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Abstract: A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accre-
tion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mech-
anism, which is connected with joint action of the alpha-effect and differential rotation. They compete
with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it de-
cays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are
quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for
thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is
used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality
condition is taken into account as well. The field generation is restricted by the equipartition value
and saturates if the field becomes comparable with it. From the point of view of mathematical
physics, they can be characterized as stable points of the equations. The field can come to these
values monotonously or have oscillations. It depends on the type of the stability of these points,
whether it is a node or focus. Here, we study the stability of such points and give examples for
astrophysical applications.

Keywords: dynamo; no-z approximation; stability; discs

1. Introduction

Magnetic fields play an important role for different astrophysical objects and have
a large influence on various physical processes. For example, the magnetic fields of
galaxies [1] change the trajectories of cosmic rays. Charged particles without magnetic
fields would pass through the galaxy disc during several decades of millions of years,
and we could not detect them. However, the magnetic fields cause their motion along
spirals, and they can remain in the galaxies during billions of years [2]. Another important
appearance of the magnetic field is connected with the dark spots on the Sun, which are
connected with the greatest intensity of the magnetic field in the convective zone [3]. If we
are speaking about the accretion discs surrounding neutron stars, black holes and white
dwarfs, the magnetic field can describe the transition of the angular momentum between
different parts of the disc [4]. So, we can conclude, that the magnetic fields are important
for different branches of astrophysics and corresponding phenomena.

From the observational point of view, the magnetic field can be studied using three ba-
sic mechanisms [5]. The first one is connected with the so-called Zeeman effect. It describes
the splitting of the spectral lines, which is based on the influence of the magnetic field on
the atoms in the cosmic medium. However, this method can be used only for quite large
magnetic fields on the Sun and maybe other stars. The second method is connected with
the synchrotron emission [6]. If the particles are situated in the medium with magnetic
field, typical frequencies of the emission will change. This approach has been used for
the first observational studies of the galactic magnetic field. The third method is based on
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the Faraday rotation of the polarization plane of the radio waves [7]. If the wave passes
through the magnetized medium, the rotation angle is proportional to the value of the
magnetic field, squared wavelength and the electron density. Currently, it is the basic
method of studying the magnetic fields in the galaxies [8] and other celestial objects. It is
necessary to say that for our galaxy, the pulsars are often used, and if we are speaking
about other galaxies, we should take extragalactic sources. First, observational data [1]
were devoted to classical objects that are quite similar with the Milky Way, such as M31,
M33 and M51. Currently, we have quite accurate observational results for several tens of
galaxies. One of the most important results have been obtained by the CHANG-ES project,
which give the calculations of the magnetic field based on the Faraday rotation data for
13 galaxies [9].

The magnetic fields are usually described by the dynamo theory [10,11]. It is based
on the transition of the kinetic energy of the conducting medium to the energy of the
magnetic field. It is necessary to share both the small-scale dynamo, which is connected
with the structure of the turbulent motions, and the large-scale one. The large-scale dynamo
describes the evolution of the regular field, which is a result of averaging the fields by the
typical length scales of turbulent cells. The evolution of the field is connected with joint
action of the differential rotation (it is connected with nonsolid rotation of the object) and
the alpha-effect that characterizes the vorticity of the turbulent motions. The magnetic field
evolution is described by the Steenbeck—Krause—Raedler equation, which is obtained by
averaging the magnetohydrodynamics equations [12,13].

However, obtaining the direct numerical solution of the Steenbeck—Krause—Raedler
equation is quite difficult. The first problem is connected with the computational resources,
which are large for the real objects because of large Reynolds and Prandtl numbers, so usu-
ally, such problems are solved only for some part of the object [14]. The second problem is
based on a large number of parameters characterizing the system. It is so high that we can
obtain different results while changing them (it is necessary to mention that they are not
known well). So, it is quite convenient to introduce two-dimensional models which take
into account different symmetries of the objects and can be analyzed in a simple way.

As for the objects with the shape of a disc, usually, the so-called no-z approximation
is taken [13,15]. It takes into account the fact that the magnetic field is quite close to the
equatorial plane, so the vertical component of the field can be neglected in some cases,
and its z-derivatives can be obtained by the solenoidality conditions. Such model can be
effectively used to model the magnetic field in galaxies and in the accretion discs.

The dynamo mechanism described the exponential growth of the magnetic field [16].
However, the magnetic field growth cannot be infinite in time, and it is restricted by
the energy conservation law. If the magnetic field energy becomes comparable with the
kinetic energy of the turbulent motions, the field growth should stop. This could be
resolved by introducing the nonlinearity in the equations governing the process of the field
growth [11,17]. So, the exponential growth will saturate after reaching some characteristic
value of the magnetic field (it can be connected with the so-called equipartition value).

Numerical modeling shows different regimes of the saturation. The first one describes
the monotonous growth, which stops if the field becomes close to the equipartition value.
Another case is connected with the oscillations near the equipartition field. From the
mathematical point of view, it is connected with the parameters of the system of differential
equations. The nonlinear equations have different stable solutions. They can be associated
with the nodes and focuses. In the first case, we shall have the monotonous saturation and
in the second—the oscillatory regime [18,19].

The stable solutions of the equations can be analyzed using the first order of the
perturbation theory, which is well-known in the theory of differential equations. We should
solve the eigenvalue problem for this system, and the results of the eigenvalues will allow
us to classify the types of the stability.

The paper is organized as following. At first, we describe the main features of the
magnetic field evolution and present the equation of the no-z approximation. Then, we in-
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troduce the nonlinearity, which describes the saturation of the exponential growth of the
solution. We also describe the stability of the solutions in the most general way. After that,
we show the stability of the solution for concrete cases connected with the accretion discs.
In the end, we present the results of numerical modeling, and it can be seen that the type of
the saturation corresponds to the previous analytical models. We also discuss the magnetic
fields in other astrophysical objects, such as the galaxies which have quite similar shape of
the disc.

2. Basic Equations of the No-z Approximation

The large-scale magnetic field evolution is described by the Steenbeck—Krause—
Raedler equation [12]:

∂B
∂t

= rot(αB) + rot[V, B] + η∆B, (1)

where B is the large-scale magnetic field, α is the alpha-effect coefficient, V is the large-scale
velocity, and η is the turbulent diffusion coefficient.

If we are speaking about the objects that have the shape of the disc, we can take the
cylindrical polar coordinates, and the disc will be described by the values:

r < R; −h < z < + h. (2)

We can assume that the field is mainly situated in the disc plane. We can also describe
the axisymmetiric field. So, the main parts of the field are connected with the radial
component and the azimuthal one [20]:

Br,ϕ(r, z, t) = Br,ϕ(r, 0, t) cos
(πz

2h

)
(3)

As for the alpha-effect coefficient, we can take the model (it can be obtained, for exam-
ple, using self-similar model [21]):

α(z) = α0
z
h

; (4)

where α0 is the characteristic value of the alpha-effect. It is connected with the Coriolis
force in the rotating disc, which influences the turbulent velocity, and it can be described
by the following simple estimates [16]:

α0 =
Ωl2

h2 ; (5)

where l is the length scale of the turbulence.
The alpha-effect coefficient can be constructed using the formulae α = − τ

3 (v, rotv) [10],
but for the case of the disc, it is proportional to the angular velocity of the object [16].

For the large-scale velocity, we can take the formula which is connected with the
angular velocity Ω(r) :

V = rΩ(r)eϕ. (6)

The equations of the field components can be written as [18]:

∂Br

∂t
= − Ωl2

h2 Bϕ −
π2

4h2 Br + η∆rBr; (7)

∂Bϕ

∂t
= r

dΩ
dr

Br −
π2

4h2 Bϕ + η∆rBϕ; (8)

where ∆r = ∂2

∂r2 + 1
r

∂
∂r −

1
r2 is the radial part of the Laplace operator.
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The magnetic field cannot grow if it becomes larger than the equipartition value,
which is described by the formula [19]:

B0 = 2v
√

πρ; (9)

where v is the typical turbulent velocity and ρ is the typical density of the medium. If the
magnetic field if close to the equipartition value, the growth should stop. There are
different mechanisms of the alpha-effect quenching (for example, we can consider the
helicity fluxes [22]), but for the simplest case, we can take the simple square term in the
alpha-effect [23]. It can be taken into account using the following equations:

∂Br

∂t
= − Ωl2

h2 Bϕ

(
1 −

B2
r + B2

ϕ

B2
0

)
− π2

4h2 Br + η∆rBr; (10)

∂Bϕ

∂t
= r

dΩ
dr

Br −
π2

4h2 Bϕ + η∆rBϕ. (11)

We can measure the magnetic fields in units of B0, the distances in units of the outer
radius of the object R and the times in units of h2

η . So, the equations will be the following:

∂Br

∂t
= − RαBϕ

(
1 − B2

r − B2
ϕ

)
− π2

4
Br + λ2∆rBr; (12)

∂Bϕ

∂t
= Rωr

dΩ
dr

Br −
π2

4
Bϕ + λ2∆rBφ. (13)

Here, Rα = Ωl2

η characterizes alpha-effect, Rω = Ω0h2

η describes the differential

rotation and λ = h
R shows the dissipation in the disc plane.

3. Stable Solutions of the Equations

The stable solution for the magnetic field can be obtained by assuming zero the
time derivatives of the magnetic field components. We can assume that λ = 0 [18]
(it corresponds to zero diffusion in the radial direction, but we take into account the main
part connected with the vertical direction):

− RαBϕ

(
1 − B2

r + B2
ϕ

)
− π2

4
Br = 0; (14)

Rωr
dΩ
dr

Br −
π2

4
Bϕ = 0. (15)

First, we can take the zero solution. However, it is much more interesting to take the
following pairs of the solutions (which are called stable points):

B(+)
r =

√√√√√√
π4

16 + RαRωr dΩ
dr

RαRωr dΩ
dr

(
1 + 16

π4 r2
(

dΩ
dr

)2
) ; (16)

B(+)
ϕ = −

√√√√√√Rωr dΩ
dr

(
π4

16 + RαRωr dΩ
dr

)
Rα

(
1 + 16

π4 r2
(

dΩ
dr

)2
) ; (17)
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and

B(−)
r = −

√√√√√√
π4

16 + RαRωr dΩ
dr

RαRωr dΩ
dr

(
1 + 16

π4 r2
(

dΩ
dr

)2
) ; (18)

B(−)
ϕ =

√√√√√√Rωr dΩ
dr

(
π4

16 + RαRωr dΩ
dr

)
Rα

(
1 + 16

π4 r2
(

dΩ
dr

)2
) ; (19)

If we describe small perturbations of the field near these values, it is convenient to
introduce the following functions:

∆Br = Br − B(±)
r ; (20)

∆Bφ = Bφ − B(±)
ϕ ; (21)

The linearized equation for them will be the following [15]:

d∆Br

dt
=

π2

4

1 + 32
π4 RαRωr ∂Ω

∂r −
16
π4 R2

ωr2
(

∂Ω
∂r

)2(
1 + 16

π4 R2
ωr2
(

∂Ω
∂r

)2
) ∆Br−

−Rα

1−
π4

16 + RαRωr ∂Ω
∂r

RαRωr ∂Ω
∂r

(
1 + 16

π4 R2
ωr2
(

∂Ω
∂r

)2
) − 3

Rωr ∂Ω
∂r

(
1 + 16

π4 RαRωr ∂Ω
∂r

)
Rα

(
1 + 16

π4 R2
ωr2
(

∂Ω
∂r

)2
)
∆Bφ;

(22)

d∆Bφ

dt
= Rωr

∂Ω
∂r

∆Br −
π2

4
∆Bφ. (23)

The perturbations grow according to the exponential law:

∆Br,ϕ ∼ exp(σt); (24)

where σ is the eigenvalue of the matrix of the system of Equations:

σ = −π2

4
+

π2

4

(
1 + 16

π4 RαRωr ∂Ω
∂r

)
(

1 + 16
π4 R2

ωr2
(

∂Ω
∂r

)2
)±

±1
2

√√√√√√√π4

4

(
1 + 16

π4 RαRωr ∂Ω
∂r

)2

(
1 + 16

π4 R2
ωr2
(

∂Ω
∂r

)2
)2 + 4

π4

16 + R2
ωr2
(

∂Ω
∂r

)2(
3 + 32

π4 RαRωr ∂Ω
∂r

)
1 + 16

π4 R2
ωr2
(

∂Ω
∂r

)2 .

(25)

The character of the stable points is connected with the sign of the real part of (25).
If it is negative, the point will be stable. We should say that if the value is complex, we will
have the focus, and for purely real eigenvalues, the node will take place. If we have the
node, the field will grow monotonously. For the focus, we shall have oscillations of the
components of the magnetic field near the stable point.

The analysis of Formula (25) in the most general way is quite difficult. So, it is better
to take concrete examples of the equations characterizing the specific rotation laws. In the
following part, we are going to describe the solution for the Kepler rotation law, which can
be used for the accretion discs surrounding such massive astrophysical objects as black
holes, neutron stars and white dwarfs.
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4. Stability for the Kepler Rotation Curve

As a specific example, we consider the Keplerian rotation curve, for which [4]:

Ω =

√
GM
r3 , (26)

where M is the mass of the central object and G is the gravitational constant. It does not
seem to take place in galactic cases widely, but has a special mathematical interest, and it
can be suitable for other objects, such as the accretion discs [24].

Then, for such an angular velocity, we can use the no-z approximation [24], and the
equations for stationary solutions will look like this:

0 = −RαBϕ

(
1 − B2

ϕ0
− B2

r0

)
− π2

4
Br0 ; (27)

0 = −3
2
∗ Rω ∗

Br0

r
3
2
− π2

4
Bφ0 (28)

Bϕ0 =
−6RωBr0

π2r
3
2

(29)

After substitution into the equation, we obtain:(
216RαR3

ω

π6r
9
2

+
6RαRω

π2r
3
2

)
B2

r0 +
π2

4
− 6RαRω

π2r
3
2

= 0 (30)

Br0 = ±

√√√√√√
6RαRω

π2r
3
2
− π2

4

216RαR3
ω

π6r
9
2

+ 6RαRω

π2r
3
2

(31)

After transformation, we get such solutions of the equation:

Br0 = ±

√√√√ (
24RαRω − π4r

3
2

)
π4r3

4
(
216RαR3

ω + 6π4r3RαRω

) (32)

Bϕ0 =
−6Rω

π2r
3
2

Br = ∓ 6Rω

π2r
3
2

√√√√ (
24RαRω − π4r

3
2

)
π4r3

4
(
216RαR3

ω + 6π4r3RαRω

) (33)

Now, find the degree of growth:

dBr

dt
= −RαBϕ

(
1 − B2

r − B2
ϕ

)
− π2

4
Br (34)

dBϕ

dt
=

3
2

Rω

r
3
2

Br −
π2

4
Bϕ (35)

We substitute such equations for perturbations of the stable solutions:

d∆Br

dt
= −Rα

(
Bϕ0 + ∆Bϕ

)(
1 − (Br0 + ∆Br)

2 −
(

Bϕ0 + ∆Bϕ

)2
)

−π2

4
(Br0 + ∆Br)

(36)

d∆Bϕ

dt
=

3
2

Rω

r
3
2
(Br0 + ∆Br) −

π2

4
(

Bϕ0 + ∆Bϕ

)
(37)
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We open the brackets and neglect the terms of the second order of smallness and take
Equations (26) and (27) into account:

d∆Bϕ

dt
=

3
2

Rω
r

3
2

∆Br −
π2

4
∆Bϕ (38)

d∆Br

dt
= ∆Br

(
2Bϕ0Rr0Rα −

π2

4

)
+ ∆Bϕ

(
3RαB2

ϕ0 − Rα + RαB2
r0

)
(39)

To find the characteristic numbers, we construct a determinant and equate it to zero.
Let us introduce the notation:

a11 = 2RαBϕBr0 −
π2

4
(40)

a12 = 3RαB2
ϕ0 − Rα + RαB2

r0 (41)

a21 =
3
2

Rω
r

3
2

(42)

a22 = −π2

4
(43)∣∣∣∣ a11 − λ a12

a21 a22 − λ

∣∣∣∣ = 0 (44)

Making up the characteristic equation and solving, we get such eigenvalues:

λ1,2 =
a11 + a22

2
±
√
(a11 + a22)

2 − 4(a12a21 − a11a22) (45)

We can consider the radical expression:

λ1,2 =
a11 + a22

2
±
√
(a11 + a22)

2 − 4(a12a21 − a11a22) (45)

We can consider the radical expression:

(a11 + a22)
2 − 4(a12a21 − a11a22) =

=
(

2Bϕ0Rr0Rα − π2

4 −
(
−π2

4

))2

−4
[(

3RαB2
ϕ0 − Rα + RαB2

r0

)(
3
2

Rω

r
3
2

)
−
(

2Bϕ0Rr0Rα − π2

4

)(
−π2

4

)]
=

=
12RαB2

ϕ0Rω

r
3
2

− 3Rωπ2Br0

2r
3
2 Bϕ0

+ 4B2
ϕ0B2

r0R2
α − 4Bϕ0Br0Rαπ2 + π2

4

= 4B2
ϕ0B2

r0R2
α

(
1 − π2

Bϕ0Br0Rα
+ 3Rω

RαB2
r0r

3
2
− 3Rωπ2

8R2
αB3

ϕ0Br0r
3
2
+ π2

8B2
ϕ0B2

r0R2
α

)
(46)

The possibility that there will be a negative number under the root is described by the
following condition:

F(Rα, Rω) =
π2

Bϕ0Br0Rα
− 3Rω

RαB2
r0r

3
2

+
3Rωπ2

8R2
αB3

ϕ0Br0r
3
2
− π2

8B2
ϕ0B2

r0R2
α

< 1 (47)

In this case, the solution will reach a stationary value with fluctuations. Otherwise,
there will be a monotonic output.

Thus, we got the function F(Rα, Rω); now, we can plot this function. We will be inter-
ested only in the area in which the value will be less than 1. Let us draw the corresponding
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level line. In addition, we draw a curve that will limit the growth region from the solution
decay region. We get the following graphs (Figure 1), where case F < 1 is the decay region.
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Figure 1. The dependence of Rω on Rα for different r. The dashed line corresponds to the line of F = 1; the solid line is the
boundary of the growth region.

It is important to present concrete results, which can be useful to describe the regime
of the magnetic field evolution in different cases. They are presented in Table 1 (all values
are measured in dimensionless units). Here, we showed typical values of the parameters
which can characterize different astrophysical objects, such as galaxies and accretion discs.
It is quite interesting to analyze the observational data about the accretion discs. Here,
we take binary systems with a white dwarf as a primary star. Using the values of the
outer radii of the discs and their masses, we can calculate their typical angular velocities.
The half-thicknesses of the discs and turbulent velocities can be estimated taking model
assumptions, so we can calculate the governing parameters [24]. So, the result of analysis
of observational data is included in Table 1 as well. We give the value of the function F and
the growth rate of the magnetic field which can be calculated as γ = B′(t)

B(t) , which can be
used while estimating the magnetic field evolution in different cases.

Table 1. Different regimes of the magnetic field evolution.

Rα Rω F(Rα,Rω) Mode Growth Rate Remarks

1 1 −182.2 Monotonous growth 0.4608

2 1 −139.3 Monotonous growth 0.5079
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Table 1. Cont.

Rα Rω F(Rα,Rω) Mode Growth Rate Remarks

1 0,1 −5.836 Decay −1.781

0.2 1 −16.65 Decay −1.804

8 1 −2.561 Monotonous growth 2.886

9 1 −2.120 Monotonous growth 3.215

1 2 −1901 Monotonous growth 0.529

0.2 0.1 −5.427 Decay −2.383

0.02 0.1 −5.342 Decay −2.494

2 4 −1092 Monotonous growth 3.067

1 8 −17670 Monotonous growth 3.098

2 8 −7453 Monotonous growth 5.606

4 5 −874.8 Monotonous growth 6.444

0.575 5.171 −10493 Monotonous growth 0.6405 Corresponds to IP Peg [25]

0.253 2.274 −17.30 Monotonous growth 0.2378 Corresponds to FU Ori [26]

0.461 4.148 −276.9 Monotonous growth 0.4079 Corresponds to EX Dra [27]

0.460 4.138 −270.3 Monotonous growth 0.4037 Corresponds to MU Cen [27]

1.418 12.763 −3666 Monotonous growth 6.051 Corresponds to T CrB [28]

The magnetic field evolution for different D is shown on Figure 2. Here, the magnetic
field is measured in equipartition values, and so it is dimensionless. The growth of the
magnetic field (if it is possible) is exponential on the first stage; after that, it is stabilized.
However, if we take other models [21], we can obtain the power law.
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Thus, we can see that the region of the oscillations of the magnetic field on the plot
of the parameters fully corresponds to the decaying magnetic field. That means that the
magnetic field can only grow monotonously, and for these values of the parameters, it is
not possible to obtain the oscillating solutions.

5. Conclusions

We have studied the stability of the solutions of the system of dynamo equations
in the no-z approximation, which describes the magnetic field generation in the discs.
In the most general case, we have studied the stability of the solutions for different values
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of the parameters. Depending on the characteristics of the turbulence, we can have the
focus (which is connected with monotonous growth) and the node (corresponding to
oscillatory regime).

We have studied the concrete example of the model which corresponds to the Kepler
rotation law. It was shown that for this case we can have only the monotonous solutions.
Taking into account that such rotation law is connected with the accretion discs, it is
necessary to say that for such objects, it is quite difficult to obtain the oscillatory regime,
which is quite interesting from the observational point of view. However, for other objects,
such as the galaxies, the numerical modeling shows [15] that the magnetic field can have
oscillations near the stable points. It would be quite interesting to test such results both for
the accretion discs and the galaxies.

Of course, we have described a simple model of the magnetic field generation. It is
possible to take other models of the magnetic fields. One of the most interesting approaches
is connected with the self-similar approach, which has been described in [21,29–31]. It de-
scribes the magnetic field using the equations taking into account the turbulent diffusion
and the alpha-effect, which are solved analytically. For the simplest case, the steady mag-
netic field can be described by exact solutions containing the hyperbolic sine, which cor-
responds to the “X-type” field structure. A wide range of solutions can be found using
the Lagrange functions and hypergeometric ones. The time dependence of the magnetic
field is also studied. The solution is self-similar in time, and it can be described by the
exponential or power law. Such an approach can be interesting, and it is useful to study the
magnetic field in the main parts of the galaxies and in the halo as well. However, our model
takes slightly different model assumptions (which are connected with a specific Keplerian
rotation law), so the field components are described by Formulae (32) and (33). In general,
the result in the equatorial plane is the same with the “X-type” magnetic field, but there
are some remarkable differences.
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