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Abstract: Our goal was to find new diagnostic and prognostic biomarkers in bladder cancer (BCa),
and to predict molecular mechanisms and processes involved in BCa development and progression.
Notably, the data collection is an inevitable step and time-consuming work. Furthermore, identification
of the complementary results and considerable literature retrieval were requested. Here, we provide
detailed information of the used datasets, the study design, and on data mining. We analyzed
differentially expressed genes (DEGs) in the different datasets and the most important hub genes were
retrieved. We report on the meta-data information of the population, such as gender, race, tumor
stage, and the expression levels of the hub genes. We include comprehensive information about
the gene ontology (GO) enrichment analyses and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses. We also retrieved information about the up- and down-regulation of
genes. Allin all, the presented datasets can be used to evaluate potential biomarkers and to predict
the performance of different preclinical biomarkers in BCa.

Dataset: The following are available online at http://www.mdpi.com/2306-5729/5/2/38/s1
Dataset License: CC-BY-NC
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1. Summary

Bladder cancer is one of the most common malignancies [1]. Although new treatment strategies
and tools for surgical resection [2], neoadjuvant chemotherapy [3,4], and photodynamic therapy
(PDT) [5] have been developed, BCa remains with a high rate of recurrence [1]. Up to now, cystoscopy
and bioptic histology are still the gold standards to diagnose bladder cancer (BCa) [6]. No consent
about urinary marker or non-invasive screening strategies could be found by the European Association
of Urology (EUA). Furthermore, nuclear matrix protein 22 (NMP22) is only recommended by American
Urological Association (AUA) under certain conditions [7]. Therefore, it remains a priority to develop
reliable, safe, and non-invasive diagnostic/prognostic biomarkers and therapeutic targets for BCa, and
considerable efforts are ongoing.

Bioinformatics analysis is necessary for the integration of, e.g., huge amounts of transcriptome,
microarray, and RNA-sequencing data to disclose alterations in gene expression, mutational burden,
transcriptome, and proteome of cancer compared to non-cancer controls [8]. Of special importance are
so-called hub genes, defined as highly connected genes, which can be regarded as a representative of a
distinct module in the genes network [9]. Furthermore, hub genes potentially play an important role in
the progression of cancer. Therefore, they are good biomarker candidates and may even provide new
therapeutic targets [8,10]. Following, we provide supplemental results from our recent investigation
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“Identification of key biomarkers in bladder cancer: Evidence from bioinformatics analysis” [11],
which we share in a freely available and searchable form for further preclinical research. All in all, the
data is the supplement for the previous research, providing selected data from the public The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases for cancer researchers and
bioinformaticians to search and download for analysis based on the requisition of the public GDC
Data Portal (https://portal.gdc.cancer.gov/).

2. Data Description

2.1. Database Analyses

Our previous study “Zhang et al. 2020, Identification of key biomarkers in bladder cancer:
Evidence from bioinformatics analysis” [11] integrated six public datasets. Five datasets were
downloaded from GEO (Gene Expression Omnibus, http://www.ncbinlm.nih.gov/geo) [12] and
the bladder cancer (TCGA-BLCA) dataset was retrieved from TCGA (The Cancer Genome Atlas,
https://portal.gdc.cancer.gov/) [13]. Below, we detailed the study design and the characteristics of this
recent study.

We compared BCa samples and non-cancerous samples (histologically normal tissue adjacent
to the tumor) and extracted six sets of differentially expressed genes (DEGs) from six public datasets
according to the criteria for defining DEGs [11]. We used FUNRICH software [14] to map the DEGs
and detected the overlap between the datasets (Table 1 and Table S1). We considered only DEGs, which
were expressed in at least two of the five GEO databases (Table S2). Finally, we identified 418 DEGs
(Table S3) overlapping with the 2537 DEGs from the TCGA-BLCA database (Table S3). Of those DEGs,
132 were upregulated and 286 were downregulated (Figure 1).
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Figure 1. Study design and workflow of the analysis. Taken from Zhang et al. 2019 [11]. For detailed
information on the analytical methods and the software packages please refer to the Materials and
Methods section in the cited paper.


https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo
https://portal.gdc.cancer.gov/

Data 2020, 5, 38 30f12

Molecular complex detection (MCODE) [15-17] analysis identified 11 relevant modules
(subnetworks) and cytoHubba (based on Cytoscape software) [18] classified 376 of those 418 DEGs as
hub genes, which are the gene most interconnected in the networks/modules (Table S4) [8].

To reduce the hub genes to the most promising, we defined 11 seed genes [15,16] for the most
important 11 modules and the subsequent analysis yielded 14 hub genes on the basis of correlation to
overall survival and degree of interaction (Table S5). The hub genes were ordered by their descending
interaction degree: CDK1(98), CCNB1(92), CCNA2(84), KIF11(84), CDC20(83), UBE2C(83), MAD2L1(81),
AURKA(80), KIF20A(80), KIF2C(80), KPNA2(67), TPM1(29), CASQ2(11), and CRYAB(11). Figure 2
depicts the results of the protein—protein interaction (PPI) analysis.

Table 1. General information on Gene Expression Omnibus (GEO) and The Cancer Genome Atlas
(TCGA) datasets (adapted from: Zhang et al. 2020 [11]).

Number of Number of Number of Number of DEGs
Dataset Noncancerous Bladder Cancer Tissue DEGs Extracted after FUNRICH
Tissue Samples Samples from Dataset Mapping
GSE27448 [19,20] 5 10 5251 4701
GSE52519 [21] 3 9 751 742
GSE61615 [22] 2 2 842 736
GSE76211 [23,24] 3 3 770 658
GSE100926 [25] 3 3 223 194
TCGA-BLCA [13] 19 406 2873 2537
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Figure 2. Interaction network analysis. (A) The interactions and protein—protein networks of the top 30
hub genes. (B) Protein-protein network and interaction among the 14 hub genes from STRING-db.org,
accessed on 11 November 2019. Nodes with different colors represent different query proteins. A
different color on the edge means a different interaction (see legend in figure). Adapted from Figure 4
of Zhang et al. 2020 [11].

We then performed a gene ontology (GO) enrichment analysis [26] and used the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis [27] to identify the pathways
potentially related to these protein-coding genes and to predict the roles of these genes in BCa.
The Go and KEGG analyses significantly enriched the ‘Pathways in cancers’, “Viral carcinogenesis’,
and ‘Cell cycle’, which relate to carcinogenesis and progression of cancer. We listed all significant
results of GO and KEGG analysis based on the 418 DEGs and Benjamini-Hochberg value <0.05 in
Table S6. The GO and KEGG analysis results based on the 14 hub genes are available and searchable at
http://www.mdpi.com/2075-4418/10/2/66/s1, Table S5. Moreover, we also listed all significant results
of GO and KEGG analyses of up- (Table S7) and downregulated DEGs (Table S8). In addition, we
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extracted the clinical meta-data from TCGA-BLCA for the correlation to overall survival (OS) and
disease-free survival (DFS) based on the 14 hub genes (Table S5).

In addition, we performed other subgroup analyses, such as the expression levels in different
groups based on tumor stage, lymph nodal metastasis, race of patients, gender of patients, histological
subtype, and molecular subtypes. We found that CKD1, CCNB1, CCNA2, KIF11, CDC20, UBE2C,
MD2L1, AURKA, KIF20A, KIF2C, KPNA2, TPM1, CASQ2, and CRYAB were significantly higher
expression in Caucasian and African American than in the ASI cohort. Except for TPM1, CASQ2,
and CRYAB, all the genes were significantly overexpressed in both, male and female bladder cancer
patients. However, no significant difference was found between males and females. All the genes
were significantly higher expressed in non-papillary tumors than in papillary tumors (Table 2) [28]. In
addition, CKD1, CCNB1, CCNA2, KIF11, CDC20, UBE2C, MD2L1, AURKA, KIF20A, KIF2C, and KPNA2
were significantly upregulated in papillary tumors and non-papillary tumors than in non-cancerous
tissues; in contrast, TPM1, CASQ2, and CRYAB were significantly downregulated in papillary tumors
and non-papillary tumors than in non-cancerous tissues. Intriguingly, except for CRYAB, we found
that TPM1 and CASQ?2 were most significantly downregulated in “Luminal Papillary” tumors, while
the other genes were most significantly upregulated in subtype of “Neuronal” and “Basal squamous”
based on molecular subtyping (Table 2).

2.2. Literature Research

We retrieved seven bioinformatics studies for BCa biomarkers based on public database
analyses [9,29-34], and we compared the biomarkers in the present study with the ones that were
reported in the literature studies. We found that CRYAB and CASQ?Z2 were so far unrecognized as
biomarkers in previous studies. On the basis of Oncomine meta-analysis (https://www.oncomine.org/),
we here present the meta-analysis of the expression levels of the hub genes described, but not been
shown in our previous study (Figure 3 and Table S9). The genes compared in the meta-analysis
were CCNB1, CCNA2, KIF11, CDC20, UBE2C, MAD2L1, AURKA, KIF2C, CASQ2, CRYAB, and KIF20A.
Furthermore, except for the CRYAB and CASQ?2, which have been shown in our previous paper, we
constructed the expression body maps of the other 12 hub genes reported in our previous study using
GEPIA (http://gepia.cancer-pku.cn, accessed on Nov.11. 2019). Body maps are an impressive way to
visualize the differences in gene expression between normal and tumor tissues (Figure 4). Ultimately,
our research results were roughly in line with the majority of the retrieved studies.
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Table 2. Statistically significant difference of expression levels of target genes in subgroups.

50f12

Target Genes Race of Patients Gender of Patients Histological Subtypes Molebular Subtypes
CDK1 CAU () vs. ASI  p=8.829x107* Nvs. M (1) p < 1.000 x 10712 Nvs. PT (1) p=2109 x 10715 N vs. NET (1) p=5922x1078
AFA (T) vs. ASI  p=3.379 x 1073 Nvs. E(7) p=1554x 10715 N vs. NPT (1) p=1.624 x 10712 N vs. BST (1) p=1.624 x 10712
PT vs. NPT (1) p=3.872x1072 Nvs. LT (1) p=5.809x 1077
N vs. LIT (1) p=2824x10"12
N vs. LPT (1) p=1.625x10"12
CCNB1 CAU () vs. ASI  p=7479x 1077 Nvs. M (1) p=5311x10"13 Nvs. PT (1) p=2.949 x 10710 N vs. NET (1) p=1.620x 1075
AFA (T)vs. ASI  p=5221x107* Nvs. F (1) p =2.907 x 10712 N vs. NPT (1) p=2.631x10"1 N vs. BST (1) p=1.624x 10712
PT vs. NPT (1) p=2944 x1073 Nvs. LT (1) p=2202x107*
Nvs. LIT (1) p=4.952x1077
Nvs. LPT (1) p=3502x% 1077
CCNA2 CAU (1) vs. ASI  p=5.447x1078 Nvs. M (1) p=5311x10" Nvs. PT (1) p=4309 %1077 N vs. NET (1) p=5481x1077
AFA (T)vs. ASI  p=9.961 x107* Nvs. F(T) p=3.062x1078 N vs. NPT (1) p=4.395x 10710 N vs. BST (1) p=1.863x 10712
PT vs. NPT (1) p=6169x107* Nvs. LT (1) p=2176 x 1074
N vs. LIT (1) p=6473x1075
N vs. LPT (1) p=4.175x107°
KIF11 CAU (1) vs. ASI  p =5.620 x 1077 Nvs. M (1) p=5836x10"° N vs. PT (1) p=8989 x 1078 N vs. NET (1) p=4.693x1077
AFA (1) vs. ASI  p=1.065x107° Nvs. F(1) p=1.036x 1077 N vs. NPT (1) p=9.950 x 10710 N vs. BST (1) p=2290 x 10713
PT vs. NPT (1) p=6997 x 1073 Nvs. LT (1) p=1922%x107°
Nvs. LIT (1) p=4399 x 1073
N vs. LPT (1) p=5.848 x 1077
CDC20 CAU (1) vs. ASI  p=5.038 x 1073 N vs. M (1) p < 1.000 x 10712 Nvs. PT (1) p=1.691 x 10712 N vs. NET p=2.644x1078
AFAvs. ASI  p=3.077x1073 Nvs. F(1) p < 1.000 x 10712 N vs. NPT (1) p < 1.000 x 10712 N vs. BST p < 1.000 x 10712
PT vs. NPT (1) p=9.644 x 1075 Nvs. LT p=8558x10"8
N vs. LIT p=2198 x 1071
N vs. LPT p=3.194x 10714
UBE2C CAU (M) vs. ASI  p=6.099 x 1073 Nvs. M (1) p < 1.000 x 10712 Nvs. PT (1) p=1.624x10712 N vs. NET (1) p=1.045x1078
Nvs. F(7) p < 1.000 x 10712 N vs. NPT (1) p=1.624x10712 N vs. BST () p=1.624x10712
PT vs. NPT (1) p=1.429 x 1072 Nvs. LT (1) p=1.664 x 10710
N vs. LIT (1) p=1497x 1070
N vs. LPT (1) p=1.624x 10712
MAD2L1 CAU (M) vs. ASI  p=1.627x1077 N vs. M (1) p=4241x10714 N vs. PT (1) p=1634x10710 N vs. NET (1) p=4815x1077
AFA (1) vs. ASI  p=4381x107* Nvs. E(1) p=1488 x 10712 N vs. NPT (1) p=1.625x 10712 N vs. BST (1) p < 1.000 x 10712
PT vs. NPT (1) p=3153x 10~ Nvs. LT (1) p=1755x107°
N vs. LIT (1) p=1364x1077
N vs. LPT (1) p=1625x10710
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Target Genes Race of Patients Gender of Patients Histological Subtypes Molebular Subtypes
AURKA CAU (1) vs. ASI p=1565x 1077 Nvs. M (7) p < 1.000 x 10712 N vs. PT (1) p=6.550x 10715 N vs. NET (1) p=1539x 1077
AFA (1) vs. ASI p=1.629 x 107 Nvs. F(7) p < 1.000 x 10712 N vs. NPT (1) p < 1.000 x 10712 N vs. BST (1) p < 1.000 x 10712
PT vs. NPT (1) p=2.996 x 1073 N vs. LT (1) p=2259 x 10710
N vs. LIT (1) p=1487x 1071
Nvs. LPT (1) p=1.674x 10712
KIF20A CAU (1) vs. ASI p=6312x1077 Nvs. M (1) p=4398 x 1078 N vs. PT (1) p=2.500x 1077 N vs. NET (1) p=4343x1077
AFA (1) vs. ASI p=1179 x 107 Nvs. E(T) p=1725x10"° N vs. NPT (1) p="7345x107° N vs. BST (1) p=1373x107°
Nvs. LT (1) p=7.949 x 107>
N vs. LIT (1) p=8399 x 1074
Nvs. LPT (1) p=7846x1077
KIF2C CAU (1) vs. ASI p=1844x107° Nvs. M (1) p=1.624 x 10712 N vs. PT (1) p=7327x10715 N vs. NET (1) p=1387x1077
AFA (1) vs. ASI p=1828x107> Nvs. F(7) p < 1.000 x 10712 N vs. NPT (1) p=1.624x 10712 N vs. BST (1) p=1.624x 10712
PT vs. NPT (1) p=2143x1073 Nvs. LT (1) p=1563x10710
N vs. LIT (1) p=4494x10713
Nvs. LPT (1) p=1.625x 10712
KPNA2 CAU (1) vs. ASI p=2.028x10"% N vs. M (1) p=1364x10"11 N vs. PT (1) p=2.543x107° N vs. NET (1) p=1269x1078
AFA (1) vs. ASI p=1.019x 107 Nvs. F(7) p=2920x 1071 N vs. NPT (1) p=2.059 x 10712 N vs. BST (1) p=1.626x10712
PT vs. NPT (1) p=3.995x 107 N vs. LT (1) p=6.761x1077
N vs. LIT (1) p=9.536x 1078
Nvs. LPT (1) p=5829x1078
TPM1 CAU (1) vs. ASI p=2199 x 1071 Nvs. M ({) p=3.825x1073 Nvs. PT (}) p=3.180x 1073 N vs. NET (}) p=3.638x1073
AFA (1) vs. ASI p=7.136x1073 Nvs. F(]) p=4.022x1073 N vs. NPT () p=4757 x 1073 N vs. BST ({) p=4404x1073
PT vs. NPT (1) p=1321x107° N vs. LT (}) p=3798x1073
N vs. LIT (}) p=7343x1073
Nvs. LPT (}) p=2404 %1073
CASQ2 CAU (1) vs. ASI p = 2.406 x 1077 Nvs. M (]) p=4142x1073 N vs. PT (]) p=3.699 x 1073 N vs. NET () p=3.638x107°
AFA (1) vs. ASI p=4.344 x 1072 Nvs. F(|) p=3.979 x 1073 N vs. NPT (|) p=4741x1073 N vs. BST (|) p=4.404 x 1073
CAU vs. AFA (1) p=2.058 x 1072 PT vs. NPT (1) p=1379x107° Nvs. LT (}) p=3798x107°
N vs. LIT (]) p=7343x1073
Nvs. LPT (]) p=2404x1073
CRYAB CAU (1) vs. ASI p=4492x1078 PT vs. NPT (1) p=4366x 10
AFA (1) vs. ASI p=1.972 x 1072

The findings with p-value < 0.05 (Benjamini-Hochberg) were shown above. CAU (Caucasian), AFA (African American); ASI (Asian); male (M), n = 297; female (F), n = 105; Normal (N),
n = 19; papillary tumors (PT), n = 132; non-papillary tumors (NPT), n = 271; molecular subgroups: neuronal tumors (NET), n = 20; basal squamous tumors (BST, n = 142; luminal tumors

(LT), n = 26; luminal-infiltrated tumors (LIT): n = 78; luminal-papillary tumors (LPT) n = 142. p (p-value).
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Figure 3. Oncomine meta-analysis of Hub genes in bladder cancer (BCa) vs. non-cancerous tissue. Left

hand: median rank (median rank of the gene across each of the analyses); p-value (p-value for the

median-ranked analysis); color of the boxes indicate the percentile of the z-transformed expression

level of the gene in the particular study; right hand: p = (p-value reported in each of the studies); NA

(not measured in the study); (1) Blaveri et al., Clin Cancer Res, 2005 [35], invasive cancer samples n = 51,

normal bladder samples n = 3; (2) Dyrskjot et al., Cancer Res, 2004 [36], invasive cancer samples n = 13,

normal bladder samples n = 14; (3) Lee et al., ] Clin Oncol, 2010 [37], invasive cancer samples n = 62,

normal bladder samples n = 10; (4) Modlich et al. Clin Cancer Res, 2004 [38], invasive cancer samples

n = 20, normal bladder samples n = 4; and (5). Sanchez-Carbayoet al., ] Clin Oncol, 2006 [39], invasive

cancer samples n = 72, normal bladder samples 1 = 52.
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Figure 4. The expression body map of Hub genes. The median expressions of hub genes in tumors
were marked in red and normal tissues were marked in green. The map is based on the GEPIA database
(http://gepia.cancer-pku.cn), transcript per million (TPM).

3. Methods

The workflow of the current study is depicted in Figure 1, which has been published before [11].
For more detailed information of the datasets, materials and methods please refer to this article.

3.1. Data Source Identification and Data Mining

The quality control of microarray data was conducted by relative log expression (RLE) box plot
through R studio (version 1-1-463). Criteria were made for defining DEGs, compared the expression
levels between the non-cancerous tissues and cancer samples, where |[Log FC (fold change)| > 1 and a
p-value < 0.05 were considered statistically significant [15,40].

3.2. Acquisition of the Hub Genes

DEGs should at least be expressed in two different GEO datasets. The overlap between DEGs in
different datasets was determined by FUNRICH software (version 3.1.3) and 418 DEGs were identified.
Based on the interaction degree of 418 DEGs extracted from STRING database [14], cytoHubba
analysis [18,41] reported 376 hub genes, of which 135 hub genes fulfilled the criterion of degree >11.
However, to find the most important hub genes, we focused on the top 10 hub genes, all showing a
degree >80. Additionally, we included another four hub genes KPNA2, TPM1, CASQ?2, and CRYAB,
which not only significantly correlated with overall survival based on the results from Human Protein
Atlas, but also showed a degree >11 [15,40].
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3.3. Functional and Clinical Analysis of the Data

FUNRICH software concerned on DEGs consisted of 11 important modules, and DAVID
(Database for Annotation, Visualization and Integrated Discovery; version 6.7; http://david.ncifcrf.gov)
emphasized on the 418 DEGs and 14 Hub genes [42]. Both software packages were used to annotate,
visualize, and integrate the discoveries, and to extract the crucial biological information. We also used
DAVID to analyze the up- and downregulated genes, separately. A Benjamini-Hochberg FDR <0.05
was considered significant in DAVID and FUNRICH analyses. In addition, we performed GO and
KEGG analysis to identify the critical biological process (BP), cellular component (CC), molecular
function (MP), and essential pathways potentially related to the initiation and development of BCa.
p < 0.05 was considered statistically significant.

Clinical information was extracted from TCGA-BLCA using R software and, subsequently, the
expression levels of 14 hub genes in subgroups were analyzed based on tumor stage, lymph nodal
metastasis, race of patients, gender of patients, histological subtype, and molecular subtypes. To
evaluate the prognostic value of the identified DEGs, we did Kaplan-Meier survival analyses of overall
survival (OS) and disease-free survival (DFS). p < 0.05 was considered statistically significant.

3.4. Literature Retrieval and Oncomine Meta-Analysis

PubMed, EMBASE, Science Direct, and Google Scholar databases were used to search and identify
published results about bioinformatics analysis in BCa, via the Google search engine. The data
collection process was undertaken and ended in November 2019. The retrieval criteria were rigorous,
filtering with bioinformatics analysis and BCa, only 7 full-text papers were returned [9,29-34]. On
the basis of Oncomine database, 5 studies were relevant [35] and we gathered the information of the
14 hub genes from the 5 previous studies.

4. User Notes

The present report describes the character of the research “Identification of key biomarkers in
bladder cancer: Evidence from bioinformatics analysis” [11]. Furthermore, the present report provides
a convenient way to use extended datasets for biomarker discovery and hypothesis generation.

Supplementary Materials: We provide the supplementary Tables S1-S3 listing step by step the identification
process of the most promising DEGs. The DEGs listed in Table S3 were used during the following analysis
steps. We also indicated up- or downregulation of those DEGs (1; |) in bladder cancer. Table S4 provides the
376 hub genes defined by cytoHubba. Table S5 summarizes the clinical and gene expression data of the n = 406
TCGA-BLCA patients for the 14 hub genes, defined from their degree of network interaction and the 11 seed
genes, defined from the 11 most important modules. This table is the basis for the gene expression analyses.
Tables S6-58 summarize the results of the GO and KEGG pathway analyses. Table S9 provides the data of the
Oncomine meta-analysis. The data tables may be used to construct a complete data set after applying different
normalization strategies as cross-platform normalization or batch effects removal. This data set can be used as
a benchmarking data set for machine learning-based feature selection in data-driven biomarker research. The
following supplemental data are available online at http://www.mdpi.com/2306-5729/5/2/38/s1, Table S1: DESs
extracted from different dataset, Table S2: 726 DEGs extracted from 5 GEO datasets, Table S3: 418 DEGs in BCa,
Table S4: 376 Hub genes in BCa, Table S5: Clinical meta-data of 11 seed genes and 14 Hub genes, Table S6: GO and
KEGG results of 418 DEGs, Table S7: GO and KEGG results of 132 upregulated DEGs, Table S8: GO and KEGG
results of 286 downregulated DEGs, Table S9: Oncomine meta-analysis results of previous results.
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