
data

Data Descriptor

Indoor Environment Dataset to Estimate Room Occupancy

Andreé Vela , Joanna Alvarado-Uribe and Hector G. Ceballos *

����������
�������

Citation: Vela, A.; Alvarado-Uribe, J.;

Ceballos, H.G. Indoor Environment

Dataset to Estimate Room Occupancy.

Data 2021, 6, 133. https://doi.org/

10.3390/data6120133

Academic Editors: Aleksandr

Ometov and Joaquín Torres-Sospedra

Received: 14 September 2021

Accepted: 5 November 2021

Published: 13 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico; miami@tec.mx (A.V.);
joanna.alvarado@tec.mx (J.A.-U.)
* Correspondence: ceballos@tec.mx

Abstract: The estimation of occupancy is a crucial contribution to achieve improvements in en-
ergy efficiency. The drawback of data or incomplete data related to occupancy in enclosed spaces
makes it challenging to develop new models focused on estimating occupancy with high accuracy.
Furthermore, considerable variation in the monitored spaces also makes it difficult to compare
the results of different approaches. This dataset comprises the indoor environmental information
(pressure, altitude, humidity, and temperature) and the corresponding occupancy level for two
different rooms: (1) a fitness gym and (2) a living room. The fitness gym data were collected for
six days between 18 September and 2 October 2019, obtaining 10,125 objects with a 1 s resolution
according to the following occupancy levels: low (2442 objects), medium (5325 objects), and high
(2358 objects). The living room data were collected for 11 days between 14 May and 4 June 2020,
obtaining 295,823 objects with a 1 s resolution, according to the following occupancy levels: empty
(50,978 objects), low (202,613 objects), medium (35,410 objects), and high (6822 objects). Additionally,
the number of fans turned on is provided for the living room data. The data are publicly available
in the Mendeley Data repository. This dataset can be used to train and compare different machine
learning, deep learning, and physical models for estimating occupancy at enclosed spaces.

Dataset: 10.17632/kjgrct2yn3.3.

Dataset License: CC BY 4.0.

Keywords: occupancy estimation; environmental variables; enclosed spaces; indirect approach

1. Introduction

The acceleration of the harmful effects of climate change and the potential impact
of occupancy information in energy efficiency have caused the increasing interest of re-
searchers in the field of occupancy detection and estimation in the last decade [1–4]. Within
this field, indirect approaches (based on indoor environmental information) have prevailed
over direct approaches (based mainly on cameras) as viable alternatives for occupancy
detection since the latter present high implementation cost and intrusion problems of
privacy [4–8]. Therefore, much of the specialized literature that can be found nowadays
presents solutions based on indirect approaches.

However, it is worth noting that despite this growing attention, few datasets suitable
for research and development of indirect occupancy approaches can be found that are
publicly accessible and well documented. Some of these datasets are hosted in non-
specialized repositories for data storage (e.g., GitHub), with little or no description of the
collected data [9]. Others include minimum occupancy information (detection only) [10,11]
or no information regarding the ground truth occupancy [12]. This incompleteness of
information is aggravated when the methodology with which the data were collected
is considered. The methodology is a critical factor since essential decisions are made
consciously or unconsciously when designing the collection: the selection of collection sites,
the use and ventilation characteristics of the collection site, the outdoor climatic conditions,
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the rules used to establish occupancy levels (if applicable), the location of the sensor in the
monitored space, among others.

Ignoring these characteristics makes it difficult for researchers to compare the results
of their models with those of the literature. Another trend found in occupation-related
work is the use of datasets of own elaboration [4–6,8,13,14]. However, the same drawbacks
mentioned above, in addition to the differences in the type and number of devices used,
physical characteristics of the spaces (e.g., size and sources of external ventilation), and
poor accessibility to the data, prevent a direct comparison among works [15].

Because of these, reference datasets are identified as a priority need to improve
research development in the field of occupational information. These datasets allow an
objective comparison between models/approaches that address occupancy estimation by
removing possible sources of variation and noise that affect the results. Likewise, these
datasets should include different indoor environmental variables and the highest possible
occupancy resolution to allow researchers to develop various models depending on the
specific problem to be attacked (detection, estimation, and identification of the activity
carried out).

On the one hand, Shen et al. propose four levels for the resolution of occupation [16]:
(1) binary (empty or not), (2) counting (how many people), (3) identity (who they are), and
(4) activity (what are they doing). On the other hand, Jiang et al. [14] and Yuan et al. [4] used
a similar approach. They defined a class that represents the empty level and distributed
the amount of occupancy observed in proportional ranges. In the proposed dataset, a
combination of levels 1 and 2 is proposed for the occupancy dimension with four discrete
levels, as Jiang et al. [14] and Yuan et al. [4] proposed: empty (E), low (L), medium (M),
and high (H). The empty level corresponds to the absolute absence of people, while low,
medium, and high levels are fixed ranges with respect to the room’s capacity. That is, the
low level is between 1% and 33% of the room’s capacity; the medium level is between 34%
and 66%; and the high level is above 67%.

Therefore, this data descriptor contributes to the goal of having a reference dataset
by presenting a dataset on indoor environmental variables and information related to the
occupation of two different rooms. These data were collected for the occupancy estimation
research presented in Vela et al. [17]; they are now described in greater detail and are freely
available to researchers and the general public through the Mendeley Data open data
repository. Furthermore, due to the contrasting characteristics of the enclosed spaces used
in the collection (e.g., design use of the spaces, type of ventilation, and size), this dataset
is a valuable contribution to the field of occupancy information. Such a contribution will
allow further development of high-accuracy models and hence, reduce energy waste.

The rest of this document is organized as follows. Section 2 provides the description
of the datasets generated. Then, Section 3 addresses the methodology carried out to
collect and preprocess the proposed datasets, mentioning the materials and methods used.
Subsequently, Section 4 presents an exploratory analysis of the datasets. Finally, Section 5
gives the conclusions.

2. Data Description

This dataset was generated as part of efforts for a previous research publication [17].
The data collected belong to two different enclosed spaces. The first one corresponds to
a fitness gym for employees from Tecnologico de Monterrey in Mexico. The collection
was carried out between 18 September and 2 October 2019, obtaining 10,125 objects using
a 1 s resolution, which is equivalent to 169 min of recorded data. Observed occupancy
level corresponds either to low (2442 objects), medium (5325 objects), or high (2358 objects).
Table 1 describes the attributes and their measure unit for the fitness gym data.

The second enclosed space corresponds to a living room in a private residence located
in Monterrey, Nuevo Leon, Mexico. The collection was carried out between 14 May
and 4 June 2020, obtaining 295,823 objects using a 1 s resolution. This is equivalent to
4931 min of recorded data. Unlike the previous room, the occupancy level was registered
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using four levels instead of three. Those levels correspond to empty (50,978 objects), low
(202,613 objects), medium (35,410 objects), and high (6822 objects). The rest of the attributes
are the same as those recorded for the fitness gym. In addition, two extra attributes
were collected: the number of fans turned on (ven), and the exact number of people
observed (occ_int). Table 2 summarizes the attributes added and updated (occ) for the
living room data.

Table 1. Fitness gym attributes description.

Attribute Unit Description

date date-time Recording date and time
pre hecto-pascal Barometric presssure
alt meters Relative altitude from sea level
hum percentage Relative humidity
tem celcius Temperature
occ L, M, H Occupancy Level

Table 2. Living room added and updated attributes’ description.

Attribute Unit Description

ven integer Number of fans turned on
occ_int integer Exact number of occupants
occ E, L, M, H Occupancy Level

Furthermore, for each room, eight datasets were generated by varying the time res-
olution and the sampling method. The resolutions used are 10 s, 30 s, 1 min, and 5 min.
The sampling methods comprise taking a single sample for each time frame, and aver-
aging all the samples within the time frame. The attributes for each dataset are those of
the dataset from which they were generated. For the case of the averaged datasets, the
data within the resolution’s time frame were used to calculate the standard deviation and
kurtosis for indoor environmental attributes. Table 3 describes the additional attributes
for the averaged datasets, and Table 4 summarizes the number of instances generated for
each resolution and occupancy level. Only one table is presented for the combinations of
resolution and enclosed spaces, as the number of instances generated is the same regardless
of the sampling strategy used (single-sample or averaged).

Table 3. Additional attributes generated for averaged datasets.

Attribute Unit Description

pre_mean hecto-pascal (float) Average pressure within the time-frame
pre_std hecto-pascal (float) Pressure’s standard deviation
pre_kur (float) Pressure’s kurtosis
alt_mean meters (float) Average altitude within the time-frame
alt_std meters (float) Altitude’s standard deviation
alt_kur (float) Altitude’s kurtosis
hum_mean percentage (float) Average humidity within the time-frame
hum_std percentage (float) Humidity’s standard deviation
hum_kur (float) Humidity’s kurtosis
tem_mean celcius (float) Average temperature within the time-frame
tem_std celcius (float) Temperature’s standard deviation
tem_kur (float) Temperature’s kurtosis
ven_mean fans (int) Average number of fans turned on
occ_int_mean people (int) Average number of occupants
occ_mode E,L,M,H Mode of the occupancy level
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Table 4. The number of objects per dataset using different time resolutions.

Resolution Total Amount Amount Per Occupancy Level

Empty Low Medium High

Living room

10 s 29,751 5127 20,375 3561 688
30 s 9924 1710 6796 1188 230
1 min 4969 856 3403 595 115
5 min 1005 173 687 122 23

Fitness gym

10 s 1027 N/A 247 541 239
30 s 350 N/A 84 185 81
1 min 180 N/A 43 96 41
5 min 44 N/A 10 24 10

3. Materials and Methods
3.1. Collection Device

A device was assembled specifically to collect indoor environmental data. The device
is composed of a BME280 humidity sensor [18] from Bosh and a ESP32 microcontroller
from Espresiff [19].

Firstly, the BME280 sensor [18] is a low-cost, low-energy consumption sensor designed
for several applications, such as internet of things, enclosed navigation, fitness monitoring,
home automation, and meteorological monitoring. This sensor allows measuring the
relative humidity (%), temperature (◦C), atmospheric pressure (hPa), and altitude (m). The
sensor ranges and accuracy are as follows: pressure 300 to 1100 hPa (±1 hPa accuracy),
temperature −40 to 85 ◦C (±1 ◦C accuracy), relative humidity 0% to 100% (±3% accuracy),
and altitude from 0 ft to 30,000 ft (±1 m accuracy).

Secondly, the ESP32 controller [19] is a low-cost, low-energy consumption controller
with wireless connectivity, i.e., Wi-Fi and Bluetooth. It supports the security standards
WPA and WPA2, which makes it able to connect to modern wireless networks, and has a
dual-core 32-bit 160 MHz processor and 520 KiB of static random access memory (SRAM).
The ESP32 controller was in charge of collecting the data captured by the BME280 sensor
and sending them (1) to a laptop through a USB port, or (2) to a DynamoDB server in
Amazon Web Services.

3.2. Data Collection

Two collections were performed. The first one was in a fitness gym and the second
one in a living room of a private residence. These rooms were selected because of their
contrasting indoor environment characteristics and design use: (1) the fitness gym is a
bigger space with air conditioning (A.C.) units turned on 24 h, which is designed for the
specific purpose of performing high intensity (aerobic and anaerobic) activities; (2) the
living room is considerably smaller in size, has multiple fans and an A.C. unit, which are
sparsely turned on, and is designed to relax or perform low-intensity activities. Table 5
provides a description of the main characteristics of the two rooms used for data collection.
These differences are key to building a variety of models that are resistant to different
indoor environmental conditions.
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Table 5. Fitness gym and living room main characteristics.

Characteristic Fitness Gym Living Room

Size/Dimension 30 × 20 m 8 × 4 m
Maximum Capacity 80 people 7 people
Collection period September–October 2019 May–June 2020
Airing A.C. units A.C. unit & Ceiling fan
Occupancy Levels Low, Medium, High Empty, Low, Medium, High
Variables date, pre, alt, hum, tem, occ date, pre, alt, hum,

tem, ven, occ_int, occ
Data objects 10,125 295,823

3.2.1. Fitness Gym

The monitored space corresponds to the employees fitness gym of the Tecnologico de
Monterrey in Mexico. The facility has A.C. units turned on 24 h. Figure 1 shows a picture
of the cardio zone of this fitness gym.

The collection was carried out for six days between 18 September and 2 October
2019. The data were measured every second in 21 min periods of average duration at
three different times of the day: morning, afternoon, and night. The exact date, period,
and duration of the measurements are shown in Table 6. These schedules correspond
to the periods of highest human traffic reported by the gym’s manager. Furthermore,
in this scenario, data were collected only during working hours, as suggested in other
research [20,21].

Table 6. Summary of measurement dates, periods, and duration in the fitness gym.

Date Period Duration

2019-09-18 19:04:00–19:24:58 00:20:58
2019-09-23 13:47:00–14:07:59 00:20:59
2019-09-23 17:33:00–17:53:59 00:20:59
2019-09-24 11:42:00–12:04:58 00:22:58
2019-09-24 15:56:00–16:17:09 00:21:09
2019-09-24 19:00:00–19:20:48 00:20:48
2019-09-25 12:06:00–12:27:03 00:21:03
2019-10-01 11:24:00–11:44:27 00:20:27
2019-10-02 20:28:00–20:48:58 00:20:58

Figure 1. Picture of the fitness gym’s cardio zone.
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Due to the space layout and privacy issues, it was not possible to use support equip-
ment (cameras and other sensors) to register the exact number of people in the place. Thus,
the level of occupation (low, medium, high) in the fitness gym was registered manually by
the person responsible for the collection.

3.2.2. Living Room

The data were collected from the living room of a residential building. The space
dimensions are approximately 8 × 4 m. In addition, the space has an A.C. unit, a ceiling
fan, and sometimes, a floor fan, installed by the occupants when needed. The space lacks
windows or another source of natural ventilation besides the door. To place the sensor
device, a location was considered where the sensor would not have direct contact with the
air-flow coming from the A.C. unit when it was turned on. A sketch of the living room is
shown in Figure 2.

The collection was carried out for 11 days between 14 May and 4 June 2020. The
measurements were taken every second in five-hour periods of average duration. The exact
date, period, and duration of the measurements are shown in Table 7. This long period of
duration allowed the inclusion of nocturnal data. In this scenario, the ground truth was
obtained by using a camera to take photos every 10 min, and one person manually labeled
the dataset with the exact number of people in the living room. The webcam used for this
purpose was placed on a table in a corner of the living room in order to have a full view of
the area (upper right corner in Figure 2). A minimum of zero occupants and a maximum of
seven were observed.

Figure 2. Sketch of the living room. The locations of the environmental sensor, ceiling fan, and AC
unit are shown. The monitored area is approximately 32 m2 [17].
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Table 7. Summary of measurement dates, periods, and duration in the living room.

Date Period Duration

2020-05-14 21:08:39–23:59:59 02:51:20
2020-05-15 00:00:00–01:00:12 01:00:12
2020-05-24 11:45:28–13:09:12 01:23:44
2020-05-25 15:49:52–23:59:59 08:10:07
2020-05-26 00:00:00–06:56:31 06:56:31
2020-05-26 10:53:38–11:30:17 00:36:39
2020-05-26 23:38:33–23:59:59 00:21:26
2020-05-27 00:00:00–10:00:47 10:00:47
2020-05-28 01:08:30–13:06:45 11:58:15
2020-05-28 23:19:00–23:59:59 00:40:59
2020-05-29 00:00:00–08:33:11 08:33:11
2020-05-31 19:00:00–20:09:14 01:09:14
2020-06-01 01:44:48–13:02:04 11:17:16
2020-06-04 01:49:32–16:01:39 14:12:07
2020-06-04 18:05:07–23:08:59 05:03:52

3.3. Data Cleaning

The datasets were exported from a cloud storage as CSV files. In the case of the living
room, the indoor environmental data and the ground truth were stored in separate files.
Due to technical issues with the camera, i.e., storage limitations, small periods of missing
values were found for the ground truth. These periods accounted for less than 1% of the
data, and hence, they were removed. Likewise, the rest of the attributes of both enclosed
spaces (fitness gym and living room) were checked for missing values, finding only six
affected records. These missing values were completed, using the average value of the
previous and next instances.

3.4. Establishing the Occupancy Levels

Two strategies were found in the specialized literature to estimate occupancy: (1) es-
timating the exact number of occupants and (2) estimating based on ranges. Estimating
occupancy using an approach based on levels reduces the final cost of the solution while
maintaining a high accuracy [14]. Hence, occupancy levels were established for the col-
lected data.

From the reviewed works, only Zhoe et al. [8] used an exact number approach. How-
ever, the maximum occupancy observed was four people, which is considered small,
compared to the real-life applications where occupancy detection can be used (such as
offices, fitness gyms, shopping malls, residential buildings, and public buildings). The rest
of the works used a proportional ranges approach. However, some variations were found
in the method to implement the ranges. For example, Viani et al. [5] used four proportional
classes to estimate occupancy, i.e., the lowest level ranges from 0% to 25% of the maximum
occupancy (which is unspecified). Hence, there is not a class that represents when the space
is empty. Adeogun et al. [13] used only three classes as follows: one class that represents
when the space is empty, one class that represents when there is precisely one person,
and one class that represents when there are two to four people. Therefore, the last class
grouped the rest of the occupants because observing three or four people was uncommon
and considered outlier observations. Finally, Jiang et al. [14] and Yuan et al. [4] used a
similar approach. They defined a class that represents the empty level and distributed the
amount of occupancy observed in proportional ranges. Table 8 presents the summary of
the reviewed works.

For the case of the living room, the levels were established taking proportional inter-
vals between the maximum and the minimum number of people observed, as described
in [4]. Hence, since the maximum number of people recorded was seven, the occupancy
levels were established as follows: empty (0), low (1–2), medium (3–5), and high (6–7).
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For the case of the fitness gym, as mentioned in Section 3.2.1, the occupancy levels
were registered directly by the person responsible for the collection. These levels are low
(L), medium (M), and high (H). Since the collection was carried out during the busiest
hours, the data do not contain periods corresponding to empty occupancy.

Table 8. Summary of the literature reviewed to establish the occupancy levels.

Author Technique Ranges Scenario

Viani et al. [5] Proportional
ranges 4 classes (25%) Multi-floor monitoring

in a museum

Adeogun et al. [13] Proportional
ranges

C1 (N = 0)
C2 (N = 1)
C3 (N ≥ 2)

Two offices in a
university building

Zhou et al. [8] Exact number From 0 to 4 Office space
of a laboratory

Jiang et al. [14] Proportional
ranges

C1 (N = 0)
C2 (9 ≥ N ≥ 1)

C3 (18 ≥ N ≥ 10)
C4 (28 ≥ N ≥ 19)

Office space
of a laboratory

Yuan et al. [4] Proportional
ranges

C1 (N = 0)
C2 (2 ≥ N ≥ 1)
C3 (4 ≥ N ≥ 3)
C4 (7 ≥ N ≥ 5)

Office space
of a laboratory

3.5. Generating Datasets with Different Resolutions

For each original collection data, additional datasets were generated using the follow-
ing resolutions: 10 s, 30 s, 1 min, and 5 min. Furthermore, two datasets were generated for
each resolution, using the following approaches: (1) taking a single sample per resolution’s
time frame, and (2) averaging all the samples within the resolution’s time frame. For the
single-sample datasets, the first sample was taken from each time frame. For the averaged
datasets, the mode of the occupancy level was taken, as it cannot be averaged. In summary,
a total of 16 datasets (2 rooms × 4 resolutions × 2 strategies) were generated.

In the averaged datasets, for each indoor environmental attribute (pressure, altitude,
humidity, and temperature), two additional features were generated: kurtosis (kurt) and
standard deviation (std). These attributes provide additional information related to the
data in a given time frame, which can be useful for detecting occupancy. For example,
Zemouri et al. [6] developed an approach based mainly on the standard deviation of indoor
environmental data to detect occupancy.

It is important to realize that some steps of the methodology used to generate the dif-
ferent resolution datasets differ from those used in the previous publication [17]. Therefore,
the resulting datasets, although similar, are not exactly the same.

4. Data Distribution

For data exploration, the original data at 1 s time resolution were used. Figure 3
presents the measurements in 2D scatter-plots for each pair of indoor variables correspond-
ing to the fitness gym data, colored by occupancy level. Regarding the number of records,
it can be seen that medium occupancy data have the highest number of objects, while the
other two levels have a similar number of objects. It is important to note that the relation in
terms of the number of measurements is almost 2:1 for the dominant level, compared to
the rest. Hence, this dataset was also strongly imbalanced. Figure 4 shows a timeline of
the values for temperature and humidity with occupancy levels. Time series are shown
without time gaps.
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(a) (b)

(c)
Figure 3. Fitness gym data distribution by pairs: (a) temperature vs. humidity, (b) temperature vs.
pressure, and (c) pressure vs. humidity.

Figure 4. Humidity (green), temperature (blue), and occupancy (red) timeline of the fitness gym data
(time gaps are not shown).

As in the fitness gym, the original data at 1 s time resolution was used for the living
room data exploration. Figure 5 shows the measurements in 2D scatter-plots for each pair
of indoor variables in the living room data, colored by occupancy level. Regarding the
number of records, it can be seen that the low occupancy data have the highest number
of objects, while the high occupancy level is the lowest. It is also worth noting that the
dominant level has four times more data than the second-largest level. On the one hand,
it can be seen that ”pressure vs. humidity” presents the highest correlation since a rise
in pressure increases humidity. On the other hand, ”temperature vs. humidity” does
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not present a clear pattern. Figure 6 shows a timeline of the values for temperature and
humidity with occupancy levels. Time series are shown without time gaps.

(a) (b)

(c)
Figure 5. Living room data distribution by pairs: (a) temperature vs. humidity, (b) temperature vs.
pressure, and (c) pressure vs. humidity.

Figure 6. Humidity (green), temperature (blue), and occupancy (red) timeline of the living room data
(time gaps are not shown).

5. Conclusions

The dataset provides information regarding two enclosed spaces with different char-
acteristics in terms of airing, design use, size of the space, and the maximum number of
occupants. The contrasting characteristics of the rooms make it possible to obtain models
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that are more resilient to the different conditions of enclosed spaces. In addition to detection
information, the occupancy levels for enclosed spaces are provided.

The dataset also enables researchers to perform statistical analysis or develop machine
learning, deep learning, and physical models to detect and estimate occupancy in enclosed
spaces, using an indirect approach. For example, the available data allow training and test-
ing of machine learning models, as presented in the research published by Vela et al. [17].
Another benefit is that they allow the standardized comparison of different occupancy
detection and estimation techniques, obtaining results that can be directly compared with
other research studies.

It is also important to stress that the number of objects contained in the dataset (310,000)
significantly surpasses the size of other frequently used datasets, such as the occupancy de-
tection dataset from the University of California, Irvine’s Machine Learning Repository [11]
(20,000). The additional amount of data enables the training of data-intensive models, such
as deep neural networks and other deep learning techniques.

Finally, the data presented in this data descriptor can be used to develop occupancy
information systems that help building energy management systems (BEMS) to make
energy-efficient decisions. Furthermore, other building systems, such as security, emer-
gency response, and central domestic hot water, can benefit from the availability of occu-
pancy information.
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