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Abstract: Details on building levels play an essential part in a number of real-world application
models. Energy systems, telecommunications, disaster management, the internet-of-things, health
care, and marketing are a few of the many applications that require building information. The
essential variables that most of these models require are building type, house type, area of living
space, and number of residents. In order to acquire some of this information, this paper introduces a
methodology and generates corresponding data. The study was conducted for specific applications
in energy system modeling. Nonetheless, these data can also be used in other applications. Building
locations and some of their details are openly available in the form of map data from OpenStreetMap
(OSM). However, data regarding building types (i.e., residential, industrial, office, single-family
house, multi-family house, etc.) are only partially available in the OSM dataset. Therefore, a machine
learning classification algorithm for predicting the building types on the basis of the OSM buildings’
data was introduced. Although the OSM dataset is the fundamental and most crucial one used
for modeling, the machine learning algorithm’s training was performed on a dataset that was
prepared by combining several features from three other datasets. The generated dataset consists
of approximately 29 million buildings, of which about 19 million are residential, with 72% being
single-family houses and the rest multi-family ones that include two-family houses and apartment
buildings. Furthermore, the results were validated through a comparison with publicly available
statistical data. The comparison of the resulting data with official statistics reveals that there is a
percentage error of 3.64% for residential buildings, 13.14% for single-family houses, and −15.38% for
multi-family houses classification. Nevertheless, by incorporating the building types, this dataset
is able to complement existing building information in studies in which building type information
is crucial.

Keywords: missing values; class imbalance; data analysis; geospatial data; feature selection; data
visualization; classification; energy system analysis

1. Introduction

Real-world application models take account of the facts concerning buildings and
their details [1,2]. The energy system model is one such application that uses building-level
information. Energy systems are undergoing extensive transformations in an effort to
reduce carbon dioxide (CO2) emissions. Consequently, renewable energy sources (RES)
are being widely introduced into energy mixes. Evaluating the optimal integration of RES
necessitates better enumeration of total energy consumption. Building energy consumption
accounts for a significant proportion of the total energy consumed. Therefore, estimating
energy consumption in buildings necessitates building-level information (e.g., building
type, number of residents, living space, etc.). Unfortunately, detailed information with
respect to buildings is not publicly available.
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However, despite containing detailed building information, synthetic data on build-
ings, apartments, families, households, and populations are openly available [3]. The
synthetic data for Germany were produced from a survey conducted as part of the coun-
try’s 2011 census. Moreover, these data were aggregated for 100-m and one-kilometer grid
cells. Each cell (100 m × 100 m) conveyed information about the buildings within it (i.e.,
the total number of each type, the identity of each cell, etc.). Nevertheless, data on the total
number of buildings within the cells do not offer critical information regarding each of
them. Therefore, building type classification of the building footprints is required.

Several studies have been conducted to date using a variety of classification ap-
proaches for building types. The classification of building types can be performed manually
or automatically. As previously stated, surveying methods provide information about
buildings (i.e., manually). However, this process requires a significant amount of time
and human effort. Thus, automatic classification is the best method available at the mo-
ment. Advancements in remote sensing technology have enabled the extraction of physical
features of buildings such as textures, geometries, size, and shape from remotely sensed
images at low, medium, high, and very high resolution [4]. Additionally, light detection and
ranging (LiDAR) offers the building’s height information, which is missing from the image
data [5]. However, these building characteristics are retrieved through the use of machine
learning or deep learning models. In addition to these features, the building footprints
are gathered using edge-based geometric grouping or object-based classification [6]. The
labeling of buildings or the classification of building types were accomplished in [5,7–17]
using the datasets produced from the aforementioned approaches using remote sensed
images, google earth images [18,19] and LiDAR data. Ref. [20] employs machine learn-
ing models to categorize buildings into single-family houses, multi-family houses, and
non-residential buildings by utilizing LiDAR extracted data, including height and shape.
Similarly, ref. [5,8,13] classified buildings as low-rise [5], multi-storey [13], high-rise [13],
apartment [5], residential [8], non-buildings [5], and various commercial buildings [8].
Additionally, semantic labeling [6,12,21] and ontology-based categorization [7] were per-
formed on the remote sensing data to identify building footprints as residential, non-
residential, industrial, or factory. Here, several supervised machine learning techniques
were used in these studies, including Random Forest [5,6,8], Support Vector Machines
(SVM) [8], and deep learning methods [12]. Apart from supervised machine learning
techniques, ref. [9,15] used unsupervised machine learning techniques to cluster settlement
types based on the spatial pattern of building footprints. However, because the experts’
high degree of semantics highlights a semantic gap in the remote sensed imaging data [7],
Point-of-Interest (POI) data (i.e., specific point location, e.g., hospital, office, restaurant,
etc.), which is often user-generated data, was mapped to the remote sensed data to identify
building types [10,11]. In this context, ref. [10] used remote sensing imagery and point-of-
interest data to increase the accuracy and completeness of classification tasks. In addition
to the POI data, ref. [14] identified residential and industrial buildings using nighttime
light data and land cover data.

However, due to the complexity of image object extraction and classification in the
remote sensing technique, several researchers are concentrating their research on classify-
ing building types using geospatial vector data (i.e., points, lines, and polygons) [22]. To
categorize different types of buildings, ref. [22–29] included geospatial vector data gathered
and maintained by national mapping agencies [25], real estate cadasters [23], government
agencies [22,24], commercial data suppliers, and web mapping services [4,30,31]. Addition-
ally, ref. [32] recommended using taxi and population density statistics to identify building
functions. However, due to the scarcity of data from remote sensing, point-of-interest data,
commercial geospatial vector data, and human activity data, the researchers are classifying
buildings using data from web mapping services. The web mapping services include
not only the footprints of buildings, but also point-of-information data such as addresses,
building usage, building type, and building functionality, as well as other information
about the buildings. In this context, several prior research [4,30,33–38] identified building
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types using web mapping services such as OpenStreetMap (OSM) [39,40], Google maps,
Gaode Maps, and Baidu Maps [4,35]. For instance, ref. [35] classified residential and nu-
merous non-residential types using geographical data and POI data from Gaode and Baidu
Maps. Additionally, ref. [33] used OSM’s building footprints and POI data to identify
residential and non-residential buildings suitable for pesticide spraying to aid with malaria
prevention. This clearly implies that building type information is beneficial not just for
energy, transportation, and marketing objectives, but also for the health sector in light of
the current global crisis.

In summary, extracting building type information from remote sensing methods needs
a significant amount of computational power when executing global or even country-level
classification and object segmentation tasks. Additionally, managing and retrieving image
data for such a large spatial coverage is implausible. Furthermore, acquiring geographic
vector data and POI data from commercial and government agencies is always subject
to constraints and limitations. Additionally, human activity data is always a source of
concern when it comes to privacy. As a result, volunteer-generated open map data from
OSM is now the best option for utilizing and classifying building types. The OSM dataset
provides building footprints (instead of data acquired from images by remote sensing)
and POI data (alternative to POI data from commercial data providers and government
agencies). However, according to [27], the incompleteness and discrepancies in OSM data
are particularly noticeable. According to the results of the analysis of data collected from
OSM, it has been discovered that the data is still incomplete, with several missing values;
see Section 3.

To address the limitations mentioned above; this study developed a means of pre-
dicting the building type for each building extracted from the OSM data as accurately as
possible. In order to perform this task effectively, several additional features have been
added to the OSM data from various datasets. The most significant datasets bolstering the
OSM data are Coordination of Information on the Environment (CORINE) [41], the height
of buildings in Berlin [42], and 2011 census data for Germany [3]. The work conducted
herein was motivated by a need for geo-referenced building location data and their labels,
which could be used in several real-world applications. Moreover, the work conducted
attempts to fill some of the gaps in the literature by classifying building types through
the application of state-of-the-art machine learning algorithms to the incomplete dataset
extracted from OSM. This study also addresses the challenges with respect to missing
values and class imbalances in the datasets by pursuing the following objectives: (1) To
extract building data with all of the corresponding features (e.g., geometry, area, address,
tags, etc.); (2) to perform data analysis on the extracted data in order to quantify missing
data; (3) to integrate additional features from the above-mentioned additional sources; and
(4) to use sophisticated machine learning algorithms in order to classify building types
with missing values and rectify class imbalances in the dataset.

The structure of the paper is as follows: the dataset is described in Section 2. Section 3
presents the data extraction, analysis, and preprocessing steps followed. This section also
includes the application of a machine learning algorithm to the processed dataset. In
addition, the results and validation of the tagged buildings are outlined. Section 4 provides
the discussion concerning the method, application of the results, and the limitations. Finally,
Section 5 conveys the conclusions and user notes regarding data usage.

2. Data Description

Prior to beginning the methods, this section describes the generated dataset with
building types classified for Germany. The dataset was explicitly generated for Germany
due to the requirement of building labels for developing geo-referenced synthetic electrical
distribution grids in the country. However, the developed methodology can be applied to
the generating of a dataset in any country. The dataset was provided in the GeoJSON file
format. For the geographical features, the coordinate reference system used was the World



Data 2022, 7, 45 4 of 23

Geodetic System 1984 (WGS 84) (EPSG:3857)—the original coordinate reference system of
OSM data. The dataset comprises the attributes listed below.

The main features from the OSM data are as follows:

• osm_id (numerical): unique identity for each building footprint (e.g., 208594362,
107204221, 208593145, etc.).

• way_area (numerical): area of the building footprint in Mercator square meter obtained
from original OSM data projection (e.g., 377, 2218.18, 493.99, 490.901, etc.).

• amenity_real (categorical): facility of buildings tagged in OSM (e.g., office, shop,
leisure, construction site, supermarket, grocery, etc.).

• building_type (categorical): building tag originally tagged in OSM (e.g., yes, commer-
cial, garage, terrace, office, train station, etc.).

• area (numerical): area of the building footprint when projected on ETRS89 (i.e.,
EPSG:3035).

• geometry (geometry): geometry for each building (EPSG:3857).

In addition, the height of each building was considered with respect to the heights
dataset for Berlin public buildings.

• height (numerical): height of each building in Berlin (e.g., 4, 5, 10, etc.).

Furthermore, in order to improve the model’s performance, additional features from
the Corine dataset were considered:

• code 18 (numerical): this feature corresponds to the land cover type (e.g., 111: Con-
tinuous urban fabric, 112: Discontinuous urban fabric, 121: Industrial or commercial
units, 141: Green urban areas, etc.)

Moreover, a few other features from the most crucial dataset (the 2011 census) were
integrated into the OSM buildings data. The dataset for Germany was accumulated across
100 m × 100 m grid cells, as follows:

• buildings_living_total (numerical): total number of buildings with living space within
a 100 m × 100 m cell.

• AB13MA_total (numerical): total number of apartment buildings, with 13 or more
within a grid cell.

• ABT_total (numerical): total number of other buildings within a grid cell.
• DHFOF_total (numerical): total number of detached houses for single families within

a grid cell.
• DTFH_total (numerical): total number of detached two-family houses within a grid cell.
• MFH3T6A_total (numerical): total number of multi-family houses within a grid cell

(3–6 apartments).
• MFH7T12A_total (numerical): total number of multi-family houses within a grid cell

(7–12 apartments).
• SFHSDH_total (numerical): total number of single-family houses within a grid cell

(semi-detached house).
• SFHTH_total (numerical): total number of single-family houses within a grid cell

(terraced house).
• TFHSDH_total (numerical): total number of two-family houses within a grid cell

(semi-detached house).
• TFHTH_total (numerical): total number of two-family houses within a grid cell (ter-

raced house).

With the help of these 11 features from the census data, 11 other features were added
to each building; see Section 3. These features correspond to a percentage probability of
buildings likely to correspond to the given type (i.e., building with living space, apartment,
single-family house, multi-family house, and two-family house). These 11 features are
percentage_buildings_living, percentage_AB13MA, percentage_ABT, percentage_DHFOF,
percentage_DTFH, percentage_MFH3T6A, percentage_MFH7T12A, percentage_SFHSDH,
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percentage_SFHTH, percentage_DTFH, percentage_SFHTH, all of which constitute integers
in percentages.

Finally, the essential characteristics result from the tags from OSM and machine the
learning model’s output.

• building_class (categorical): building type labels taken from OSM and labels generated
by the machine learning model.

• house_type (categorical): house type labels taken from OSM and labels generated by
the machine learning model.

This dataset thus contains 29,497,772 buildings as rows and 32 features for each of
the buildings as columns. Figure 1 shows the building footprints and final labels for each
unit (zoomed).
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Figure 1. Building footprints of Germany extracted from OSM and machine learning generated labels
for each building.

3. Methods

After discussing the research gap and the requirement of classifying building types
using open data in the introduction section, this section discusses the process of data
generation and of extracting and preparing various data elements for the development of a
machine learning model. The steps involved in data generation incorporate data extraction
from various sources, including the identification of required features, data preprocessing,
preparation for training the machine learning model, machine learning model development,
prediction of building labels using the model, and technical validation. The steps involved
in generating building labels are schematically displayed in Figure 2.
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3.1. Data Acquisition

The acquisition of data is the initial phase in the model development process. Data
acquisition for various datasets required in preparing the final data is outlined in this
subsection. Here, the process involved in collecting the datasets, preprocessing them if
necessary, and the file format in which the file was saved, are presented.

3.1.1. OpenStreetMap Data

The first and main dataset used in the modeling was that of the OSM buildings
dataset. The OSM data is being investigated as an alternative to remote sensing and POI
data. The OSM full metadata, however, is only available to its contributors. Therefore,
Geofabrik’s server was used to download it. The server holds data extracts from the
OSM project, and the data are updated regularly. For the modeling itself, the most recent
data was downloaded from this server [43]. Moreover, the data downloaded contain
map components that were redundant for this purpose. For this reason, osmosis [44],
a command-line Java application, was used for the OSM data processing. A command-line
query that accepts nodes and ways tagged as buildings was provided in the application to
extract buildings and their components. The extracted file was in Protocolbuffer Binary
Format (PBF). However, this file format is not helpful for modeling purposes, especially
in this case, where the data are placed in machine learning algorithms. Hence, data
were transferred to the PostgreSQL server using osm2pgsql [45]. From there, the data
were extracted to the local disk in the comma-separated values (CSV) format. However,
these data feature geographical components and were converted into the Geographical
Information Systems (GIS) support format. The coordinate reference system that OSM data
have and used while creating the geometries was WGS 84 (i.e., EPSG:3857). Figure 3 shows
the building footprints extracted following this approach.
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Figure 3. Building footprints of Germany extracted from OpenStreetMap.

This dataset contains 29,497,772 buildings and 71 features of each of these. However,
all of these features are superfluous and hold numerous missing values. Consequently,
few essential features are considered from among those available. Therefore, some of
the redundant features are removed, reducing the total to 12. The feature considered
to represent the building types was named ‘building_type’ and contains various labels.
The most essential of these and the labels with the majority of buildings are displayed in
Figure 4. However, not every building in the dataset is represented by its type. As Figure 4
shows, the majority of the buildings are tagged as ‘yes,’ representing buildings of unknown
type. In addition, the buildings that are labeled with ‘yes’ must be predicted using machine
learning techniques. Machine learning model training must be performed on buildings with
certain labels. However, the features contain missing values, excluding the building_type
feature, which is inadequate for classification. Therefore, this study considers other features
from different datasets.



Data 2022, 7, 45 7 of 23

Data 2022, 7, 45 7 of 25 
 

 

 
Figure 3. Building footprints of Germany extracted from OpenStreetMap. 

This dataset contains 29,497,772 buildings and 71 features of each of these. However, 
all of these features are superfluous and hold numerous missing values. Consequently, 
few essential features are considered from among those available. Therefore, some of the 
redundant features are removed, reducing the total to 12. The feature considered to rep-
resent the building types was named ‘building_type’ and contains various labels. The 
most essential of these and the labels with the majority of buildings are displayed in Fig-
ure 4. However, not every building in the dataset is represented by its type. As Figure 4 
shows, the majority of the buildings are tagged as ‘yes,’ representing buildings of un-
known type. In addition, the buildings that are labeled with ‘yes’ must be predicted using 
machine learning techniques. Machine learning model training must be performed on 
buildings with certain labels. However, the features contain missing values, excluding the 
building_type feature, which is inadequate for classification. Therefore, this study consid-
ers other features from different datasets. 

 
Figure 4. Considerable building types labeled in OSM data (total in log scale). 

3.1.2. Building Height Data 
As previously stated, the characteristics of buildings from the OSM data alone are 

insufficient for predicting building types; additional features must be added to increase 
the dataset quality. One useful dataset is that for building height [42], which is one of the 
key parameters for classifying building types. Obtaining heights for each building is im-
possible, and no such dataset is available for whole nation. Nevertheless, the urban atlas 
from the Copernicus project [42] specifies building heights for some major cities. In Ger-
many, the building height dataset for the state of Berlin is available and was downloaded 
from the urban atlas database [42]. The dataset contains a 10 m high-resolution raster layer 

Figure 4. Considerable building types labeled in OSM data (total in log scale).

3.1.2. Building Height Data

As previously stated, the characteristics of buildings from the OSM data alone are
insufficient for predicting building types; additional features must be added to increase the
dataset quality. One useful dataset is that for building height [42], which is one of the key
parameters for classifying building types. Obtaining heights for each building is impossible,
and no such dataset is available for whole nation. Nevertheless, the urban atlas from the
Copernicus project [42] specifies building heights for some major cities. In Germany, the
building height dataset for the state of Berlin is available and was downloaded from the
urban atlas database [42]. The dataset contains a 10 m high-resolution raster layer with
building height information. Moreover, the coordinate reference system this dataset uses is
ETR89 (i.e., EPSG:3035). Figure 5 exhibits the raster layers with building height information
for the state of Berlin, Germany. Furthermore, the inter-quartile range for the heights ranges
from 4 to 14 m (see Figure 5).
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3.1.3. CORINE Land Cover Data

Aside from building properties from OSM and building heights datasets, land use
data (i.e., continuous urban fabric, discontinuous urban fabric, industrial, commercial,
etc.) also add value to the building dataset. This information is available via CORINE
land cover datasets produced through the Copernicus project [41]. This dataset is based
on the classification of satellite images developed by a team from EEA member countries
(i.e., EEA39) [41] and has one feature with 44 classes. The classes in the dataset represent
continuous urban fabric, discontinuous urban fabric, industrial or commercial units, and
airports; see [41]. As it is considered to be an essential additional feature that adds value to
the primary dataset, the dataset was downloaded from the Copernicus land monitoring
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service [41]. Moreover, the projected coordinate system was ETR89 (i.e., EPSG:3035).
Figure 6 displays a geographical representation of the downloaded data. In addition,
Table 1 provides the code representation of CORINE land cover data.
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Table 1. CORINE land cover code representation.

Code Representation Code Representation

111 Continuous urban fabric 112 Discontinuous urban fabric

121 Industrial or commercial units 122 Road and rail networks
and associated land

123 Port areas 124 Airports

131 Mineral extraction sites 132 Dump sites

133 Construction sites 141 Green urban areas

142 Sport and leisure facilities 211 Non-irrigated arable land

212 Permanently irrigated land 213 Rice fields

221 Vineyards 222 Fruit trees and
berry plantations

223 Olive groves 231 Pastures

241 Annual crops associated with
permanent crops 242 Complex

cultivation patterns

243 Land principally occupied
by agriculture 311 Broad-leaved forest

312 Coniferous forest 313 Mixed forest

321 Natural grasslands 322 Moors and heathland

323 Sclerophyllous vegetation 324 Transitional
woodland-shrub

331 Beaches, dunes, sands 332 Bare rocks

333 Sparsely vegetated areas 334 Burnt areas

335 Glaciers and perpetual snow 411 Inland marshes

412 Peat bogs

3.1.4. Census Data

In addition to the above-mentioned datasets, census data for Germany was considered.
In 2011, a register-based census survey was conducted in Germany. This survey was
conducted to determine how many people live and work in Germany, and how they do so.
In addition, the census data was extended in the area of buildings and apartments to include
the total number of buildings with living spaces, types of apartments, form of ownership,
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number of apartments in the building, and type of heating, with a resolution down to
the municipality level [3]. Comprehensive data regarding buildings and apartments were
downloaded from the 2011 census database [3]. This dataset corresponds to the total
number of buildings with living spaces per 100 m × 100 m grid cells. The data were further
split into different types, namely: single-family houses, two-family houses, multi-family
houses, and apartment buildings.

Furthermore, each grid cell in the dataset was assigned a unique identity that was
further combined with the geographical shapefile corresponding to each cell. The geograph-
ical shapefile was download from the Geoinformation and Geodesy databases [46]. The
data also included a unique ID like that of previously-downloaded building and apartment
data. With the help of these unique IDs, geographical shapefiles were added to each grid
cell, thus forming a complete georeferenced dataset for each building type. Moreover,
this dataset’s projected coordinate reference system is similar to the CORINE data (i.e.,
EPSG:3035). Figure 7 indicates the locations of the grid cells and the total number of units
for each type for Germany. Additionally, Table 2 presents the total number of buildings
according to their type. Here, a detached house is considered a free-standing building;
irrespective of its type, a semi-detached house is a building that is built against another
building, a terraced house is a building that is built against two other buildings, and other
building types are those which are not a detached house, semi-detached house, or terrace
house, and encompass all types of inhabited domiciles.
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Table 2. Total number of buildings per building type in Germany.

Feature Abbreviation Count

buildings_living_total Buildings with living space 18,494,939
DHFOF Detached house for one family 1,637,974

SFHSDH Single-family house: semi-detached 411,851
SFHTH Single-family house: terraced 292,062
DTFH Detached two-family houses 552,705

TFHSDH Two-family house: semi-detached 65,266
TFHTH Two-family house: terraced 50,873

MFH3T6A Multi-family house: 3–6 dwellings 437,990
MFH7T12A Multi-family house: 7–12 dwellings 153,802

AB13MA Apartment building: 13 or more units 36,214
ABT Another building type 104,205

3.2. Data Preprocessing

Having discussed the datasets for modeling, this section introduces data preparation.
In this stage, all of the features from the above-mentioned datasets were added to the OSM
building dataset. In order to combine all of the datasets, the coordinate reference system
for each one should be the same. For convenience, a coordinate reference system WGS
84 (i.e., EPSG:3857) was selected because the primary (i.e., OSM) data were placed in this
reference system, and all of the datasets were projected to this coordinate system.

First, the CORINE land cover data feature was added to the OSM buildings by inter-
secting the buildings with the CORINE data. Performing this task provided an additional
feature with land cover information for each building. Next, the building height informa-
tion for the buildings in Berlin was added by intersecting the buildings with the building
height information dataset, which delivered building height features for the buildings in
the city. Furthermore, buildings outside the state were assigned null values and considered
missing values for the purposes of this feature. Finally, census data with 11 features shown
in Table 2 were assigned to the dataset. Following this operation, the final data contained
29,497,772 buildings with 19 features for each building. However, several values were
missing for each feature, which will be addressed in the following subsection.

After combining the features from various sources with the final dataset, further
processing was performed on the target class (i.e., building_type). As can be seen from
Figure 4, there were several uncertainties in the tags within the OSM dataset. There were
almost 1575 unique tags in this feature (i.e., building_type). The cause of this uncertainty
was the ambiguous representation of the buildings, e.g., spelling errors, multi-language
use, etc. Nevertheless, some of these uncertainties are presented in Table 3.

Table 3. Ambiguity of data labels/tags in the target class.

Building Varying Representation

Apartments Apartments|Apartment building
Warehouse Lagerhaus|Lagerhalle

Terrace Terrasse
Youth Centre Jugendzentrum

Nursing home Plegeheim
House Haus|Hause|house

However, refinement of these features reduced the labels to 895 unique types, which
is still a large number. Therefore, the labels in the target class were further reduced to
25 based on a Wiki model [47] and named ‘building_class’, which now constitutes the
target class for classification.

Furthermore, many buildings are evidently not suitable for living in—for instance,
garages, which are considered buildings and labeled as ‘yes’ (i.e., buildings of unknown
type) in the OSM dataset. Additionally, the built-up area for garages varies according
to individual requirements, but most garages were built to typical size specifications.
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From pre-labeled buildings, the area of the building types with garages/attachments is
shown in Figure 8. From the figure, it can be seen that around 75% of buildings with areas
of fewer than 35 m2 were labeled garages/attachments. Hence, using this information,
buildings with a size less than or equal to 35 m2 were labeled as garages in the target class.
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 Figure 8. Box plot representing the areas of each building tagged as garage/attachments.

Additionally, information from census dataset features and new features representing
percentage probabilities for each building were generated. These new features were for-
mulated by applying the fraction of the total number of buildings with living space from
the census data per grid cell to the total number of OSM buildings in that specific grid cell
(for clearer understanding, see Figure 9). Figure 9 shows the total number of buildings
with living space from the census dataset for this 100 m × 100 m grid cell, which is three.
In addition, a total of six OSM buildings are in this cell. Therefore, each building in the grid
has a 50% chance of being a residential building/building with living space. By applying
this procedure to other features extracted from the census dataset (refer to Table 2), 11 new
features with percentage probabilities for each building type were generated.
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Now, using this information, buildings with 100% or more changes to become a
building with living space were labeled in the target class as residential. After applying all
of these preprocessing steps, the dataset contained 29,497,772 buildings with 30 features.
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3.3. Data Analysis

In addition to the preprocessing of the data, the dataset was further analyzed to
address challenges with respect to the data itself. Prior to this step, the buildings with labels
in the target class numbered 6,047,266, which amounted to 20.41% of the total buildings.
However, after preprocessing, the labeled data in the target class were increased to 35.12%
of the total buildings. Moreover, increasing the labels in the target class helps achieve more
efficient model performance. Figure 10 displays the labeled buildings before and after
preprocessing. The labeled data following preprocessing was used for training the machine
learning model. In addition, the prediction was performed on the unlabeled data using the
trained model.
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Figure 10. Labeled and unlabeled buildings before and after preprocessing.

However, further analysis of the data indicators reveals that 77% of the values in the
dataset were missing. Nevertheless, the lack of data per feature is shown in Figure 11.
There were 0% missing values in the feature containing the building identification numbers
and area of each. However, there were missing values in the other features, which led
to inefficient model performance. Therefore, it is necessary to fill in the missing values
for each feature. The missing data can be filled by using specific techniques, which are
discussed in the next subsection.
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Analyzing the distribution of each label in the target class presented a problem of class
imbalance in the dataset. Figure 12 displays the distribution of labels in the target class.
Most of these were attachments, residential, commercial, industrial, and agricultural, at
52.81%, 35.29%, 9.02%, 0.57%, and 0.98%, respectively. This means that attachments and
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residential units shared the highest percentage at 88.10%, and the remaining labels only
constituted 11.90%. Therefore, if the model is trained on this dataset, the algorithm has a
higher chance of picking up the label with more weight in the dataset.
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To conclude, after analyzing it, the dataset presented problems in terms of missing
values and class imbalances. Nevertheless, these challenges are addressed by adopting a
classification with the missing values and class imbalance.

3.4. Classification

The classification task is the next crucial stage in the model generation process once the
data has been prepared. This section provides details about the adopted machine learning
models and the experiments conducted on the dataset. The dataset with the known labels
was considered for training the machine learning models. In the classification process, a
two-step approach was used to classify the building types. For the first task, classification
was performed in order to classify residential and non-residential buildings. In the second,
classification was performed to classify houses (i.e., single-family houses, multi-family
houses, and apartments) among the predicted residential buildings. Figure 13 shows the
methodology adopted for the building type classification.
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Upon analyzing the dataset presented in the previous subsection, it was found to suffer
from two main issues, namely missing values and class imbalance. In order to overcome
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these challenges, two different methods were considered. These methods included implicit
and explicit approaches. In the implicit method, missing values, class imbalance, and
classification tasks were solved within a single architecture. Here, two models were de-
ployed: HexaGAN [48] and a modified Artificial Neural Network (ANN) [49]. In addition,
the explicit method, including missing value imputation, class imbalance, and classifica-
tion tasks, was performed using different models consecutively. Multiple Imputation by
Chained Equations (MICE) [50] was used to resolve the missing value problem in the first
step. By applying MICE, the missing values in the training dataset could be filled with
model-generated ones. In order to generate balanced labels in the target class, Synthetic
Minority Oversample Techniques (SMOTE) [51] and cost-sensitive learning for imbalance
classification (Class-Weighting) (CS) were considered. This model was then applied to the
training dataset to produce balanced labels by overcoming class imbalance issues. Finally,
the classification problem was solved by means of a Random Forest classifier.

3.4.1. Experiments

Using the model’s setup, experiments were conducted on the training dataset. Three
state-of-the-art machine learning algorithms for classification with missing values and
class imbalance (both implicit and explicit) were tested. However, the best-performing
algorithm was used as the final model in order to perform the building type classification
task. The classification performances of three models were tested on the training dataset.
Here, implicit algorithms were implemented, trained and tested with baseline data and
compared to the baseline results. Furthermore, all of the models were trained with the
preprocessed training dataset. In this context, all of the experiments were repeated ten
times with five-fold cross-validation. In order to evaluate the model performance, F1
score metrics were used and calculated for all three of the models. Table 4 displays the
performance of the considered models.

Table 4. Classification performance of the models.

Model Baseline Results Implementation
with Baseline Data OSM Data

HexaGAN(Implicit Model) 0.9762 ± 0.021 0.9780 0.8154
Modified ANN (Implicit Model) 0.8170 0.7911 0.6308

Explicit Model - - 0.9958

From the results obtained with the respective algorithms using the OSM data, the
model with MICE, CS, and a random forest classifier performed far better than the other
models. Nevertheless, the other two models are unique in their methodologies and per-
formed impressively on the baseline datasets. However, the explicit method outperformed
the two implicit ones using the OSM data. Therefore, to predict the missing building types,
the explicit method; MICE, together with class-weighting and a random forest classifier
model were chosen.

The building type labels were predicted with the selected model. The results for the
predicted building types were as shown in Table 5. The major labels predicted were residen-
tial, attachments, commercial, and industrial. However, the share of residential labels was
greater when compared to all others. Using the predicted labels, all labels other than the
residential were considered as non-residential buildings. The total of 19,747,802 residential
buildings were further utilized to classify house types (i.e., single-family, multi-family,
and apartments).

The second task in these two folded approaches was to classify residential buildings
into house types. The training data for the model consisted of label data from the residential
buildings predicted in the previous step. In addition, the target class for this classification
was the new feature class drawn from the ‘building_type’ feature and named as the ‘house
type.’ However, less than 2% of data with proper house types was labeled in the OSM
data. Moreover, the labels therein differed from those expected; see Table 6. With the aid
of this, the dataset was labeled according to the proposed types listed in Table 6. These
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assumptions were considered to increase the quality, as well as to match with the expected
house. Furthermore, in order to increase the training data, the same procedure used
in the preprocessing step to pre-label residential buildings with the help of percentage
probability features was applied here. If the percentage probability of building type is
greater than or equal to 100%, the buildings are labeled according to their respective house
type. Furthermore, as per Table 2, different single-family, two-family, and multi-family
houses were combined into single-family and multi-family houses.

Table 5. Building type classification results for buildings in Germany.

Building Type Predicted Count

Residential 19,747,802
Attachments 5,583,658
Commercial 3,127,442

Industrial 460,698
Hospital 217,103

Hotel 114,013
Agricultural 105,888
Government 151,98
Event venues 35,935

School 46,452
Religious 33,645
Transport 3117
University 2927

Military 1048
Others 2866

Table 6. House type labeling.

OSM Building Type Proposed House Type

Detached Single-Family House
Semi-Detached Multi-Family House

Terrace Multi-Family House
Apartment Apartment

House To predict
Residential To predict

The target class label distribution, showing the class imbalance proportion after pre-
processing of the data, is shown in Table 7. Here, the single-family house shares a large
portion compared to the other two labels. The class imbalance issue addressed in the
previous subsection helps overcome this issue when modeling.

Table 7. Distribution of house type target class.

Class Count Percentage

Single-Family House 1,063,379 60.07%
Multi-Family House 386,995 21.86%

Apartment 319,663 18.06%

An experiment using the best model assumption considered in the first task was
adopted with this final data. The model with MICE, together with oversampled SMOTE
and weighted data, was trained on 1,769,997 samples. The rest of the 17,977,805 residential
buildings were predicted with the help of this model. The total house types, following
prediction of the residential buildings in Germany, are shown in Table 8. The predicted
results reflect the fact that the majority of the buildings are single-family houses.
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Table 8. House type for residential buildings in Germany.

Class Count

Single-family House 14,378,635
Multi-Family House 4,350,183

Apartment 1,018,984

3.4.2. Technical Validation

This section validates the findings after generating the dataset with labels for each
building footprint with residential, non-residential, single-family house, multi-family
house, apartment building, industry, commercial, and so on. There is no ground truth
to be used to evaluate the data outcomes of the model. However, our primary concern
was to label all of the buildings extracted from OSM as residential and non-residential.
In addition, the residential buildings were to be classified into different house types.
Validation of the predicted building labels was performed using the census data. The
total number of residential buildings in Germany was 19,053,216 [52]. However, the total
predicted residential buildings amounted to 19,747,802, with a percentage error of 3.64%.
This means that the model predicted 3.64% more buildings as residential of the total
residential buildings in Germany. Figure 14 shows a comparison of the total residential
buildings in Germany and the predicted ones.

Data 2022, 7, 45 17 of 25 
 

 

prediction of the residential buildings in Germany, are shown in Table 8. The predicted 
results reflect the fact that the majority of the buildings are single-family houses. 

Table 8. House type for residential buildings in Germany. 

Class Count 
Single-family House 14,378,635 
Multi-Family House 4,350,183 

Apartment 1,018,984 

3.4.2. Technical Validation 
This section validates the findings after generating the dataset with labels for each 

building footprint with residential, non-residential, single-family house, multi-family 
house, apartment building, industry, commercial, and so on. There is no ground truth to 
be used to evaluate the data outcomes of the model. However, our primary concern was 
to label all of the buildings extracted from OSM as residential and non-residential. In ad-
dition, the residential buildings were to be classified into different house types. Validation 
of the predicted building labels was performed using the census data. The total number 
of residential buildings in Germany was 19,053,216 [52]. However, the total predicted res-
idential buildings amounted to 19,747,802, with a percentage error of 3.64%. This means 
that the model predicted 3.64% more buildings as residential of the total residential build-
ings in Germany. Figure 14 shows a comparison of the total residential buildings in Ger-
many and the predicted ones. 

 
Figure 14. Comparison of actual residential stock with predicted residential stock in Germany. 

Furthermore, in order to spatially verify the quality of the predicted buildings, vali-
dation was performed using the census data for each federal state in Germany. Figure 15 
displays the predicted residential building count per federal state and the corresponding 
information according to the official data for that state. The percentage error for the pre-
dicted residential buildings in each state ranged from a minimum of −18.68% to a maxi-
mum of 22.73%. The results clearly indicate that the predicted residential buildings for the 
two states of Baden-Württemberg and North Rhine-Westphalia are comparatively more 
than other states. This may be because these states feature more buildings compared to 
other ones. Moreover, the buildings taken from these states for training were fewer, which 
could be a possible reason for the percentage error. 

Figure 16 shows the correlation between the predicted residential buildings and the 
actual, which is close to one. However, more training data with proper labels and fewer 
missing values could improve the percentage error. 

Figure 14. Comparison of actual residential stock with predicted residential stock in Germany.

Furthermore, in order to spatially verify the quality of the predicted buildings, vali-
dation was performed using the census data for each federal state in Germany. Figure 15
displays the predicted residential building count per federal state and the corresponding in-
formation according to the official data for that state. The percentage error for the predicted
residential buildings in each state ranged from a minimum of −18.68% to a maximum of
22.73%. The results clearly indicate that the predicted residential buildings for the two
states of Baden-Württemberg and North Rhine-Westphalia are comparatively more than
other states. This may be because these states feature more buildings compared to other
ones. Moreover, the buildings taken from these states for training were fewer, which could
be a possible reason for the percentage error.

Figure 16 shows the correlation between the predicted residential buildings and the
actual, which is close to one. However, more training data with proper labels and fewer
missing values could improve the percentage error.
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Further validation of the predicted data for house type was performed using the official
statistics. The total single-family houses in Germany numbered 12,707,978, with predicted
single-family houses totaling 14,378,638, with a percentage error of 13.14%. Furthermore,
multi-family houses and apartments were considered multi-family houses because the
statistical data contained two-family houses that were not considered while predicting
house types. Nevertheless, the total number of multi-family houses, including two-family
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and multi-family ones, as well as residential establishments, was 6,345,238. Meanwhile,
predicted multi-family houses and apartments totaled 5,369,167. Upon comparing the
real data with the predicted data, a percentage error of −15.38% was noted, as shown in
Figure 17.
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Further spatial validation was performed by accumulating the single-family house
stocks for federal states and comparing this with the data for each federal state. Figure 18
shows predicted single-family houses in each federal state and a comparison with the
statistical data. The percentage error for the predicted single-family houses ranged from a
minimum of −16.59% to a maximum of 50.88%. The maximum errors were recorded for
the three states of Baden-Württemberg, North Rhine-Westphalia, and Sachsen, with 37.63%,
38.38%, and 50.88%, respectively. The large deviation in the prediction count was due to
the unavailability of the actual required labels in the OSM data. Furthermore, this task was
solely dependent on the assumption and predefined labeling of the target class with the
help of census data. Therefore, an improvement in the actual required labeling in the OSM
data could overcome these challenges in the future.
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Nevertheless, by all standards this is a good sign, as it was, to the best of our knowledge
the first time that the building types obtained from OSM data were classified in their entirety
for Germany.

4. Discussion

Building type information serves as the foundation for a variety of models, including
energy, mobility, disaster management, health care, and other applications that benefit
humanity in a variety of ways. For example, in energy system models, forecasting the future
energy required at the national level requires knowledge of the type of building and how it
will be used. In the end, the introduction of environmentally friendly technologies is aided
by this prognosis. Furthermore, this is not just in the energy systems, as ref. [33] employed
building types to locate buildings where pesticide spraying was necessary, demonstrating
that building level information is significant in the health sector. Therefore, information at
the building level is essential for technological and economic advancements.

To identify building types, earlier research relied primarily on remote sensing data,
geospatial vector data, and POI data from government agencies, mapping agencies, com-
mercial POI data suppliers, and real estate cadasters, among others, despite data availability
and computational complexity limitations. This study establishes the building type classi-
fication for the entire country by addressing the above limitations and resolving missing
values and class imbalances in OpenStreetMap POI data and by mapping additional data to
increase classification accuracy. Apart from OSM data with building footprint geometries
and POI data, other data such as land cover data, census details, and building height data
were also mapped to the building footprints in this study. However, the following are
some of the advantages of the suggested classification methodology: To begin, the building
footprints and POI data are derived directly from the same source of data, whereas in
previous studies, the building footprints and POI data were derived from independent
sources; as a result, mapping POI data to the building footprint is not always reliable.
Second, the extra data from the census (manually surveyed) is mapped to the country’s
existing dataset. Besides census data, land cover data with several classes has also been
mapped in order to increase the accuracy of the classification. Third, the missing values
and class imbalance concerns in the OSM data were handled by using implicit and explicit
methods of classification algorithms that account for missing values and class imbalance
issues. However, when trained on OSM labeled data, the explicit method outperforms the
implicit methods.

When deployed, the explicit method classified approximately 29 million building foot-
prints into approximately 19 million buildings and the remainder as non-residential build-
ings, which comprised industrial, commercial, garage, and noncommercial-nonindustrial
buildings. When compared to official statistics, the results indicate a percentage error of
3.64%. Furthermore, when compared to [23], these results are encouraging, since ref. [23]
classifies polygons extracted from a real estate cadaster as residential buildings with a
percentage error of 4.9% for Germany. Additionally, ref. [23] recommends using OSM data
as supplemental data for classification. On the other hand, our study utilized OSM data
and classified building types by addressing challenges with the OSM dataset (i.e., missing
values and class imbalance). Furthermore, our analysis identified each residential building
as a single-family house, a multi-family house, or an apartment building with a percentage
error of 13.14% and −15.38%, respectively.

The collected results, however, are applied to the energy system model. Geo-referenced
synthetic electrical distribution networks for Germany are estimated using data correspond-
ing to residential buildings. Before the tagged residential building data for Germany was
included in this model, the geo-referenced synthetic electrical low-voltage distribution
networks developed had a percentage error of 33% when validated against the overall
low-voltage network length for Germany [53]. However, when classified residential build-
ings are included in the geo-referenced synthetic distribution network generator model,
a percentage error of 0.89% is obtained. This improvement in the energy system model’s
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percentage error reflects the building type classification model’s accuracy. However, its
accuracy varies depending on the model, as this model considers the entire nation, and
any mismatch in one geographical location may be compensated for in another. As a
consequence, it can be stated that the method employed delivered superior results and
addressed the gap created by the complex image classification and POI data availability.

However, according to the findings of this study, the data mapping to the OSM data is
still inadequate for the classification of non-residential buildings. The census data employed
to achieve the precise classification concentrated exclusively on residential buildings and
population. Additionally, the land cover data label the polygons to indicate if they are
in an industrial or non-residential zone. Thus, additional data that assists in training the
model that can focus on identifying the precise commercial and industrial buildings (i.e.,
offices, restaurants, supermarkets, glass industries, hospitals, schools, mini-supermarkets,
shopping complex, etc.) provides additional classification of non-residential buildings.
Moreover, this study covers a single nation owing to the requirement of developing a
model capable of generating geo-referenced synthetic electrical distribution networks.
Nevertheless, with certain adjustments, this methodology may be extended to other nations.
The constraints may occur during the pre-processing stage due to ambiguity in the labels
due to spelling errors and multilingual use. The manual decision tree recognizes and
updates the labels based on the data analysis conducted on the building labels. If the
uncertainty is due to the language, a different approach would be necessary in this stage
when applying this methodology to another nation. This is because OSM maps are entirely
volunteer based, and if an individual contributor does not adhere to the process for labeling,
the labels will be ambiguous. This limitation will prevent this methodology from being
used in other countries; however, with some data analysis and adaptive labeling during
the preprocessing stage, this limitation can be addressed.

5. Conclusions

The dataset was developed by classifying building types extracted from OSM data for
Germany with the specific goal of generating geo-referenced synthetic electrical distribution
networks and assessing synthetic energy profiles for the buildings. However, this dataset
can be used in any other models that require building information.

Our approach consists of classifying building types with missing values and class
imbalances in data extracted from OSM, from which the primary building data were drawn.
This study also considered different datasets from various sources and added these to the
primary dataset. Moreover, careful refining of the data, including hand label and data
cleaning, was performed as part of the data-driven approach. This study employed two
state-of-the-art implicit algorithms to classify missing values and class imbalances in one
architecture and an explicit cascaded approach. The best performance model was used to
classify building and house types in Germany.

The experiments conducted for this study showed the ability to predict building
types in light of building footprints and some features corresponding to these. The results
indicated a percentage error of 3.64% for the classification of residential buildings, 13.14%
for single-family houses, and −15.38% for multi-family houses classification. In addition,
this percentage error could be attributed to significant missing values and fewer features.
Applying these results to the geo-referenced synthetic distribution model, the percentage
error in the total network length was reduced from 33% to 0.89%.

However, given the limitations of non-residential building type prediction and the
need to increase the accuracy of house type prediction (i.e., single-family house, multi-
family house, and apartment building), some of these points should be considered in
future work. First, more data should be collected to avoid misinterpretation of missing
values in the dataset. Second, a significant number of additional features with building
parameters would contribute to improving the model’s accuracy. Third, more fine-grained
location-based data would help in the evaluation of inference data.



Data 2022, 7, 45 21 of 23

Author Contributions: Conceptualization, A.B.; methodology, A.B. and E.B.; software, A.B. and E.B.;
validation, A.B. and E.B.; formal analysis, A.B. and E.B.; investigation, A.B. and E.B.; resources, A.B.,
J.L. and D.S.; data curation, A.B. and E.B.; writing—original draft preparation, A.B.; writing—review
and editing, C.S., J.L. and D.S.; visualization, A.B.; supervision, J.L.; project administration, J.L.
and D.S.; funding acquisition, D.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Helmholtz Association under the program “Energy
Systems Design”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request.

Acknowledgments: The authors are grateful to openstreetmap.org (accessed on 6 April 2022) ,
land.copernicus.eu (accessed on 6 April 2022) and zensus2011.de (accessed on 6 April 2022) for
providing opendata.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Aubrecht, C.; Steinnocher, K.; Hollaus, M.; Wagner, W. Integrating earth observation and GIScience for high resolution spatial

and functional modeling of urban land use. Comput. Environ. Urban Syst. 2009, 33, 15–25. [CrossRef]
2. Maantay, J.; Maroko, A. Mapping urban risk: Flood hazards, race, & environmental justice in New York. Appl. Geogr. 2009,

29, 111–124. [PubMed]
3. Zensus-2011. Ergebnisse des Zensus 2011 zum Download—Erweitert. Available online: https://www.zensus2011.de/DE/

Home/Aktuelles/DemografischeGrunddaten.html?nn=3065474 (accessed on 8 August 2020).
4. Deng, Y.; Chen, R.; Yang, J.; Li, Y.; Jiang, H.; Liao, W.; Sun, M. Identify urban building functions with multisource data: A case

study in Guangzhou, China. Int. J. Geogr. Inf. Sci. 2022, 1–26. [CrossRef]
5. Huang, Y.; Zhuo, L.; Tao, H.; Shi, Q.; Liu, K. A novel building type classification scheme based on integrated LiDAR and

high-resolution images. Remote Sens. 2017, 9, 679. [CrossRef]
6. Du, S.; Zhang, F.; Zhang, X. Semantic classification of urban buildings combining VHR image and GIS data: An improved random

forest approach. ISPRS J. Photogramm. Remote Sens. 2015, 105, 107–119. [CrossRef]
7. Belgiu, M.; Tomljenovic, I.; Lampoltshammer, T.J.; Blaschke, T.; Höfle, B. Ontology-based classification of building types detected

from airborne laser scanning data. Remote Sens. 2014, 6, 1347–1366. [CrossRef]
8. Duchscherer, S.E. Classifying Building Usages: A Machine Learning Approach on Building Extractions. Master’s Thesis,

University of Tennessee, Knoxville, TN, USA, 2018.
9. Jochem, W.C.; Leasure, D.R.; Pannell, O.; Chamberlain, H.R.; Jones, P.; Tatem, A.J. Classifying settlement types from multi-scale

spatial patterns of building footprints. Environ. Plann. B Urban Anal. City Sci. 2021, 48, 1161–1179. [CrossRef]
10. Lin, A.; Sun, X.; Wu, H.; Luo, W.; Wang, D.; Zhong, D.; Wang, Z.; Zhao, L.; Zhu, J. Identifying urban building function by

integrating remote sensing imagery and POI data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8864–8875. [CrossRef]
11. Dimassi, M.; Samhat, A.E.; Zaraket, M.; Haidar, J.; Shukor, M.; Ghandour, A.J. Buildings Classification using Very High Resolution

Satellite Imagery. arXiv 2021, arXiv:2111.14650.
12. Wurm, M.; Droin, A.; Stark, T.; Geiß, C.; Sulzer, W.; Taubenböck, H. Deep learning-based generation of building stock data from

remote sensing for urban heat demand modeling. ISPRS Int. J. Geo Inf. 2021, 10, 23. [CrossRef]
13. Xie, J.; Zhou, J. Classification of urban building type from high spatial resolution remote sensing imagery using extended MRS

and soft BP network. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2017, 10, 3515–3528. [CrossRef]
14. Sritarapipat, T.; Takeuchi, W. Building classification in Yangon City, Myanmar using Stereo GeoEye images, Landsat image and

night-time light data. Remote Sens. Appl. Soc. Environ. 2017, 6, 46–51. [CrossRef]
15. Jochem, W.C.; Tatem, A.J. Tools for mapping multi-scale settlement patterns of building footprints: An introduction to the R

package foot. PLoS ONE 2021, 16, e0247535. [CrossRef] [PubMed]
16. Yi, Y.; Zhang, Z.; Zhang, W.; Zhang, C.; Li, W.; Zhao, T. Semantic segmentation of urban buildings from VHR remote sensing

imagery using a deep convolutional neural network. Remote Sens. 2019, 11, 1774. [CrossRef]
17. Zheng, Y.; Weng, Q. Model-driven reconstruction of 3-D buildings using LiDAR data. IEEE Geosci. Remote Sens. Lett. 2015, 12,

1541–1545. [CrossRef]
18. Zhu, H.; Cai, L.; Liu, H.; Huang, W. Information extraction of high resolution remote sensing images based on the calculation of

optimal segmentation parameters. PLoS ONE 2016, 11, e0158585. [CrossRef]
19. Batty, M. Planning support systems: Progress, predictions, and speculations on the shape of things to come; CASA Working

Paper Series 122. In Proceedings of the Planning Support Systems for Urban and Regional Analysis, Cambrdige, MA, USA,
27–28 September 2007.

openstreetmap.org
land.copernicus.eu
zensus2011.de
http://doi.org/10.1016/j.compenvurbsys.2008.09.007
http://www.ncbi.nlm.nih.gov/pubmed/20047020
https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html?nn=3065474
https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html?nn=3065474
http://doi.org/10.1080/13658816.2022.2046756
http://doi.org/10.3390/rs9070679
http://doi.org/10.1016/j.isprsjprs.2015.03.011
http://doi.org/10.3390/rs6021347
http://doi.org/10.1177/2399808320921208
http://doi.org/10.1109/JSTARS.2021.3107543
http://doi.org/10.3390/ijgi10010023
http://doi.org/10.1109/JSTARS.2017.2686422
http://doi.org/10.1016/j.rsase.2017.04.001
http://doi.org/10.1371/journal.pone.0247535
http://www.ncbi.nlm.nih.gov/pubmed/33630905
http://doi.org/10.3390/rs11151774
http://doi.org/10.1109/LGRS.2015.2412535
http://doi.org/10.1371/journal.pone.0158585


Data 2022, 7, 45 22 of 23

20. Lu, Z.; Im, J.; Rhee, J.; Hodgson, M. Building type classification using spatial and landscape attributes derived from LiDAR
remote sensing data. Landsc. Urban Plann. 2014, 130, 134–148. [CrossRef]

21. Droin, A.; Wurm, M.; Sulzer, W. Semantic labelling of building types. A comparison of two approaches using Random Forest and
Deep Learning. Publik. DGPF 2020, 29, 527–538.

22. Jochem, W.C.; Bird, T.J.; Tatem, A.J. Identifying residential neighbourhood types from settlement points in a machine learning
approach. Comput. Environ. Urban Syst. 2018, 69, 104–113. [CrossRef]

23. Hartmann, A.; Meinel, G.; Hecht, R.; Behnisch, M. A workflow for automatic quantification of structure and dynamic of the
German building stock using official spatial data. ISPRS Int. J. Geo Inf. 2016, 5, 142. [CrossRef]

24. Yan, X.; Ai, T.; Yang, M.; Yin, H. A graph convolutional neural network for classification of building patterns using spatial vector
data. ISPRS J. Photogramm. Remote Sens. 2019, 150, 259–273. [CrossRef]

25. Beck, A.; Long, G.; Boyd, D.S.; Rosser, J.F.; Morley, J.; Duffield, R.; Sanderson, M.; Robinson, D. Automated classification metrics
for energy modelling of residential buildings in the UK with open algorithms. Environ. Plann. B Urban Anal. City Sci. 2020,
47, 45–64. [CrossRef]

26. Steiniger, S.; Lange, T.; Burghardt, D.; Weibel, R. An approach for the classification of urban building structures based on
discriminant analysis techniques. Trans. GIS 2008, 12, 31–59. [CrossRef]

27. Hecht, R.; Meinel, G.; Buchroithner, M. Automatic identification of building types based on topographic databases–a comparison
of different data sources. Int. J. Cartogr. 2015, 1, 18–31. [CrossRef]

28. Wurm, M.; Schmitt, A.; Taubenböck, H. Building types’ classification using shape-based features and linear discriminant functions.
IEEE J. Selected Topics Appl. Earth Observ. Remote Sens. 2015, 9, 1901–1912. [CrossRef]

29. Henn, A.; Römer, C.; Gröger, G.; Plümer, L. Automatic classification of building types in 3D city models. GeoInf. 2012, 16, 281–306.
[CrossRef]

30. Zhou, P.; Chang, Y. Automated classification of building structures for urban built environment identification using machine
learning. J. Build. Eng. 2021, 43, 103008. [CrossRef]

31. Wang, J.; Luo, H.; Li, W.; Huang, B. Building Function Mapping Using Multisource Geospatial Big Data: A Case Study in
Shenzhen, China. Remote Sens. 2021, 13, 4751. [CrossRef]

32. Zhuo, L.; Shi, Q.; Zhang, C.; Li, Q.; Tao, H. Identifying building functions from the spatiotemporal population density and the
interactions of people among buildings. ISPRS Int. J. Geo Inf. 2019, 8, 247. [CrossRef]

33. Sturrock, H.J.; Woolheater, K.; Bennett, A.F.; Andrade-Pacheco, R.; Midekisa, A. Predicting residential structures from open source
remotely enumerated data using machine learning. PLoS ONE 2018, 13, e0204399. [CrossRef]

34. Thomson, D.R.; Stevens, F.R.; Chen, R.; Yetman, G.; Sorichetta, A.; Gaughan, A.E. Improving the Accuracy of Gridded Population
Estimates in Cities and Slums to Monitor SDG 11: Evidence from a Simulation Study in Namibia. Preprints 2021, 2021070510.
[CrossRef]

35. Chen, W.; Zhou, Y.; Wu, Q.; Chen, G.; Huang, X.; Yu, B. Urban building type mapping using geospatial data: A case study of
beijing, china. Remote Sens. 2020, 12, 2805. [CrossRef]

36. Forget, Y.; Linard, C.; Gilbert, M. Supervised classification of built-up areas in sub-Saharan African cities using Landsat imagery
and OpenStreetMap. Remote Sens. 2018, 10, 1145. [CrossRef]

37. Fan, H.; Zipf, A.; Fu, Q. Estimation of building types on OpenStreetMap based on urban morphology analysis. In Connecting a
Digital Europe Through Location and Place; Springer: Berlin/Heidelberg, Germany, 2014; pp. 19–35.

38. Bast, H.; Storandt, S.; Weidner, S. Fine-grained population estimation. In Proceedings of the 23rd SIGSPATIAL International
Conference on Advances in Geographic Information Systems, Seattle, WA, USA; 2015; pp. 1–10.

39. Haklay, M.; Weber, P. Openstreetmap: User-generated street maps. IEEE Perv. Comp. 2008, 7, 12–18. [CrossRef]
40. OSM. © Openstreetmap Contributors, Open Data Commons Open Database License (ODbL). Available online: https://www.

openstreetmap.org/copyright (accessed on 10 March 2019).
41. Corine-Land-Cover. CLC 2018. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=

download (accessed on 31 August 2020).
42. Urban-Atlas. Building Height 2012. Available online: https://land.copernicus.eu/local/urban-atlas/building-height-2012

(accessed on 31 August 2020).
43. Geofabrik. OpenStreetmap Data Download. Available online: https://download.geofabrik.de/europe/germany.html (accessed

on 10 March 2019).
44. OSMOSIS. OSMOSIS—A Command Line Java Application for Processing OSM Data. Available online: http://wiki.

openstreetmap.org/wiki/Osmosis (accessed on 10 March 2019).
45. osm2pgsql. Osm2pgsql—An OSM Data Importer for Postgis Databases. Available online: https://osm2pgsql.org/ (accessed on

10 March 2019).
46. BKG. Federal Agency for Cartography and Geodesy. Available online: https://www.bkg.bund.de/EN/Home/home.html

(accessed on 30 October 2020).
47. Wikimedia. Category: Buildings and Structures in Germany by Type. Available online: https://en.wikipedia.org/wiki/Category:

Buildings_and_structures_in_Germany_by_type (accessed on 1 September 2020).
48. Hwang, U.; Jung, D.; Yoon, S. Hexagan: Generative adversarial nets for real world classification. In Proceedings of the

International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 2921–2930.

http://doi.org/10.1016/j.landurbplan.2014.07.005
http://doi.org/10.1016/j.compenvurbsys.2018.01.004
http://doi.org/10.3390/ijgi5080142
http://doi.org/10.1016/j.isprsjprs.2019.02.010
http://doi.org/10.1177/2399808318762436
http://doi.org/10.1111/j.1467-9671.2008.01085.x
http://doi.org/10.1080/23729333.2015.1055644
http://doi.org/10.1109/JSTARS.2015.2465131
http://doi.org/10.1007/s10707-011-0131-x
http://doi.org/10.1016/j.jobe.2021.103008
http://doi.org/10.3390/rs13234751
http://doi.org/10.3390/ijgi8060247
http://doi.org/10.1371/journal.pone.0204399
http://doi.org/10.20944/preprints202107.0510.v1
http://doi.org/10.3390/rs12172805
http://doi.org/10.3390/rs10071145
http://doi.org/10.1109/MPRV.2008.80
https://www.openstreetmap.org/copyright
https://www.openstreetmap.org/copyright
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download
https://land.copernicus.eu/local/urban-atlas/building-height-2012
https://download.geofabrik.de/europe/germany.html
http://wiki.openstreetmap.org/wiki/Osmosis
http://wiki.openstreetmap.org/wiki/Osmosis
https://osm2pgsql.org/
https://www.bkg.bund.de/EN/Home/home.html
https://en.wikipedia.org/wiki/Category:Buildings_and_structures_in_Germany_by_type
https://en.wikipedia.org/wiki/Category:Buildings_and_structures_in_Germany_by_type


Data 2022, 7, 45 23 of 23
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