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Abstract: Maize crops occupy an important place in world food security. However, different condi-
tions, such as abiotic stress factors, can affect the productivity of these crops, requiring technologies
that facilitate their monitoring. One such technology is spectroscopy, which measures the energy
reflected and emitted by a surface along the electromagnetic spectrum. Spectral data can help to
identify abiotic factors in plants, since the spectral signature of vegetation has discriminating features
associated with the plant’s health condition. This paper introduces a spectral library captured on
maize crops under different nitrogen-deficiency stress levels. The datasets will be of potential interest
to researchers, ecologists, and agronomists seeking to understand the spectral features of maize
under nitrogen-deficiency stress. The library includes three datasets captured at different growth
stages of 10 tropical maize genotypes. The spectral signatures collected were in the visible to near-
infrared range (450–950 nm). The data were pre-processed to reduce noise and anomalous signatures.
This study presents a spectral library of the effects of nitrogen deficiency on ten maize genotypes,
highlighting that some genotypes show tolerance to this type of stress at different phenological
stages. Most of the evaluated genotypes showed discriminate spectral features 4–6 weeks after
sowing. Higher reflectance was obtained at approximately 550 nm for the lowest nitrogen fertilization
treatments. Finally, we describe some potential applications of the spectral library of maize leaves
under nitrogen-deficiency stress.

Dataset: 10.5281/zenodo.7272041

Dataset License: CC-BY-NC

Keywords: spectral library; spectrometry; maize; abiotic stress; precision agriculture

1. Summary

Increasing crop tolerance to different abiotic and biotic stress factors is necessary to
ensure food security. Crops such as maize (Zea mays L.) play an important role in food
security, as it is considered the third most important cereal in the world [1]. However,
maize productivity is expected to decrease by 10–25% for every degree Celsius increase in
global temperature, so it is necessary to have tools to assess the health of maize crops [2,3].
One technology with great potential for crop monitoring is spectrometry [4,5]. Spectral
systems measure the energy reflected and emitted by a surface across the electromagnetic
spectrum. The shape and characterization of spectral signatures allow the identification of
materials in the sensor’s field of view [6].
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The spectral response of vegetation is one of the most complex. One characteristic of
the vegetation spectral signature is low reflectance in the visible region due to pigments
such as chlorophyll and carotenes [6]. One of the most relevant features of the vegetation
signature is between 690 and 720 nm, a region known as the red edge. In this region, the
low reflectance increases significantly at approximately 800 nm. This behavior is associated
with the internal structure of leaves and water content [6]. In the near-infrared region
(700–1300 nm), plants have high reflectance that depends on the internal structure of the
leaves. The mid-infrared region (1300–2500 nm) is characterized by water absorption and
levels of other biochemicals [6].

The spectral signature of a plant can change due to a variety of factors, including
growth stage, stress conditions, and irradiance. For example, owing to the amount of
pigment in the leaves, the position of the red edge can shift [7]. Previous research studied
the relationship between spectral response and different plant phenological stages, stress,
environmental and geographical conditions, and their interaction. For instance, the study
in ref. [8] evaluated the use of multispectral images collected by an unmanned aerial vehicle
(UAV) to map the water stress of maize. This work used two vegetation indices to monitor
water stress at the reproductive and maturation stages. In ref. [9], spectral indices were
used to estimate different stresses in maize at the seedling stage. On the other hand, the
research in ref. [10] demonstrated that hyperspectral imagery can detect water stress over
individual maize plants. In ref. [11], vegetation indices were also used to assess the water
and nitrogen status of sweet maize. Most of the previous studies were designed using
vegetation indices derived from hyperspectral or multispectral data.

Despite previous work, it is not easy to access spectral libraries that allow the study of
different phenomena influencing the spectral response of maize. In addition, most studies
have focused on vegetation indices, limiting the analysis to a few bands, and not taking
advantage of the information available along the spectral signature [12].

This paper introduces a spectral library of maize leaves under nitrogen-deficiency
stress. The datasets are part of the research program “Intelligent Systems for Monitoring
Permanent and Annual Agricultural Crops,” which seeks to integrate remote sensing and
internet of things (IoT) technologies for monitoring abiotic stress in crops. This library
aims to facilitate access to spectral data in the visible to near-infrared regions of several
genotypes of maize under different nitrogen deficiency stress levels and in different growth
stages. This library can be used in different studies to understand the spectral response
of maize, develop new methodologies for stress monitoring and detection, and identify
genotypic tolerance to abiotic conditions. The library includes spectral signatures calibrated
at wavelengths from 450 to 950 nm. Since the full spectra are provided, they can be used
in studies exploring vegetation indices and in emerging methodologies considering the
whole spectrum.

2. Data Description

The datasets consist of three sets of spectra collected on maize leaves under nitrogen
stress conditions. The studied maize plants included ten genotypes, including experimental
and commercial seeds from several companies and different grain colors (Table 1). The
plants were cultivated under different nitrogen fertilization treatments: 25% (T1), 50% (T2),
75% (T3), and 100% (T4) of the optimum level determined by soil analysis. The three sets of
data were obtained in different maize-growing stages.
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Table 1. Description of maize genotypes used to build the spectral library.

Id. Genotype Company Grain Color Description

G1 P3041 Pioneer Yellow Commercial
G2 DK-415UT3PRO Dekalb White Commercial
G3 DK7088 Dekalb Yellow Commercial
G4 FNC8134 Fenalce Yellow Commercial
G5 FNC8502 Fenalce White Commercial
G6 BioMZn01 Maxi Semillas White Commercial
G7 Synko Syngenta Yellow Commercial
G8 V114/P535 Agrosavia Yellow Experimental
G9 V114/P528 Agrosavia Yellow Experimental

G10 P535/V114 Agrosavia Yellow Experimental

The first dataset corresponds to spectra collected in the early stage of development
(V3 [13,14], 2–4 weeks after sowing). This dataset (Table 2) contains 258 spectral signatures
collected from maize plants under treatment T1, 256 spectra under T2, 263 spectra under
T3, and 274 under T4. The second dataset contains the spectral signatures obtained at stage
V7 [13,14] of maize growth, which occurs 4–6 weeks after sowing. The second dataset
(Table 3) includes 506 spectra from maize plants under T1, 505 under T2, 510 under T3, and
517 under T4. Finally, the third dataset was collected from maize plants between stages
V10 and V12 [13,14], before flowering (Table 4). This last dataset includes 506 spectral
signatures under T1, 501 spectra under T2, 516 spectra under T3, and 510 under T4.

Table 2. Dataset 1: Number of spectra acquired from maize plants at V3 stage per genotype and
treatment after pre-processing.

Id. Genotype
Nitrogen Level

25% (T1) 50% (T2) 75% (T3) 100% (T4)

G1 P3041 26 26 25 27

G2 DK-
415UT3PRO 25 25 27 28

G3 DK7088 28 24 26 28
G4 FNC8134 24 26 26 26
G5 FNC8502 27 26 26 27
G6 BioMZn01 27 26 27 25
G7 Synko 26 27 27 30
G8 V114/P535 25 26 28 28
G9 V114/P528 24 26 27 29

G10 P535/V114 26 24 24 26

Total per treatment 258 256 263 274

Total spectral signatures 1051

Table 3. Dataset 2: Number of spectra acquired from maize plants at V7 stage per genotype and
treatment after pre-processing.

Id. Genotype
Nitrogen Level

25% (T1) 50% (T2) 75% (T3) 100% (T4)

G1 P3041 47 54 51 52

G2 DK-
415UT3PRO 52 50 51 54

G3 DK7088 50 51 52 51
G4 FNC8134 55 52 48 53
G5 FNC8502 52 49 53 52
G6 BioMZn01 49 50 53 51
G7 Synko 48 52 48 50
G8 V114/P535 53 46 49 53
G9 V114/P528 49 52 51 51

G10 P535/V114 51 49 54 50

Total per treatment 506 505 510 517

Total spectral signatures 2038
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Table 4. Dataset 3: Number of spectra acquired from maize plants at V10-V12 stage per genotype
and treatment after pre-processing.

Id. Genotype
Nitrogen Level

25% (T1) 50% (T2) 75% (T3) 100% (T4)

G1 P3041 52 48 51 50

G2 DK-
415UT3PRO 52 50 51 52

G3 DK7088 51 48 51 50
G4 FNC8134 51 53 51 53
G5 FNC8502 48 49 53 50
G6 BioMZn01 54 53 48 49
G7 Synko 51 51 50 54
G8 V114/P535 43 51 54 51
G9 V114/P528 52 48 54 50

G10 P535/V114 52 50 53 51

Total per treatment 506 501 516 510

Total spectral signatures 2033

The spectra were collected using a FLAME S VIR NIR spectrometer integrated with
2 m QP600-2-VIR-NIR optical fibers and an HL-2000-LL light source (all equipment, Ocean
Insight®). The spectrometer’s range was between 350 and 1000 nm, capturing 2049 bands.
Data collection was performed as described in Section 3.2. The spectral library contains the
signatures already calibrated in reflectance and filtered (see Section 3.3). For each dataset,
three files are included (Table 5): “Data.txt” contains the matrix data, where each column
is a signature; “Label.txt” contains two rows of labels, where the first row is the nitrogen
treatment (1: T1, 2: T2, 3: T3, and 4: T4) and the second row is the genotype (Table 1).
Finally, the file “Wavelength.txt” includes the spectral bands for each signature in the
dataset. Each signature has 1485 spectral bands between 450 and 950 nm.

Table 5. Spectral library.

Folder Filename Size Description

V3 Spectra_V3 1485 × 1051 Spectral signature collected at V3 stage

Label_V3 2 × 1051 First row: treatment label (1: T1, 2: T2, 3: T3, 4: T4)
Second row: genotype

Wavelength_V3 1485 × 1 Wavelength (nm) for each spectral signature
V7 Spectra_V7 1485 × 2038 Spectral signature collected at V7 stage

Label_V7 2 × 2038 First row: treatment label (1: T1, 2: T2, 3: T3, 4: T4)
Second row: genotype

Wavelength_V7 1485 × 1 Wavelength (nm) for each spectral signature
V10-V12 Spectra_V10 1485 × 2033 Spectral signature collected at V10-V12 stage

Label_V10 2 × 2033 First row: treatment label (1: T1, 2: T2, 3: T3, 4: T4)
Second row: genotype

Wavelength_V10 1485 × 1 Wavelength (nm) for each spectral signature

3. Methods
3.1. Vegetal Material and Experimental Design

This study used ten maize genotypes, of which six were commercial hybrids, one was
a commercial variety, and three were experimental hybrids (Table 1). The experiments were
conducted at La Selva Research Center of AGROSAVIA, located in the Llanogrande sector,
municipality of Rionegro, Antioquia, Colombia (06◦08′06” N; 75◦25′03” W, 2093 m.a.s.l.).
This area has an average annual temperature of 17 ◦C, precipitation of 1917 mm, relative
humidity of 78%, daylight of 1726 h yr−1, and evapotranspiration of 1202 mm. The study
site is located in the Low Montane Humid Forest (bh-MB) ecological life zone, in the
Rionegro Association cartographic unit, on a low alluvial terrace of the Rionegro River [15].

Trials were established in the field on 5 April 2022, using three levels of nitrogen
fertilization corresponding to 25%, 50%, and 75% of the optimum nitrogen dose for maize.
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Additionally, one trial had 100% of the optimum fertilization as a control (Figure 1). The
soil was previously sterilized and free of weed seeds and pathogens. Soil fertility analysis
determined the nitrogen level before establishing the trial. The experimental design was laid
out in a randomized complete block with a split-plot arrangement and three replications,
where nitrogen doses were the main plots and genotypes were the sub-plots, for a total of
120 plots (Figure 1a). Each plot included eight plants of the same genotype, spaced 0.2 m
apart (Figure 1b). The spacing between each plot was 0.8 m (Figure 1c). The distribution of
genotypes within each replicate was randomly arranged.
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Figure 1. (a) Distribution of plots according to genotype, repetition, and treatment. (b) Photograph
of a row of plants of the same genotype and treatment. (c) Aerial photograph of the experimental
design area.

3.2. Data Collection

We used a FLAME S VIR NIR spectrometer integrated with 2 m QP600-2-VIR-NIR
optical fibers, with a core size of 600 µm, and an HL-2000-LL tungsten halogen light source
with an output from 350 to 2400 nm, all manufactured by Ocean Insight®. The spectrometer
range was between 350 and 1000 nm, capturing 2049 bands. We used a customized clamp
to integrate the spectrometer and light source. The tool was a 3D-printed clamp made of
PLA material with a handle for easy manipulation [16]. The clamp fixed the leaf and two
optical fibers, with one connected to the light source and the other to the spectrometer.
The fiber probes were placed 5 mm from the surface. The fiber connected to the light
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formed a 45◦ angle with the surface, and the spectrometer fiber was set perpendicular
to the surface. The captured spectrum was the result of an average of 10 measurements
to improve the signal-to-noise ratio. Black and white calibration spectra were collected
before measurements on the leaves. OceanView 2.0 software (Ocean Insight, Orlando, FL,
USA) was used to capture and calibrate the spectral signatures. Data were collected at
three stages of maize growth: V3 (12 May, 2022), V7 (2 June 2022), and V10-V12 (23 June
2022). On each date, three individuals were randomly selected from each plot with the
same genotype, treatment, and repetition. From the central area of the adaxial face of the
upper third leaf of each plant, we collected ten spectral signatures on the first date. On
the second and third dates, the number of samples was increased to 20 per plot to achieve
greater representativeness of the data.

3.3. Data Pre-Processing

Data pre-processing included three stages. In the first stage, the spectral signatures
were graphically analyzed to determine the wavelength range with low noise levels. From
this analysis, the data was cropped, maintaining the reflectance between 450 and 950 nm.
In the second stage, a 10-point sliding window filter was applied to reduce the noise
and maintain the signature waveform (Figure 2). Finally, a two-step automatic process
was employed to remove spectral signatures with shapes that did not correspond to the
vegetation or atypical behaviors. First, we computed the standard deviation for each
group per treatment and genotype. We eliminated spectral signatures falling outside three
standard deviations (Figure 3a), then the standard deviation was calculated once again
with the remaining spectra, and the process was repeated (Figure 3b). Applying these
pre-processing steps to the data captured on the three dates resulted in 1051 signatures for
V3, 2038 for V7, and 2033 for V10-V12. Tables 2–4 detail the number of spectral signatures
obtained for each genotype and treatment.
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(b) then again using the actualized standard deviation.

3.4. Data Analysis

Figures 4–6 present the average spectral signatures obtained for each genotype under
the different nitrogen-deficiency stress levels. These figures show the effects of stress level
on each genotype and growth stage. Figure 4 presents the average signatures at the V3 stage.
At this growth stage, genotypes G7 and G9 showed few changes in the spectral signature.
In contrast, genotypes G1, G2, G4, G6, and G10 presented higher variations according to
stress level. Figure 5 presents the average signatures at the V7 growth stage. In this case,
genotypes G3, G4, G8, G9, and G10 showed few variations in the spectral signature due to
the level of stress. Finally, Figure 6 shows the average signatures at the V10-V12 stage. At
this stage, which precedes plant flowering, the effect of fertilizer treatment was less than in
the previous stages. Only genotypes G1, G8, and G9 showed considerable variations. These
results demonstrated that each genotype responded differently to nitrogen fertilization
treatments, and plant responses changed with the growth stage evaluated.
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3.5. Discussion

Library spectral signatures can help elucidate the effects of nitrogen fertilization treat-
ments for different maize genotypes and growth stages. Previous studies reported the spec-
tral characterization of maize with various nitrogen fertilization levels; however, most of
these studies did not consider genotype or growth stage. For instance, McMurtrey et al. [17]
presented a characterization of the reflectance of maize leaves with various levels of nitro-
gen fertilization, revealing significant differences between treatments at 550 and 700 nm.
Similar results were presented by Blackmer et al. [18], in which a discriminant feature at
approximately 550 nm from reflectance signatures collected on maize leaves with several
nitrogen fertilizer rates demonstrated greater reflectance at lower nitrogen rates. Noh
et al. [19] also showed more significant differences between healthy and nitrogen-deficient
maize plants in bands at 650 and 800 nm. The spectral signatures obtained by our exper-
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imental setup concurred with these previous studies. At the V3 growth stage (Figure 4),
higher reflectance was obtained at lower nitrogen levels, such as in ref. [17–19]. On the
other hand, the 800 nm wavelength also showed a discriminative feature at the V3 and V7
stages (Figures 4 and 5), as obtained by ref. [19].

This analysis is only one example of the potential studies that can be performed
using the spectral library. Other potential work includes estimating parameters such as
chlorophyll, carotenoids, dry matter, etc. using diffuse reflectance inversion models [20].
Additionally, the datasets can potentially be used in developing machine learning models
for detecting stress and discriminating nitrogen-level stress [21].

4. Conclusions

This paper introduces a new maize spectral library between 450 and 950 nm, collected
with a spectrometer positioned directly over the leaves. The datasets include ten genotypes,
four nitrogen fertilization treatments, and three maize-growing stages. The library includes
calibrated signatures, already filtered and pre-processed. These datasets will facilitate
an understanding of the spectral behavior of maize at different growing stages under
fertilizer treatments.

Most previous studies have explored the relationship between the vegetation index
and stress factors; however, there is a need to explore the full spectra and the effects of
other variables, such as genotype and growth stage. In general, access to spectral databases
is limited; thus, the proposed spectral library seeks to support studies determining: (i) if a
genotype has a higher tolerance than other genotypes to treatment changes, (ii) wavelengths
where changes due to stress deficiencies are most perceptible (iii) treatment effects on
different vegetation indices, (iv) changes in spectral signature due to genotype, growth
stage, and fertilizer treatment, and (v) estimation of optical parameters, such as chlorophyll.

Comparing the mean spectral signatures for genotype, treatment, and growth stage
demonstrates the potential of these datasets, evidencing that each genotype has a different
spectral response to nitrogen treatment levels, which also depends on the growth stage.
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