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Abstract: Alterations in cell metabolism, including changes in lipid composition occurring during
malignancy, are well characterized for various tumor types. However, a significant part of studies
that deal with brain tumors have been performed using cell cultures and animal models. Here,
we present a dataset of 124 high-resolution negative ionization mode lipid profiles of human brain
tumors resected during neurosurgery. The dataset is supplemented with 38 non-tumor pathological
brain tissue samples resected during elective surgery. The change in lipid composition alterations
of brain tumors enables the possibility of discriminating between malignant and healthy tissues
with the implementation of ambient mass spectrometry. On the other hand, the collection of clinical
samples allows the comparison of the metabolism alteration patterns in animal models or in vitro
models with natural tumor samples ex vivo. The presented dataset is intended to be a data sample for
bioinformaticians to test various data analysis techniques with ambient mass spectrometry profiles,
or to be a source of clinically relevant data for lipidomic research in oncology.

Dataset: Is available in the MetaboLights repository. The package was prepared by means of
ISACreator software and is accessible via link https://www.ebi.ac.uk/metabolights/MTBLS1558/.

Dataset License: CC-BY.

Keywords: mass spectrometry; metabolomics; tumor biomarkers; data processing

1. Summary

Energy metabolism alteration is a well-known hallmark of cancer that leads to sub-
stantial changes in cell lipid composition [1]. Numerous lipid species became dysregulated
in various cancer types [2]. However, at this moment, only some generic trends in up-
regulation of mono and diunsaturated phosphatidylcholines are observed across various
diagnoses, in particular, in glioblastoma multiform [2,3], which attracts interest in the
investigation of lipid composition alterations occurring during malignancy.

Data 2021, 6, 132. https://doi.org/10.3390/data6120132

https://www.mdpi.com/journal /data


https://www.mdpi.com/journal/data
https://www.mdpi.com
https://orcid.org/0000-0002-9622-3457
https://orcid.org/0000-0001-6969-7350
https://orcid.org/0000-0001-6513-8009
https://orcid.org/0000-0003-4048-8488
https://doi.org/10.3390/data6120132
https://doi.org/10.3390/data6120132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.ebi.ac.uk/metabolights/MTBLS1558/
https://doi.org/10.3390/data6120132
https://www.mdpi.com/journal/data
https://www.mdpi.com/article/10.3390/data6120132?type=check_update&version=2

Data 2021, 6, 132

20f7

In brain tumors, as in many other proliferating cells, anaerobic glycolysis becomes the
major pathway of glucose metabolism, which is called the Warburg effect [4]. The high rate
of proliferation specific to malignant tissues requires a considerable amount of biomass
components to support the growth and formation of new cells, and therefore the promotion
of de novo lipogenesis, especially the synthesis of phospholipids to build cell membranes
and triglycerides required for energy storage and production [3,5,6]. The lipid composition
of cancer cells is different from healthy ones due to many factors. The Warburg effect leads
to abnormally high levels of NADH, which promotes fatty acid de novo synthesis [7,8]. On
the other hand, an inhibition of aerobic glycolysis, caused by cancer tissue hypovascularity,
triggers the beta-oxidation pathway of long-chain fatty acids [9]. During this process, pairs
of carbon atoms cleave from the aliphatic chain, yielding acetyl-CoA, which is utilized to
produce ATP required for cell metabolism. Eventually, in combination with de novo fatty
acid synthesis, beta-oxidation leads to an increased ratio of saturated to unsaturated fatty
acid residues in cancer cells, affecting total lipid composition.

The notable change in the lipid composition of cancer tissues compared to healthy ones
is of interest not only for investigating carcinogenesis, but also for enabling the possibility
of discriminating pathological and healthy tissues in a clinic, which is especially important
in neuro-oncology [10,11]. The accuracy of tumor border determination is crucial, as the
volume of tumor resection determines the operation outcome, but excessive resection of
healthy brain tissue is unacceptable. Mass spectrometry identification of tumor tissues
based on their lipid composition is an emerging technique among the variety of navigation
techniques in neurosurgery [12-14]. The potential for intraoperative application imposes
some limitations on the implemented mass spectrometry methods, the most important
limit being the time required for analysis. Ambient ionization mass spectrometry, which is
intended to analyze samples without any sample preparation or preliminary separation,
substantially reduces the duration of individual analysis, so many efforts are being made to
implement it in neurosurgery [15-20]. The high speed of analysis means that hundreds of
compounds can be presented in mass spectra simultaneously, creating a molecular profile
of the tissue. The molecular profile analysis is challenged by the complexity of data, the
matrix effect, and possible signal instability. To overcome such complications, it is usually
suggested to implement special algorithms for data evaluation, preprocessing, and further
analysis using machine learning [21-28].

2. Data Description

The dataset contains 162 high-resolution mass spectra obtained in negative mode. In
this assay, samples were collected with regard to three factors: patient gender, year of birth,
and disease diagnosis. Specifically, there are samples of 36 women and 34 men. The oldest
patient was born in 1942, while the youngest one was born in 2010 (mean age 48.8, median
age 54). The assay data are arranged in 166 files, as described in the Table 1.

Every tissue sample obtained during neurosurgery was divided in two parts in order
to obtain histological annotation for each sample. Received histochemical conclusions
showed the presence of alterations typical for different oncological diseases in tissues of
several samples and no such alterations in the other part of samples which were considered
as non-tumor pathology. The results of the histochemical evaluation are included in the
dataset together with the relevant patient data. The distribution of samples and patients
over diagnosis is shown in Table 2. This dataset was used to show that tissues with different
types of pathology can be reliably distinguished by the analysis of their mass spectrometric
profiles (Figure 1) for development of algorithms for tumor boundary detection.
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Table 1. Data package composition.

Filename

Description

a_MTBLS1558_DI-FT_ICR-MS.txt

ISA-Tab-file contains the mapping between sample ids and mass spectra obtained
via Thermo Scientific LTQ FT Ultra

a_MTBLS1558_DI-LTQ-MS.txt

ISA-Tab-file contains the mapping between sample ids and mass spectra obtained
via Thermo Scientific LTQ Orbitrap XL ETD

i_Investigation.txt

ISA-Tab-file contains the description of the assay in question

s_MTBLS1558.txt

ISA-Tab-file contains the mapping between sample ids and assay factors

l.cdf, 2.cdf, ..., 359.cdf

162 files in NetCDF format contain mass spectra.
Spectra information in CDF-files is presented in the fields:

mass_values
intensity_values
scan_acquisition_time
scan_index
point_count
total_intensity

There are 4 metadata fields in CDF-files filled as below:

created_by = ‘LIMP Data Extractor 1.0’

netcdf_revision = ‘4.0.1.0

source_file_format = ‘Finnigan’

netcdf_file_date_time_stamp = <Date and time of CDf-file creation>

Table 2. Samples and patients distribution over diagnosis.

Diagnosis Samples Patients
Adenoma 2 2
Astrocytoma 20 12
Chordoma 1 1
Ganglioglioma 10 8
Glioblastoma 25 9
Melanoma 1
Meningioma 42 16
Neurinoma 15 12
Neuroepithelial tumor 2 2
Neurofibroma 1 1
Oligoastrocytoma 3 2
Primitive neuroectodermal tumor 1 1
Subependimoma 1 1
Non-tumor pathology 38 2
Total 162 70
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Figure 1. PCA plots for non-tumor pathological tissues (blue) and adenoma (red, left) or ganglioma (red, right), showing

the possibility of discriminating tissues using mass spectrometry profiling.

3. Methods
3.1. Samples

The samples were provided by the N.N. Burdenko National Scientific and Practical
Center for Neurosurgery (NSPCN) and analyzed under an approved N.N. Burdenko
NSPCN Institutional Review Board protocol in accordance with the Helsinki Declaration as
revised in 2013 (Order 40 of 12 April 2016 as amended by Order 131 of 17 July 2018). Brain
tumor tissues were resected during the elective surgery All tissue samples in this dataset
are related to primary tumors resected during the first course of the surgical treatment.
Patients with any other tumor types in anamneses were excluded from the study. Non-
tumor pathological tissues were resected in the course of surgery for drug-resistant epilepsy.
A signed informed consent explicitly noting that all removed tissues could be used for
further research was obtained from all patients. Every dissected tissue was anonymized
and split into two parts. A professional pathologist examined the first part, and the second
one was placed in normal saline, frozen, and stored at —80 °C until analysis.

3.2. Mass Spectrometry

The samples were analyzed using a spray-form-tissue ambient ionization mass spec-
trometry approach [29], which provides lipid profiles of the analyzed tissue similar to other
ambient ionization techniques (ICE, DESI, PES], etc.) [10,15,16,30]. A freshly thawed tissue
sample was cut into approximately 2 mm? samples, which were placed on the tip of the
30 x 0.6 mm injection needle. High voltage (6 + 1 kV) and solvent flow (4 £ 1 uL/min)
were then applied through the needle to obtain a stable ion current. HPLC grade methanol
supplemented with 0.1% of formic acid (optionally supplemented with 30% HPLC grade
chloroform, see detailed data description) was used as an extraction solvent. Solvents and
formic acid were obtained from Merck (Merck KGaA, Darmstadt, Germany).

Mass spectra acquisition was performed on a Thermo Finnigan LTQ FT Ultra mass
spectrometer equipped with a 7T superconducting magnet and on a Thermo LTQ XL
Orbitrap ETD mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA). Samples
were analyzed in a negative mode in the ranges of m/z 100-1300 (resolution 150,000 FWHM
at m/z 400) and m/z 120-2000 (resolution 30,000 FWHM at m/z 400) on the LTQ FT Ultra
device and LTQ XL Orbitrap device, respectively.

3.3. Data Transformation

During dataset preparation, mass spectrometric source files were converted from
Thermo RAW format to NetCDF format via in-laboratory developed software. Validity of
this conversion method was approved by using MALDIquant ver.1.19.3 [31], ncdf4 ver.1.17,
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and RNetCDF ver.2.1-1 [32] R-packages and ncread Matlab-packages for spectra analysis.
We have committed a code patch to MZmine 2 to support our version of the CDF file. That
code is available on GitHub for MZmine 2 [33] and the upcoming release of MZmine 3.

4. User Notes

The presented dataset was used to develop a novel, simple algorithm of feature selec-
tion for molecular profiles [24], which extracts stably detectable ions from the molecular
profiles of glial tumors and selects features that are in agreement with the result of other
experimental techniques. The molecular signatures, determined from the presented dataset,
were used to demonstrate the possibility of discriminating and identifying various patho-
logical tissue types obtained during elective surgery. It was shown that the molecular
profiles of unmodified and damaged brain tissue are separable—various necrotized (necro-
tized tumor, necrotic tissue with necrotized vessels, necrotic tissue with tumor strain) and
tumor (histologically pure tumor, tumor with necrosis, tumor lesions) tissues could be
differentiated from each other as well as from the tumor boundary tissues [25]. The same
data was further implemented to create classifiers for rapid identification of various tumors
(glioblastoma, astrocytoma, meningioma) based on ambient mass spectrometry [34-36],
which has become the basis for developing new ambient ionization techniques designed
for clinical application [10]. On the other hand, the presented dataset, as it is an example
of data representing actual data obtained in a clinic, was used as a model for developing
an instrument for an interactive and automated tool for evaluating the stability and repro-
ducibility of mass spectra [21-37], and for the unification of representations of high- and
low-resolution mass spectra for further clinical implementation [23].

The dataset is very unbalanced towards malignant tissue samples because it represents
a real situation with samples in clinics where it is very difficult to obtain unmodified brain
tissues samples, and a controllable experiment is not possible to conduct due to work being
performed with patients that are available at the moment. On the other hand, it is an ideal
case from the machine learning point of view because it collects all possible difficulties
connected with the analysis of real clinical data, as it presents typical intergroup variability
for groups defined by patient, diagnosis, sample, or tissue type. The dataset can be very
useful for the tailoring of anomaly detection and unsupervised learning methods for brain
tumor clinical applications. Another problem that mass-spectrometry data as a whole, and
this dataset in the particular, present for the application of machine learning techniques is
the wide geometry of the dataset when the number of characteristics inside one sample
considerably exceeds the number of samples.
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