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Abstract: This article presents experimental data and nonlinear finite element analysis (NLFEA)
modeling for an innovative buckling restrained bracing (BRB) system. The data were collected from
qualification testing of introduced BRBs per the AISC 341 test provision and finite element modeling.
The BRB is made of three parts: core bar, restraining unit, and end units, in which duplicates of
three different core bar cross sections (i.e., fully threaded, threaded notched, and smooth shaved)
were tested. The BRBs introduced in this research come with innovative end parts, so-called fingers.
These fingers provide the longitudinal gap required in every BRB system and simultaneously prevent
buckling of the core bar at the end regions at both ends of the BRB sample, thus facilitating an easy
core replacement if it gets damaged in the event of an earthquake. The measured parameters were the
applied cyclic load and the corresponding displacement. Analysis of the acquired data illustrated an
almost symmetric hysteric behavior with a little higher capacity under compression but a noticeable
overall ductility of 4. Moreover, finite element modeling data for one type of core bar (fully threaded)
were curated. The data presented in this paper will be valuable for fabricating BRBs in practice and
further research on the topic considered.

Dataset: http://doi.org/10.5281/zenodo.6795612.

Dataset License: Creative Commons Attribution 4.0 International.

Keywords: seismic retrofitting; buckling; cyclic loading; qualification testing; stiffness; nonlinear
finite element analysis (NLFEA)

1. Summary

The existence of buildings in earthquake-prone regions without adequate seismic
detailing has always been a matter of concern. Researchers and industry professionals
have proposed and implemented various retrofitting methods to overcome such concerns.
For instance, conventional steel-braced frames (CSBFs) are used to improve the seismic
load resistance of buildings. However, such braces mainly fail due to flexural bucking,
which implies large cross-sections. The alternative with improvement to this method
is the use of a buckling-restrained bracing (BRB) system that exhibits almost symmetric
compression-tension load resisting capacity. Japan was one of the first places where
BRBs were constructed. BRBs provide a significant energy dissipation mechanism in the
occurrence of an earthquake. BRBs are mainly constructed of three components: a core (i.e.,
to resist the applied load), a restraining part (i.e., to restrain the core from buckling under
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compression), and end hinges (i.e., to facilitate the installation of BRB). Many researchers
investigated the behavior of different types of BRBs with regard to the core material
and cross-section [1–8]. The current research focuses on proposing an innovative BRB
system and investigating its behavior under cyclic loading protocol as per the AISC 341
qualification test [9].

The BRBs introduced in this research come with innovative end parts, so-called fingers.
The fingers allow the interior core steel bar to elongate and shorten while maintaining
continuous lateral support against buckling without internal longitudinal gaps. This is
the essential difference between the proposed BRB and conventional BRB systems, where
internal gaps are required in the non-yielding zone (middle part) to facilitate the shortening
of the core under compression. These fingers provide the longitudinal gap required in
every BRB system and simultaneously prevent buckling of the core bar at the end regions,
thus facilitating an easy core replacement if it gets damaged in the event of an earthquake.

The experimental and finite element modeling data obtained and presented in this
paper investigate the behavior of buckling-restrained braces (BRBs) that can be used in
designing and manufacturing BRBs for employment in seismic deficient structures. The
data were extracted from laboratory experiments and finite element modeling results,
which are discussed in detail by authors in a research manuscript titled Replaceable Fuse
Buckling-Restrained Brace (BRB): Experimental Cyclic Qualification Testing and NLFEA
Modeling [10]. The experiments were conducted on small-scale buckling-restrained braces
(BRBs) using an Instron hydraulic actuator. Proper instrumentations such as linear variable
displacement transducers (LVDTs) and strain gauges were used during cyclic loading. The
BRB specimens were tested under cyclic loading in a displacement control mode with a
0.25 mm/s loading rate. The parameters collected were the load and displacement (stroke).
Nonlinear finite element modeling was performed using commercial software (ABAQUS).

Researchers conducting experimental, analytical, and numerical studies on the behav-
ior of BRBs during extreme events will benefit from the data presented in this paper. In
addition, the designers and engineers will find the experimental data very useful when
dealing with rehabilitating seismic deficient structures. The experimental data presented in
this paper can be easily replicated for other BRB lengths/types for practical and research
purposes. The BRB has innovative end units called fingers, ensuring full restraining to
the core bar along its length. The presented data can be further explored with different
material types of core bars and diameters for the proposed BRB. Moreover, the nonlinear
finite element analysis (NLFEA) model presented herein can be a good source of additional
parametric investigation.

2. Data Description

The presented data in this article were experimentally acquired and modeled using
the finite element method. A total of six BRBs (i.e., duplicates of three types of BRB core
bars) were tested experimentally and verified numerically. Specific labeling was used to
designate each BRB type. Three core bars were used in the tested BRBs: fully-threaded,
threaded-notched, and smooth-shaved, as shown in Figure 1. The specimens are labeled
according to their core bar type, and diameter, i.e., BRB-12-Th stands for a full threaded core
bar diameter of 12 mm (Figure 1a), the threaded notched type was labeled BRB-12-Th-Nd
(Figure 1b), and the smooth shave one was labeled BRB-12-Sh (Figure 1c).

The core bar total lengths were 1320 mm for the three types of cross sections: fully
threaded along the length, fully threaded but notched in the yielding region (notching
of 660 mm in the middle), and smooth bar but shaved in the yielding region (shaving of
660 mm in the middle). The core bars were made of stainless steel (SS) with a diameter
of 12 mm. After notching, the yielding area reduced to 49 mm2; the non-reduced region
remained at 79 mm2; while the smooth shaved bar was 113 mm2 and 50 mm2, respectively.
The buckling restraining unit (outer case) was composed of an inner hollow steel pipe
(inside diameter of 13 mm) and an outer steel pipe (inside diameter of 77.9 mm). The
gap between the inner and outer pipes was filled with cement grout. In addition, the end
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units include the hinges and an innovative part called fingers. Fingers are provided to
facilitate the core bar’s compression–tension loading without transferring the load to the
restraining unit.
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Figure 1. Core bars details: (a) BRB-12-Th; (b) BRB-12-ND; and (c) BRB-12-Sh (lengths in mm).

Moreover, these fingers provide lateral support for the core bar at both ends longitudi-
nally. In comparison, hinges were designed to connect the BRB in the testing facility. These
are required to install the BRB into the structure in practice. Figures 2 and 3 illustrate the
BRB components and the assembly of those components, respectively.
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Figure 2. Schematic layout of the introduced BRB (half side, dimensions are in mm).
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Figure 3. Process of assembling the BRB.

Further details of the tested BRBs are included in the Excel file sheet called restraining
unit and core bar details. The worksheet provides details of the BRB components (i.e.,
core bar, restraining unit, and innovative end units). The dimensions and strength of the
materials were obtained from coupon tests.

In addition, the experimental data are presented in the Excel file sheets labeled hys-
teresis, one for each type of BRB. The Excel sheets provide the cyclic loading data and plots
showing the hysteresis behavior of the tested BRBs. Figure 4 illustrates the experimen-
tal displacement amplitude cycles versus time and the hysteretic axial load versus axial
displacement response for the threaded core bar BRB-12-Th.

Moreover, separate tabs in the Excel spreadsheet were created and labeled as stiffness
and energy dissipation. The analytical data extracted from the experimental data are
represented in the sheet labeled stiffness with the secant stiffness versus displacement
plot for the push–pull cycles (compression–tension). The secant stiffness is calculated
by dividing the axial force by the corresponding displacement in the test protocol. At a
displacement of 4 mm; BRB-12-Th exhibited the highest secant stiffness of 5.8 kN/mm. In
addition, the sheet labeled energy dissipation shows the cumulative energy dissipated in
kN.mm. The energy dissipation is calculated by finding the cumulative area under the
hysteresis curves divided by the corresponding number of cycles. BRB-12-Th dissipated
the highest amount of energy (12,412 kN·mm). The core bar’s ultimate elongation capacity
in tension and compression was 2.6% strain.
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Figure 4. Experimental response of the threaded core bar: (a) displacement cycles amplitude and
(b) load–displacement behavior.

3. Experimental Design, Materials, and Methods

A total of six BRBs were fabricated and tested experimentally, and one of them
(threaded bar type) was modeled using the NLFEA method. The BRBs were designed
to a 1/3 scale of an actual size BRB to fit the laboratory testing facility. The tested BRBs
consisted of three main parts: core bar, restraining unit, and end units. Traditionally, BRBs
have the above-mentioned three main components, with different designs and materials as
per the literature [1–8,11].
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The BRBs were tested according to the AISC 341 [9] qualification test. The qualification
test requires a BRB to resist an accumulative inelastic deformation of 200 ∆by before failure.
The BRBs were tested under uniaxial cyclic loading in a displacement control mode using
an Instron hydraulic actuator shown in Figure 5. The figure shows a BRB ready to be tested
with the proper data collection and monitoring instrumentation. A displacement–control
loading was utilized at a rate of 0.25 mm/s until the passing criteria or the BRB failure were
observed. During the test, the BRB went under push–pull cycles of different amplitude
(deformation) as per the AISC standard. The core bar is extended in the pull cycle, and
no load is transferred to the outer case. Similarly, in the push cycle, only the core bar
gets compressed without engaging the outer case in compression, and the novel end units
facilitate this mechanism. The outer case is provided only to prevent buckling of the core
bar when in compression. The tested BRBs failed in tension after experiencing necking
in addition to plastic deformation in the form of local buckling under compression. The
all-through threaded bar’s ductility and energy dissipation were higher than the smooth
shaved bar. The Excel file sheets labeled hysteresis provide the load levels, actuator loads,
and corresponding deformation details. For further insight into the behavior of the tested
BRBs, the reader may refer to the related technical article [10].
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Figure 5. Manufactured BRB and testing setup.

4. NLFEA Modeling, Assumptions, and Results

The finite element method can be rather valuable when simulating a physical behavior,
reducing time, cost, and resources that would otherwise be spent on recreating an actual
experiment [12].

The commercial software ABAQUS [13] was used to create the finite element (FE)
model and simulate the behavior of the threaded-bar BRB. The model was refined to
obtain the results reported in the Excel file. The FE results were highly comparable to the
experimental results.

The 3D FE model was created, and the materials’ properties were assigned to the
model parts based on the experimental part specifications. Subsequently, the BRB parts
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were assembled, and the boundary conditions were applied to represent the experimental
testing setup. A reference point was created on each BRB end, coupled to the respective
surfaces. The first reference point was used to apply the displacement loading protocol,
while the other endpoint was fixed completely to prevent movement in all directions and
obtain the reaction force. The FE model parts and the corresponding experimental parts
are shown in Figure 6.
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The core bar had a nominal diameter of 12 mm, including the threads, and the net
tensile area was determined based on Equation (1).

Core Bar Net Tensile Area = 0.7854 ×
(

db − 0.9382
n

)2
(1)

where db = nominal bolt shank diameter (mm) and n = number of threads/mm.
The net tensile area was calculated to be 80.5 mm2, and the diameter of the bar used in

the FE model was 10 mm. Moreover, the element type for all the 3D parts was assigned
a hexahedral element with eight nodes of reduced integration (C8D3R). In this case, the
integration point lies in the element’s centroid. This research used the enhanced hourglass
control approach to alleviate the effect of using under-integrated elements that appear as
nonphysical and zero-energy deformations [14–17]. Using this element type is possible
even for thin-walled HSS sections because they were merged with other parts, and more
importantly, the bending behavior is dominant in this instance, and 3D elements can
represent the stresses better than shell elements.

Additionally, the model accounted for the geometric nonlinearities by conducting a
buckling analysis in a separate model to identify the buckling modes (deformed shapes).
This was done by choosing the linear perturbation procedure and selecting “Buckle.”
Consequently, the first buckling mode was used to create imperfection in the geometry in
the initial analysis step and before applying the load.

The material linear and nonlinear properties used in the FE model were obtained
from the coupon tests associated with the experimental program. All material properties
and modeling parameters can be found in the excel file under the “Modeling properties”
tab. The concrete damage plasticity parameters were mainly obtained from the available
literature [14] and are presented in Table 1.
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Table 1. Concrete damage plasticity (CDP) model parameters.

Dilation Angle Eccentricity Fb0/Fc0 K Viscosity Parameter

36 0.1 1.16 0.667 1 × 10−5

It is worth mentioning that all engineering stress–strain curves were converted to true
stress–strain curves using Equations (2) and (3), as the NLFEA procedures require them.

σtrue = σeng (1 + εeng) (2)

εtrue = ln(1 + εeng) (3)

where, σtrue = true stress value (kN/mm2), σtrue = engineered stress value (kN/mm2),
εeng = engineered strain value, and εtrue = true strain value.

However, for the plastic behavior of the steel parts, isotropic hardening was chosen,
except for the core bar, where combined hardening was used. Hence, C1 and γ1 were taken
as 6.5 GPa and 90, respectively.

Lastly, owing to many factors, quasi-static analysis was also conducted to simulate the
experiment using the Explicit solver in ABAQUS [18,19]. To ensure that the ratio of kinetic
energy to internal energy is below 5%, an appropriate time step and mass scale factor (MSF)
were carefully chosen. Their respective values were chosen, so the effects of the inertial
forces were canceled. The best combination of time and MSF was evaluated to be at a time
period of 50 s and a scale to a target time increment of 0.00001 s.

Further, mesh sensitivity analysis was conducted to determine the optimal mesh
size required to obtain the best possible results without compromising the hardware
performance. Based on the comparison of the dissipated energy in the experimental and
FE results (as shown in Figure 7), a 10 mm mesh size was selected.

Figure 7. Mesh sensitivity analysis.

The results obtained from the refined model agreed with the experimental results, as
shown in Figure 8, and these results can be found in the Data file under the tab FE model
results threaded (TH).
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Figure 8. NLFEA results vs. experimental results.

It can be noticed that the NLFEA results are a little off the experimental results in the
top-left and bottom-right corners. This can be attributed to the fact that the FE simulation
was run for one cycle while the physical experiment ran for many cycles [10]. It is worth
noting that required computational resources were a prohibitive obstacle when attempting
to model all cycles. This is attributed to the explicit dynamic formulation and the fine mesh
necessary to achieve acceptable agreement between the numerical and experimental results.

Lateral loads usually cause damage to structural elements, resulting in the need for
rehabilitation. Hence, this innovative BRB system provides a feasible solution for many
structural applications, e.g., [20–24]. Moreover, it significantly improves numerous aspects
of structural behavior, as described in [25–46]. Furthermore, cost benefits were reported for
several seismic applications [47–58].

The experimental results indicated that the introduced innovative BRB system suc-
cessfully passed the AISC 341 prescribed qualification test protocol. The two successful
core bars were the smooth shaved bar in the middle and the all-through threaded bar with
a cumulative deformation of 267 ∆by and 218 ∆by, respectively, before failure. It is worth
noting that the experimental and FEA data contained in this manuscript are illustrative
samples. The complete dataset is available to the reader in an open-access repository [59].
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