands

px 345,589 67,380 1,815,872 700,986 1,228,192 308,143
% 0.53% 0.41% 9.98% 15.39% 12.84% 12.79%

Grasslands
px 14,648,492 3,825,272 4,300,293 1,135,534 2,049,492 484,262
% 22.35% 23.35% 23.62% 24.93% 21.42% 20.11%

Heterogeneous
agricultural areas

px 15,655,124 3,831,559 3,751,735 842,770 1,819,210 419,836
% 23.89% 23.39% 20.61% 18.50% 19.01% 17.43%

Dense forest
px 33,541,637 8,318,905 4,055,664 883,921 1,794,289 525,788
% 51.18% 50.77% 22.28% 19.41% 18.75% 21.83%

Bodies of water
px 264,911 105,181 1,988,487 545,079 1,293,598 332,603
% 0.40% 0.64% 10.92% 11.97% 13.52% 13.81%

Built-up areas px 1,080,247 235,703 2,290,573 446,462 1,383,475 337,816
% 1.65% 1.44% 12.58% 9.80% 14.46% 14.03%

4.3. Model Training

Given the imbalance of classes and to assess learning trends, ten models per epoch
were executed. Each model was trained using Google Colab to take advantage of the T4
GPU execution environment.

The training parameters for each model are listed below in Table 4. We present the
results of the models trained with each dataset: random samples and balanced samples at
both 50% and 70%. For each epoch, the results of the ten models were plotted to identify
learning patterns over its respective test set (see Figure 8) and the confusion matrix for the
best model for each sampling strategy is shown in Figure 9.
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Table 4. General parameters list for the training process.

Parameter Value

Input Channels NIR (Near-Infrared), R (Red), G (Green)
Epochs 60

Batch Size 16
Optimization Function Adam (Adaptive Moment Optimization)

Beta_1 0.9
Beta_2 0.999
Epsilon 1 × 10−7

Loss Function Sparse Categorical Cross Entropy
Learning Rate 0.001

Regularization Method Dropout rate 0.5
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The three datasets are openly available at the following link https://zenodo.org/
record/8219553 (accessed on 2 November 2023).

In the context of the presented models, the prediction was carried out for a specific
set of images to conduct a visual comparative analysis of the results. Several examples are
illustrated in Figure 10. It is noteworthy that the models exhibiting the highest F1 score
were taken into consideration for this examination.
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Figure 10. Results Examples from Three Prediction Models. From left to right: real image, base
label, predictions with random selection, 50% threshold, and 70% threshold. Subfigures a–f are
representative images of each type of coverage (a) water bodies: Blue, (b) bare-degraded lands:
Brown, (c) grasslands: Yellow, (d) agricultural heterogeneous areas: Pink (e), dense forest: Green,
(f) built-up Areas: Red.

The model trained on a random sample exhibited certain challenges in segmentation,
as evident in Figure 10a. In this image, forest areas were erroneously identified in regions
that should correspond to bodies of water. This discrepancy can be attributed to the bias
present in the training sample, leading to misclassifications and an overestimation of dense
forest coverage.

Furthermore, the models trained on balanced samples of 50% and 70% demonstrated
superior performance in predicting the less representative classes, such as bare-degraded
lands (e.g., Figure 10b), as well as built-up areas. These coverages were delineated with
higher precision compared to the model trained on a random sample.

https://zenodo.org/record/8219553
https://zenodo.org/record/8219553
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Despite the low representativeness of bodies of water in the samples, all three models
achieved high prediction values for this class. This phenomenon can be explained by the
fact that the spectral characteristics of bodies of water are highly homogeneous and distinct
from other classes, thereby facilitating their accurate segmentation and prediction in the
models.

Although global maps are a valuable contribution to monitoring coverage and a
starting point for having a large amount of training data, it is important to consider that
ML methods were used to build these global maps and that ML algorithms can generate
biases in their results that could be reproduced by the methods trained on their data.

On the other hand, the accuracy of the models was evaluated on their respective test
set. Consequently, the results cannot be used to compare due to the differences in the
dataset’s composition. Therefore, as a comparison criterion, the accuracy of the models
trained with the TALANDCOVER label was evaluated on the same data delimited by an
expert (ground truth), which is considered closer to the geographic reality of the study area,
obtaining F1 score values of 0.70, 0.72, and 0.74 for the random model, balanced 50%, and
balanced 70%, respectively. Figure 11 shows some examples of the results.
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bare-degraded Lands.

5. Discussion

To illustrate the utilization of the diverse datasets suggested in this investigation, U-net
models were trained on each respective set. A sampling strategy was employed to tackle
the issue of class imbalance, wherein the minimum percentage per class was utilized. The
U-Net model achieved relatively high accuracy after 20 epochs, with gradual improvement
thereafter and fluctuations in the curves becoming more stable in later epochs. The results
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indicated that the datasets with 50% and 70% facilitated a greater degree of learning. The
experimental outcomes indicate that the 70% sample yielded the most precise results over
ground truth constructed by expert knowledge with an F1 score of 0.74 and performance in
terms of accuracy (0.80) and F1 score (0.819) on its own test data.

In situations where the training set is restricted, such as in the 70% sample, models tend
to exhibit overfitting. The experimental results indicate that there was no observed evidence
of overfitting in the metric curves of the ten models that were executed. The observed
phenomenon can be attributed to the implementation of dropout methodologies [91] and
the utilization of an equitable sample, which prevents the dominance of the most prevalent
category from influencing the learning process.

Despite the limited size of balanced sample sets, the utilization of high-quality data or
a well-designed sampling strategy can substantially mitigate the training time and compu-
tational load. Furthermore, the proposed sampling techniques aim to optimally utilize the
available original information and provide additional instances for the underrepresented
categories, thus laying a foundation for data augmentation, a method commonly utilized in
the realm of machine learning to enhance the generalization capabilities of algorithms [1].

The results are relative to the comparisons made in relation to the type of images
used and the LULCC classification system. Subsequent investigations might facilitate
understanding of the variations in accuracy across different datasets, LULCC frameworks,
and supervised classification algorithms that utilize loss functions, such as focal loss, IoU
loss, or diverse hyperparameter configurations. As posited by [92], architectures that
encompass a higher number of filters or layers can discern intricate patterns with increased
precision.

The predominant source of ambiguity was identified within agricultural zones, po-
tentially due to the heterogenous spectral responses of mixed-cover agricultural terrains
inclusive of trees, herbs, and shrubs. Another challenge lies in distinguishing between plan-
tations and forests as these two covers present significant differences in their biodiversity
and their ability to provide ecosystem services. The purview of this study does not include
discerning between these two cover categories as the spectral characteristics of the data
are constrained and fail to address the spectral similarity of the various components [62].
Nonetheless, to improve the discrimination between diverse land cover categories, the
bands in the proposed dataset could be complemented with radar imagery [49,63,65] or
additional spectral bands from other sensors like Sentinel-2 [62].

The variability within a given class of a sample that is derived from a geographically
extensive region may have an impact on the process of model learning. As an example, it is
possible for semantic categories like highland forests and floodplain forests to exhibit vary-
ing spectral signatures depending on their respective locations. Future investigations might
incorporate the suggested balanced sampling approach, along with stratified sampling
based on continuous geographical regions or eco-climate, as proposed by [53].

We believe that the approach taken in this research to evaluate different models
presents a more pragmatic perspective on the prospective applications of the proposed
dataset, while also functioning as a reference for the instruction and/or development of
novel architectures.

5.1. Dataset Generation

The TALANDCOVER dataset (see Table 5) obtained from NICFI satellite imagery
includes a categorical mask with values from 0 to 5 that represents six classes.
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Table 5. TALANDCOVER Satellite Imagery Dataset Details.

Item Description

Application field Satellite image segmentation

Type of Data collected
NICFI satellite images:

planet_medres_normalized_analytic_2018-
12_2019-05_mosaic

GIS Software Used QGIS 1 V3.22.2
Scripting Language for Data Processing and

Products Python 3.8

Packages Used in Programming Language GDAL2, OGR 3

Collection Year 2019
Number of Classes 6

Type of Segmented Data Multiclass mask
Dataset Size 747.8 MB (.zip)

Image Format Tif

Number of Images 1389 (balanced-50%)-731 (balanced-70%)-5000
(random)

Rows and Columns 128 × 128
Spectral Resolution of Images 4 bands, R-G-B-NIR

Radiometric Resolution of Images 16 bit
1 QGIS (Quantum Geographic Information System). 2 GDAL (Geospatial Data Abstraction Library). 3 OGR
(OpenGIS Simple Features Reference Implementation).

0. Bare-degraded land
1. Grasslands
2. Agricultural heterogeneous areas
3. Dense forest
4. Water bodies
5. Built-up areas

5.2. Practical Application of the Dataset

The proposed dataset offers practical applications for understanding and address-
ing various socio-economic and environmental challenges. By detecting and classifying
different types of land cover in highly transformed landscapes, this dataset enables com-
prehensive studies on critical topics, such as food security, urban growth, deforestation,
and climate change.

One significant practical implication of this dataset is its ability to support research
on food production systems, particularly in terms of security and stability. By identifying
heterogeneous landscapes, this dataset enables monitor land use patterns, and the impact
of agricultural practices on the environment.

Furthermore, the dataset contributes to efforts in combating deforestation and pre-
serving forest ecosystems. By accurately delineating dense forest areas and monitoring
changes to their extent, it enables the assessment of deforestation rates, habitat loss, and
biodiversity conservation. This information is crucial for designing effective conservation
strategies, promoting reforestation initiatives, and addressing climate change impacts.

On the other hand, given the different methodological approaches existing in the
literature, the proposed datasets (random, balanced) yield the training of different deep
learning models and perform comparisons to establish general conclusions regarding the
strengths and weaknesses of an implementation.

6. Conclusions

The effective monitoring of LULCC in the tropical Andes region presents challenges
due the mountainous topography and the long history of anthropic transformation. Several
datasets for training DL models have been proposed in the literature. However, these
datasets have predominantly been constructed in urban contexts and high-latitude areas.
To improve the application of DL models, primarily in the tropical region, the TALAND-
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COVER dataset was developed. In this paper, we explained the preprocessing of the
satellite images and the construction of the datasets with different sampling strategies and
we present the prediction of several models with their metrics to provide some baselines
for the use of the data.

The methodology presents an efficient workflow to generate a large amount of labeled
data without performing this task 100% manually, taking advantage of existing coverage
datasets. Although these data individually have problems, particularly as they are devel-
oped into global extensions, the joint use of these products provides a useful foundation
for collecting large amounts of training data.

Creating the TALANDCOVER dataset for the geographic area of Antioquia, Colombia
contributes to the field of land cover classification. The dataset is made up of multiband
R-G-B-NIR pictures and matching multiclass labels, and it may be used for training, vali-
dation, and testing. The dataset, which has a spatial resolution of more than 10 m, allows
researchers to study land cover changes patterns, and the effects of human activities on
the environment in the tropical area. The collection also helps climate change research by
examining the relationships between land cover cycles and climatic processes.

The set of models trained with the different datasets and using the U-Net architecture
allowed us to observe the learning capabilities not only on the test data but also on the
dataset built manually by an expert. This represents a guide and starting point for the
construction of new models where greater computational efficiency and greater precision
in their generalization capacity are sought.
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