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Abstract: In the context of data science, data projection and clustering are common procedures.
The chosen analysis method is crucial to avoid faulty pattern recognition. It is therefore necessary to
know the properties and especially the limitations of projection and clustering algorithms. This report
describes a collection of datasets that are grouped together in the Fundamental Clustering and
Projection Suite (FCPS). The FCPS contains 10 datasets with the names “Atom”, “Chainlink”,
“EngyTime”, “Golfball”, “Hepta”, “Lsun”, “Target”, “Tetra”, “TwoDiamonds”, and “WingNut”.
Common clustering methods occasionally identified non-existent clusters or assigned data points to
the wrong clusters in the FCPS suite. Likewise, common data projection methods could only partially
reproduce the data structure correctly on a two-dimensional plane. In conclusion, the FCPS dataset
collection addresses general challenges for clustering and projection algorithms such as lack of linear
separability, different or small inner class spacing, classes defined by data density rather than data
spacing, no cluster structure at all, outliers, or classes that are in contact. This report describes a
collection of datasets that are grouped together in the Fundamental Clustering and Projection Suite
(FCPS). It is designed to address specific problems of structure discovery in high-dimensional spaces.

Dataset: Available as a supplementary file in this submission. link http://www.mdpi.com/2306-5729/

5/1/13/s1.

Dataset License: CC-BY

Keywords: clustering; data projection; performance tests; benchmark standards; high dimensional
complex data

1. Summary

The exploration of high-dimensional data spaces is a challenge. Starting from four dimensions,
high dimensions become increasingly incomprehensible and the everyday experience of spatial
relationships between data points is replaced by strange phenomena for which the term “curse
of dimensionality” was coined [1]. It can be shown that as dimensionality increases, “space” is
concentrated on an ever smaller hypersurface [2]. The difference of the largest and smallest distances
disappears with increasing dimensionality. Furthermore, it is clear that high-dimensional spaces
generally do not fit into spaces of lower dimensionality, that is, projections from high-dimensional
spaces onto R2, or R3 must make errors.
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Projections into the R2 provide visualizations that improve the search for groups in the data
that have common properties, that is, improve clustering. This is essential for the exploration of
complex and large data. Due to the properties of high-dimensional spaces, these algorithms must
overcome unavoidable difficulties. In the context of data science and especially data mining and
knowledge discovery, this being the attempt to find new and previously unknown structures in
high-dimensional data, it is necessary to know the properties and especially the limits of projection
and clustering algorithms.

One approach to demonstrate the properties of such algorithms is the following: hand design
some canonical problems in low dimensions. If an algorithm is not able to solve such obvious problems,
the results for high-dimensional spaces may not be trustworthy. To facilitate this approach, the present
report describes a collection of datasets that are grouped together in the Fundamental Clustering and
Projection Suite (FCPS), which from the outset is focused on specific problems of structure-finding in
high-dimensional spaces. The FCPS has already been successfully for comparisons of the performance
of clustering or data projection algorithms, as reported previously [3–5].

2. Data Description

2.1. General Properties of the FCPS Datasets

The 10 datasets in this suite (Figure 1) pose different challenges for each clustering and/or projection
algorithm. FCPS is called fundamental because any suitable clustering and/or projection algorithm
should satisfactorily address these problems. The different subsets have been created to address
specific challenges to the clustering algorithms, such as lack of linear separability, different or small
inner class spacing, classes defined by data density rather than data spacing, no cluster structure at
all, outliers, or classes in contact. A summary of the basic characteristics is given in Table 1, specific
numerical properties are listed in Table 2, and the particular benchmarking problems associated with
each dataset are listed in Table 3.

Figure 1. Visualization of the datasets of the Fundamental Clustering and Projection Suite (FCPS) suite.
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Table 1. Basic properties of the components of the FCPS dataset.

Name Cases Dimensions Classes

Atom 800 3 2
Chainlink 1000 3 2
EngyTime 4096 2 2
GolfBall 4002 3 1
Hepta 212 3 7
Lsun 400 2 3

Target 770 2 6
Tetra 400 3 4

TwoDiamonds 800 2 2
WingNut 1016 2 2

Table 2. Properties of the cluster components of the FCPS dataset.

Name Hyperplane-Separable Changing
Variances

Typical Inner
Class

Distance1

Typical
Interclass
Distance2

Inter/Inner
Ratio

Atom 1 2.82 41.49 14.71
Chainlink 0.08 0.98 11.59
EngyTime 1 2.70 2.70 1.00
GolfBall 1.41 1.41 1.00
Hepta 1 1 0.58 3.07 5.32
Lsun 1 1 0.17 0.87 5.21

Target 1 0.07 2.19 30.23
Tetra 1 0.45 1.01 2.26

TwoDiamonds 1 0.08 1.09 13.34
WingNut 1 0.11 0.34 3.06

1.Typical inner class distance: median distance in inner classes Delaunay graph; 2 typical interclass distance: median
distance in inter classes Delaunay graph.

Table 3. Problems that the components of the FCPS suite of datasets pose on clustering or data
projection algorithms.

Name Key Problems

Atom Linearly not separable, different inner class distances
Chainlink Linear not separable
EngyTime Density defined classes
GolfBall No cluster structure
Hepta Different inner class variances
Lsun None

Target Outlier
Tetra Small inter class distances

TwoDiamonds Touching classes
WingNut Density variation within class

For the benchmarking of projection and/or clustering algorithms, a number of challenges have to
be considered. The first is whether clearly defined structures are maintained in principle. The simplest
structural feature is homogeneous data, that is, data that do not have a particular structure. The GolfBall
data set is the canonical example (Figure 1). All points have exactly the same distances to all other points.

A second basic property is that clearly defined, well-separated clusters, each enclosed in spheres,
should be visualized and clustered in exactly this way. The Hepta dataset works like this “does the
algorithm work at all” test. The Tetra dataset adds a small complication to this—the distances between
the different clusters are relatively small compared to the inner cluster distances. This can be seen in
the last column of Table 2, where the ratio of the inner and inter cluster distances falls from more than
30 for Hepta to less than 3 for Tetra.
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The Lsun dataset consists of three well-separated data classes, but with different convex hulls:
a sphere and two “bricks” of different size. This structural property raises the problem of different
variances or densities in the cluster.

With TwoDiamonds and WingNut, the problem of defining the boundary between two neighboring
clusters arises. In TwoDiamonds, two sets almost touch each other. In WingNut, there is a clear gap
between the two clusters, but the density at the gap varies.

The separability of hyperplanes, that is, that two n-dimensional datasets can be completely
separated by an n-1-dimensional hyperplane, is a property that is not always given for data, especially
in machine learning. Atom and chain link are canonical examples of datasets that are firstly clearly
divisible into two well-separated clusters and secondly cannot be separated by hyperplanes. These
datasets raise the problem that the cluster has to be “unbundled”.

Outliers are a problem with all real word data. Target provides a simple canonical problem with
four groups of outliers.

In some datasets, the boundaries between clusters may not be defined as “empty space” but rather
consist of local minima of data density. The EngyTime dataset is of this type.

2.2. Description of the Single Datasets

2.2.1. Chainlink

Chainlink is the canonical dataset for not hyperplane separable. That is, two clusters, these
being subsets of data A and B, are hyperplane (i.e., linear) separable in the Rn if a hyperplane of
dimensionality n-1 exists, such that A and B are on different sides of the hyperplane [6].

The Chainlink dataset consists of two classes. Each class is sampled uniformly from within a torus
with minor radius r = 0.1, and major radius R = 1. The two tori are orthogonally intertwined with
maximal distances in between. The main challenge is here the two quite distinct classes, which are,
however, not separable for any type of plane.

2.2.2. GolfBall

The GolfBall dataset has no class structure at all. It consists of 4002 points located on the surface
of a sphere, such that the distances from each point to its immediate neighbors (Delaunay distances)
are the same.

2.2.3. Lsun

Lsun contains 2D data with three distinct and linear separable classes of different shape. The Lsun
dataset consists of n = 400 points in three distinct groups on a plane. Two classes are drawn uniformly
distributed from within a 1 × 4 rectangle. These classes are arranged in the form of an “L” with a gap
in between. The third group is drawn from a two-dimensional independent and identically distributed
standard Gaussian centered at (3,2.5). Classes are well separated by a minimum distance of 0.6, and
the classes are linearly separable.

2.2.4. Atom

The Atom dataset contains 3D data similar to an atom kernel and hull. It consists of n = 400 points
in two distinct groups, “kernel” and “hull”. Both classes consist of n = 200 points. The “kernel” class is
drawn uniform from within a sphere placed at the origin with a radius of r = 10, whereas the “hull”
class data is drawn uniform within the surface of a sphere placed at the origin with a radius of r = 50.
The minimum inter class distance is 38. Classes are distinct, but are linearly not separable.

2.2.5. EngyTime

The EngyTime dataset is a density-defined 2D dataset obtained from a Gaussian mixture model
(GMM). It has been originally proposed by Baggenstoss [7]. It consists of two sets of points on a plane
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generated by a GMM. The Gaussian of the first class of 2048 points is centered at (0.5, 0.5), independent
and identically distributed with unit variance. The Gaussian of the second class of 2048 points is
centered at (2, 3), and with a variance of 2 and 1.6 oriented at the (x,−y) diagonal. Class membership is
determined by a Bayesian decision using the GMM. The classes are defined by the probability densities.
There is no distance gap between the two classes. The class separation surface is a parabola.

2.2.6. Hepta

The Hepta dataset represents seven very separate 3D clouds, one with a considerable larger
density than the others. The Hepta dataset consists of six classes with n = 30 points each, drawn
uniform from the unit cube centered at the ±3 points on the axes. The seventh class consists of n = 32
points drawn uniform-independent and identically distributed from a sphere of radius 0.15 centered at
the origin.

2.2.7. Target

The Target dataset poses the problem of outliers. It consists of two large classes with n = 395 and
n = 363 points on a plane located in a circle within a ring (linearly non separable). Furthermore, there
are four sets of only three points (outliers) located away from the ring.

2.2.8. Tetra

In the Tetra dataset, clusters are located close together. The Tetra dataset consists of four classes
with n = 100 three dimensional points in each. The points are drawn independent and identically
distributed from within a unit sphere. The centers of the spheres are located at a tetrahedron with an
edge length of 2.2.

2.2.9. TwoDiamonds

The TwoDiamonds dataset consists of two classes with n = 400 points in each. The points are
drawn independent and identically distributed from within a 45◦ rotated square of edge length
√

2 = 1.41, that is, one “diamond”. The center of the second diamond is moved along the x-axis, such
that the minimal distance between the closest points in the two classes is 0.09.

2.2.10. WingNut

The WingNut dataset has two classes and a density gradient within each class. It consists of two
equal-sized datasets with n = 508 points on a plane. Each set is located within a rectangle of size 3 × 2,
such that along one of the diagonals of the rectangle the density of the points is linearly increasing.
The densest edges of the rectangle are placed at the opposite ends of a gap with a minimum width of
0.3 between the rectangles.

3. Clustering and Data Projection

3.1. Performance of Different Clusteriung Algorithms

Traditional clustering algorithms tend to impose a structure on the data rather than identifying
the true structure in the data. As discussed previously [3], this is because the majority of clustering
algorithms use an implicit or explicit shape model for the structure of a cluster, such as a sphere in
k-means or a hyperellipsoid in Ward clustering. This means that for a given number of clusters k,
a clustering algorithm calculates the coverage of the data with k of these geometric shapes, whether or
not it matches the structure of the data. This can lead to incorrect cluster associations of samples or to
the imposition of cluster structures that are not present in the data. The effects are evident in the Ward
clustering results of for the five sample datasets selected (Figure 2). Only the TwoDiamonds dataset
was clustered correctly, whereas the clustering of the Chainlink, LsunWingNut, and Target datasets
was completely wrong. Similar problems arose for the k-means clustering algorithm, whereas the other
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example methods with single and complete linkage and the median methods were also performed
heterogeneously on different datasets. This shows that the use of these algorithms can lead to a wrong
cluster identification and thus can lead to distortions in research.

Figure 2. Examples of the resulting clusterings when applying different clustering methods to the FCPS
datasets. The figure has been created on the basis of results obtained with the R library “cluster” [8] and
with the “kmeans” command implemented in the base “stats” module of the R software package [9].

3.2. Performance of Different Data Projection Methods

The results for the various sample datasets, which were obtained using different methods of
data projection, were again heterogeneous (Figure 3). Although principal component analysis (PCA)
seemed to project the data correctly, with the exception of the three-dimensional tetra dataset, where
the groups partially overlapped (compare the 3D visualization in Figure 1), a subgroup or cluster
structure was imposed on the structureless GolfBall dataset by t-distributed stochastic neighborhood
embedding (t-SNE), which was analyzed in detail elsewhere [5]. This dataset was correctly projected
as cluster-free by the autoencoding neuronal network (ANN), which, however, tended to overlay the
grouped data points of the Tetra and dataset, at least with the actual parameters of the network.
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Figure 3. Examples of the resulting data projections when applying different projection methods to
data from the FCPS dataset. The figure has been created based on the principal component analysis
(PCA) impended in the R library “FactoMineR” [10], t-distributed stochastic neighborhood embedding
(t-SNE) analysis implemented in the R library “Rtsne” [11], and the autoencoding provided by the R
library “ANN2” [12].

4. Methods

Demonstrations of clusterings and data projections were created with the R software package
(version 3.6.2 for Linux; http://CRAN.R-project.org/ [9]) on an Intel Core i9 computer running Ubuntu
Linux 18.04.3 LTS 64-bit). A large number of frequently used methods were selected without attempting
to provide a complete set of clustering or data projection methods. For the present demonstration
purpose, the default hyperparameter settings implemented in the receptive R libraries were used.

Clustering problems were analyzed with the R-library "cluster" for hierarchical methods (https:
//cran.r-project.org/package = cluster [8]). In particular, Ward clustering [13], single and complete
linkage, and the median method [14] were used. The core R implementation was used for k-means-based
clustering. Clustering was limited to FCPS datasets with more than one single class, and in particular

http://CRAN.R-project.org/
https://cran.r-project.org/package
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to the datasets Chainlink, Lsun, TwoDiamonds, WingNut, and Target, which were proven to be suitable
for demonstrating the challenges they pose to standard clustering algorithms.

For the data projections, the selection of FCPS datasets was different. There, datasets without
any class structure were preferred, as it has been shown time and again that one of the weaknesses
of some data projection methods is the dizziness of apparent cluster structures in data without
such a structure [3,5]. Therefore, the GolfBall dataset was chosen. To demonstrate the power of
projection algorithms on different scenarios, the datasets Atom, Lsun, Target, and Tetra were also
used. As a data projection method, principal component analysis (PCA) [15] was chosen as a very
commonly used method. In addition, t-distributed stochastic neighborhood embedding (t-SNE [2])
was applied as a projection method, one that is currently widely used in biomedical research [5].
Furthermore, autoencoders were implemented, which use supervised learning multilayer feedforward
artificial neuronal networks (ANN) to extract the essential features of the structure of a dataset [16].
The analyses were performed using the R libraries “FactoMineR” (https://cran.r-project.org/package=

FactoMineR [10]) for PCA; “Rtsne” (https://cran.r-project.org/package=Rtsne [11]) for t-SNE, which
employs a Barnes–Hut implementation of the t-SNE algorithm speeding-up the computation [17]; and
“ANN2” (https://cran.r-project.org/package=ANN2 [12]) for the autoencoders.

Supplementary Materials: The FCPS is available as a zip package "FCPS.zip", which contains the 10 datasets
as comma separated file named as the respective dataset. The first column of each dataset contains the class
membership information, the subsequent columns contain the data point coordinates. http://www.mdpi.com/
2306-5729/5/1/13/s1
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