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Received: 23 June 2023

Revised: 22 November 2023

Accepted: 23 November 2023

Published: 24 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

data

Data Descriptor

Dataset: Impact of β-Galactosylceramidase Overexpression on
the Protein Profile of Braf(V600E) Mutated Melanoma Cells
Davide Capoferri 1 , Paola Chiodelli 1,†, Stefano Calza 1 , Marcello Manfredi 2,3 and Marco Presta 1,4,*

1 Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
davide.capoferri@unibs.it (D.C.); paola.chiodelli@unicatt.it (P.C.); stefano.calza@unibs.it (S.C.)

2 Department of Translational Medicine, University of Piemonte Orientale, 13100 Novara, Italy;
marcello.manfredi@uniupo.it

3 Center for Allergic and Autoimmune Diseases, University of Piemonte Orientale, 13100 Novara, Italy
4 Consorzio Interuniversitario Biotecnologie (CIB), Unit of Brescia, 25123 Brescia, Italy
* Correspondence: marco.presta@unibs.it
† Present address: Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore,

00168 Rome, Italy.

Abstract: β-Galactosylceramidase (GALC) is a lysosomal enzyme involved in sphingolipid metabolism
by removing β-galactosyl moieties from β-galactosyl ceramide and β-galactosyl sphingosine. Pre-
vious observations have shown that GALC exerts a pro-oncogenic activity in human melanoma.
Here, the impact of GALC overexpression on the proteomic landscape of BRAF-mutated A2058
and A375 human melanoma cell lines was investigated by liquid chromatography–tandem mass
spectrometry analysis of the cell extracts. The results indicate that GALC overexpression causes
the upregulation/downregulation of 172/99 proteins in GALC-transduced cells when compared to
control cells. Gene ontology categorization of up/down-regulated proteins indicates that GALC may
modulate the protein landscape in BRAF-mutated melanoma cells by affecting various biological
processes, including RNA metabolism, cell organelle fate, and intracellular redox status. Overall,
these data provide further insights into the pro-oncogenic functions of the sphingolipid metabolizing
enzyme GALC in human melanoma.

Dataset: The data set has been submitted as a supplement to this paper.

Dataset License: license under which the dataset is made available (CC0, CC-BY, CC-BY-SA,
CC-BY-NC, etc.)

Keywords: melanoma; proteomics; sphingolipids; β-galactosylceramidase

1. Introduction

β-Galactosylceramidase (GALC; EC 3.2.1.46) is a lysosomal hydrolase that catalyzes the
removal of the β-galactose moiety from β-galactosyl ceramide and other sphingolipids [1–4].
A gradual increase in GALC expression occurs during human melanoma progression in
skin specimens ranging from common nevi to stage IV melanoma [5], thus suggesting
that GALC might act as a pro-oncogenic enzyme [6–9]. In keeping with this hypothesis,
Galc knockdown causes a decrease in the tumorigenic and metastatic potential of murine
melanoma B16 cells that also showed significant alterations in their lipidomic profile,
characterized by increased levels of the oncosuppressive sphingolipid ceramide [10,11].
Accordingly, increased levels of ceramide were also observed in GALC-silenced human
melanoma A2058 cells and tumor xenografts, with a consequent decrease in their tumori-
genic potential [5]. However, the mechanisms by which GALC exerts its pro-tumorigenic
functions in human melanoma remain poorly understood.
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Analysis of the proteome may provide valuable information for the characterization
of the biological pathways leading to melanoma progression [12–16] and for the identi-
fication of diagnostic and prognostic biomarkers [17–20]. As stated above, GALC may
exert a pro-oncogenic role in Braf wild-type murine melanoma cells [5]. However, approx-
imately 50% of human melanomas are characterized by the BRAF (V600E) tumor driver
mutation [21–26], which represents a major target in melanoma therapy [27–30]. These
observations prompted us to assess the role of GALC in human melanoma in the presence
of a BRAF-mutated background [31]. To this purpose, liquid chromatography–tandem mass
spectrometry (LC-MS/MS) was used to investigate the impact of GALC overexpression
on the proteomic profile of BRAF (V600E)-mutated A2058 and A375 human melanoma
cells. Indeed, wild-type A2058 and A375 cells express intermediate levels of GALC mRNA
and protein when compared to other human melanoma cell lines, therefore making them
suitable for assessing the effect of GALC upregulation on the biological behavior of human
melanoma cells in a BRAF-mutated background. In addition, given the well-known hetero-
geneity that characterizes human tumors [32–36], the use of two cell lines harboring the
same driver mutation allows the identification of common protein profiles modulated by
GALC overexpression in BRAF-mutated melanoma cells. Here, we will briefly illustrate the
proteomic data that characterize the impact exerted by GALC on BRAF-mutated human
melanoma cells. Refer to [31] for in-depth analysis and discussion of these data.

2. Data Description

A2058-upGALC and A375-upGALC cells, together with the corresponding control
A2058-mock and A375-mock cells, were obtained by lentiviral infection, and GALC over-
expression was confirmed by a semiquantitative real-time polymerase chain reaction and
enzymatic activity assays [31]. Next, LC-MS/MS analysis was performed on the cell ex-
tracts of the four cell lines. The number of proteins identified with a false discovery rate
(FDR) below 1% is shown in Table 1.

Table 1. Proteins identified in mock and upGALC cell lines.

Cell Line N◦ of Samples N◦ of Identified Proteins

A2058-mock cells 4 1471

A2058-upGALC cells 4 1583

A375-mock cells 4 1483

A375-upGALC cells 4 1482

A hierarchic analysis performed by comparing the A2058-upGALC plus A375-upGALC
data sets to the A2058-mock plus A375-mock data sets demonstrated that 304 and 340 proteins
are up- or down-regulated (Q value < 0.05) in upGALC vs. mock cells (Supplementary Table S1).

Next, gene ontology (GO) categorization [37–39] was performed using the Enrichr plat-
form [40] (https://maayanlab.cloud/Enrichr/, accessed on 18 July 2023) on the 271 GALC-
modulated proteins (172 up-regulated plus 99 down-regulated) characterized by a fold
change greater than 1.5 or lower than 0.67. The analysis identified the terms “RNA
binding” (p value = 2.01 × 10−12) and “intracellular organelle/secretory granule lumen”
(p value = 1.17 × 10−12) as the most enriched GO molecular function and GO cellular com-
ponent terms, respectively, whereas “tricarboxylic acid cycle” represented a highly enriched
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway [41] (p value = 2.59 × 10−4).
Accordingly, string analysis of the differentially expressed proteins identified three ma-
jor clusters (protein–protein interaction enrichment p value ≤ 1.0 × 10−16) correspond-
ing to the GO terms “RNA binding” (FDR = 4.11 × 10−8), “extracellular exosomes”
(FDR = 6.77 × 10−21), and “oxidation–reduction process” (FDR = 2.79 × 10−15) (Figure 1).

Together, the data demonstrate that the lysosomal sphingolipid metabolizing enzyme
GALC exerts a significant impact on the proteomic landscape of BRAF-mutated human
melanoma cells. At present, the biochemical mechanisms leading to the observed alterations
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in the melanoma proteome induced by GALC upregulation remain unclarified. Previous
observations had shown that GALC downregulation may exert significant alterations in the
lipid profile of murine melanoma [5]. Further studies will be required to assess the effect of
the modulation of GALC activity on the sphingolipidome of human melanoma cells and
how this, in turn, may orchestrate their transcriptomic and proteomic profiles.
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reduction process” (in green).

Data Records

The data presented in this study are available in Supplementary Table S2. Column
A contains the following description of the identified protein peaks: UniProt primary
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accession ID|UniProt ID, name of the protein, organism (OS), and gene (GN). Columns
B–Q show the values of the normalized peak area for the four replicates of A375-upGALC
(B–E), A375-mock (F-I), A2058-upGALC (J–M), and A2058-mock (N–Q) cells.

3. Materials and Methods
3.1. Cell Cultures and Lentivirus Infection

A2058 and A375 cells were purchased from the American Type Culture Collection and
grown in Dulbecco’s modified Eagle medium supplemented with 10% heat-inactivated
fetal bovine serum, 100 U/mL penicillin, and 100 µg/mL streptomycin (Thermo Fisher
Scientific, Waltham, MA, USA), hereinafter referred to as “complete medium”. Cells were
maintained at 37 ◦C and 5% CO2 in a humidified incubator. Cells were infected with a
lentivirus (Addgene plasmid #19070) harboring the human GALC cDNA (NM_000153.3),
thus generating A2058-upGALC and A375-upGALC cells. Cells transduced with an empty
vector were used as controls (A2058-mock and A375-mock cells). For the infection protocol,
cells were incubated with lentiviral particles for 7 h in a complete medium containing
8.0 µg/mL of polybrene and selected by adding 1 µg/mL puromycin 24 h later. Next,
GALC overexpression was confirmed by a semiquantitative real time polymerase chain
reaction and by a GALC activity assay as previously described [5,31].

3.2. Mass Spectrometry
3.2.1. Sample Preparation

Cells were maintained for 2 days in Dulbecco’s modified Eagle medium plus 2%
heat-inactivated fetal bovine serum. Then, cell samples were lysed with a radioimmuno-
precipitation assay lysis buffer, denatured with trifluoroethanol, subjected to dithiothreitol
reduction (200 mM), iodoacetamide alkylation (200 mM), and complete trypsin protein
digestion. The peptide digests were desalted on the Discovery® DSC-18 solid phase extrac-
tion 96-well plate (Merck KGaA, Darmstadt, Germany) (25 mg/well). After the desalting
process, samples were vacuum-evaporated and reconstituted in a mobile phase for the
analysis [42]. All reagents were from Sigma-Aldrich Inc. (St. Louis, MO, USA).

3.2.2. Proteomic Analysis

The digested peptides were analyzed with an Ultra High-Performance Liquid Chro-
matography Vanquish system (Thermo Scientific, Rodano, Italy) coupled with an Orbitrap
Q-Exactive Plus (Thermo Scientific). Peptides were separated by a reverse-phase column
(Accucore™ RP-MS 100 × 2.1 mm, particle size 2.6 µm) at a flow rate of 0.2 mL/min, with
water and acetonitrile as mobile phase A and B respectively, both acidified with 0.1% formic
acid. The analysis was performed using the following gradient: 0–5 min from 2% to 5%
B; 5–55 min from 5% to 30% B; 55–61 min from 30% to 90% B and hold for one min, at
62.1 min the percentage of B was set to the initial condition of the run at 2% and held for
about 8 min to equilibrate the column, for a total run time of 70 min. The MS analysis
was performed in positive ion mode. The electrospray ionization source was used with
a voltage of 2.8 kV. The capillary temperature, sheath gas flow, auxiliary gas, and spare
gas flow were set at 325 ◦C, 45 arb, 10 arb, and 2, respectively. S-lens was set at 70 rf. A
data-dependent (ddMS2) top-10 scan mode was used for the acquisition of spectra. Survey
full-scan MS spectra (mass range m/z 381 to 1581) were acquired with resolution R = 70,000
and an automatic gain control target of 3 × 106. MS/MS fragmentation was performed
using high-energy c-trap dissociation with resolution R = 35,000 and an automatic gain
control target of 1 × 106. The normalized collision energy was set to 30. The injection
volume was 3 µL.

The mass spectra analysis was carried out using MaxQuant software (version 1.6.14).
MaxQuant parameters were set as follows: trypsin was selected for enzyme specificity; the
search parameters were fixed to an initial precursor ion tolerance of 10 ppm and MS/MS tol-
erance at 20 ppm; as fixed modification, carbamidomethylation was set, whereas oxidation
was set as variable modification. The maximum missed cleavages were set to 2. Andromeda
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search engine searched the spectra in MaxQuant against the Uniprot_CP_Human_2018
sequence database. Label-free quantification was performed including a match between
runs option with the following parameters: protein and peptide FDR was set to 0.01
according to standard procedures; the quantification was based on the extracted ion chro-
matograms, with a minimum ratio count of 1; the minimum required peptide length
was set to 7 amino acids. Statistical analyses for protein peak identification were per-
formed using MaxQuant software (version 1.6.14) and MetaboAnalyst software (version 5.0)
(https://www.metaboanalyst.ca—accessed on 24 January 2021) [43].

3.3. Statistical Analysis

Peak intensity values of the identified proteins were first transformed to log scale (plus
1 to avoid zero values) and modelled using a generalized linear mixed model to account
for data hierarchical structure (condition nested within cell line) using R 4.3.0. Q values
were considered to identify differentially expressed proteins due to their high statistical
power. Proteins with a Q value < 5% are listed in Supplementary Table S1. Among them,
proteins with a change greater than 1.5 or lower than 0.67 were run in STRING [44] and
clustered in GO classes.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/data8120177/s1. Table S1: List of proteins differentially expressed in
upGALC vs. mock cells; Table S2: Raw peak areas normalized to whole area of mock and upGALC
A2058 and A375 cells.
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