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Abstract: Neuro-fuzzy models have a proven record of successful application in finance. Forecasting
future values is a crucial element of successful decision making in trading. In this paper, a novel
ensemble neuro-fuzzy model is proposed to overcome limitations and improve the previously
successfully applied a five-layer multidimensional Gaussian neuro-fuzzy model and its learning.
The proposed solution allows skipping the error-prone hyperparameters selection process and shows
better accuracy results in real life financial data.

Keywords: time series; neuro-fuzzy; ensemble; model averaging; Gaussian; prediction; stochastic
gradient descent

1. Introduction

Time series forecasting is an important practical problem and a challenge for Artificial Intelligence
systems. Financial time series have a particular importance, but they also show an extremely complex
nonlinear dynamic behavior, which makes them hard to predict.

Classical statistical methods dominate the field of financial data and have a long history of
development. Nevertheless, in many cases they have significant limitations like restrictions on datasets,
require complex data preprocessing and additional statistical tests.

Artificial intelligence models and methods have been competing classical statistical approaches in
many domains including financial forecasting and analysis. Neuro-fuzzy systems naturally inherit
strengths of artificial neural networks and fuzzy inference systems, and have been successfully applied
to a variety of problems including forecasting. Rajab and Sharma [1] made a comprehensive review of
the application of neuro-fuzzy systems in business.

Historically, ANFIS—Adaptive Network Fuzzy Inference System, proposed by Jang [2], was the
first successfully applied neuro-fuzzy model and most of the later works have been based on it.

Examples of successfully applied ANFIS-derived models for stock market prediction are the
neuro-fuzzy model with a modification of the Levenberg–Marquardt learning algorithm for Dhaka
Stock Exchange day closing price prediction [3] and an ANFIS model based on an indirect approach
and tested on Tehran Stock Exchange Indexes [4].

Rajab and Sharma [5] proposed an interpretable neuro-fuzzy approach to stock price forecasting
applied to various exchange series.
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García et al. [6] applied a hybrid fuzzy neural network to predict price direction in the stock
market index, which consists of the 30 major German companies.

In order to improve results by further hybridization, neuro-fuzzy forecasting models in finance
were combined with evolutionary computing as, e.g., in Hadavandi et al [7]. Chiu and Chen [8] and
Gonzalez et al. [9] described models which use support vector machines (SVM) together with fuzzy
models and genetic algorithms. Another effective approach is to exploit the representative capabilities
of wavelets (for instance, Bodyanskiy et al. [10], Chandar [11]) and recurrent connections as in Parida et
al. [12] and Atsalakis and Valavanis [13]. Cai et al. [14] used ant colony optimization. Some optimization
techniques were applied to Type-2 models [15–17]. All such models benefit from combining the strengths
of different approaches but may suffer from the growth of parameters to be tuned.

Neuro-fuzzy models in general require many rules to cover complex nonlinear relations, which
is known as the curse of dimensionality. In order to overcome this, Vlasenko et al. [18–20] proposed
a neuro-fuzzy model for time series forecasting, which exploits multidimensional Gaussians ability
to handle nontrivial data dependencies by a relatively small number of computational units. It also
displays good computational performance, which is achieved through using a stochastic gradient
optimization procedure for tuning consequent layer units and an iterative projective algorithm for
tuning their weights.

However, this model also has its limitations, the biggest of which is the necessity to manually choose
training hyperparameters and the model sensitivity for this choice. Many different approaches may be
applied to hyperparameter tuning, but in general they are greedy for computational resources and may
require complex stability analysis. Another issue, despite generally good computational performance, is
the inability of the stochastic gradient descent learning procedure to utilize multithreading capabilities
of the modern hardware.

The remainder of this paper is organized as follows: Section 2 is devoted to the proposed model
architecture and learning, and Section 3 describes the data sets and contains experimental results.

2. Proposed Model and Inference

To solve the aforementioned problems, we propose an ensemble model and an initialization
procedure for it. It comprises neuro-fuzzy member models Me. The general architecture presented in
Figure 1.
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Each input pattern x(k) is propagated to all models Me. All models have the same structure which
is defined by three parameters—the length of input vector n, number of antecedent layer functions
hψ and number of consequent node functions hϕ (analogous to a number of polynomial terms in
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ANFIS). The difference is in the fourth layer parameters Ce, Qe, Pe which are initialized randomly
and then tuned during the learning phase. Matrix Ce represents all vector-centers of the consequent
layer functions, matrix Qe—their receptive field matrices (generalization of the function width) and
Pe—weights matrix.

Then all outputs are sent to the output node Σavg, which computes the resulting value ŷ as an
average value:

ŷ =

m∑
e=1

ŷe

m
where ŷe is a member model output, and m is the number of member models. Model averaging is
the simplest way to combine different models and achieve better accuracy under the assumption
that different models will show partially independent errors, which in turn may lead to better
generalization capabilities.

Detailed structure of a five layer member model introduced in [18] is depicted in Figure 2.
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Figure 2. Architecture of the member model.

Each member model performs an inference by the following formulae:

ŷe = pe
T fe(x(k))

where x(k) = (x1(k), x2(k), . . . , xn(k))
T is an input vector, pe is the weights vector (a vector representation

of the Pe matrix), and fe(x(k)) is a vector of normalized consequent function values:

fe(x(k)) = (ge1φe11(x(k)) . . . gehψφehψhφ(x(k)))

where hψ is the number of functions in the first layer and hϕ is the number of multidimensional
Gaussians in the fourth layer for each normalized output gel:

g je(k) =
g je(k)

hψ∑
j=1

g je(k)

=

n∏
i=1

ψ jle(xi(k))

hψ∑
i=1

n∏
i=1

ψ jle(xi(k))
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The initialization algorithm is shown in Figure 3. Its goal is to initialize member models before
training and set training parameters. Results from [18,20] show that βc and βQ hyperparameters, which
are dumping parameters for optimization of Ce and Qe, respectively, significantly influence accuracy of
the model prediction. According to this we create identical member models but set different values for
βc and βQ. Centers are placed equidistantly and identity matrices are used as receptive before training.
After models are created we can start training them in parallel.
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Figure 3. General algorithm of ensemble initialization.

The general training process is depicted in Figure 4. We use historical data as a training set and
feed vectors of historical gap values to each model. Then reference value y(k) is used to calculate error
ee for each local model. Error is then propagated and used to calculate deltas ∆m

{
Cm, Qm, Pm}

to adjust
the model’s free parameters Ce, Qe, Pe.

The training process is focused on multidimensional Gaussian functions of the fourth layer and
their weights.

Consequent Gaussians have the following form:

φaje(x(k)) = exp

−
(
x(k) − cφaje

)T
Q−1

aje

(
x(k) − cφaje(k)

)
2

,

where x(k) represents an input values vector, cφaje is a center of the current Gaussian, and Qaje is the
receptive field matrix. Figure 5 shows an example of an initialized Gaussian in a two-dimensional case.

The first-order stochastic gradient descent, based on the standard mean square error criterion,
is used for optimization of Ce and Qe. Stochastic gradient optimization methods update free model
parameters after processing each input pattern, and they successfully compete batch gradient methods,
which compute the full gradient over all dataset in batches, in real-life optimization problems including
machine learning applications [21,22]. Their main advantage arises from the intrinsic noise in the
gradient’s calculation. The significant disadvantage is that they cannot be effectively parallelized as
batch methods [23], but in the case of an ensemble model we can train member models in parallel.
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The center vectors cφejl ∈ Ce and covariance matrices Qejl ∈ Qe are tuned by the following procedure:



cφejl(k + 1) = cφejl(k) + λc
τc

ejl(k)e(k)

ηc(k)

ηec(k + 1) = βcηec(k) + τc
ejl

Tτc
ejl

Qejl(k + 1) = Qejl(k) + λQ
τQ

ejl(k)e(k)

ηeq(k)

ηeQ(k + 1) = βQeηeQ(k) + Tr
(
τQ

ejl
TτQ

ejl

)
,

where λc and λQ are learning step hyperparameters, βce and βQe are dumping parameters for the
current member model, vector τc

ajl and matrix τQ
ejl of back propagated error gradient values with
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respect to cφejl and Qejl.Vectors ηec and matrices ηeQ represent the decaying average values of previous
gradients. The algorithm initializes with ηec = ηeQ = 10, 000.

Figure 6 shows examples of multidimensional Gaussians from different local models after learning
is finished—they were initialized identically and trained on the same dataset, the only difference is in
random weights initialization and hyperparameters, which defined learning dynamics.
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3. Experimental Results

We used the following datasets in order to verify our model accuracy and computational
performance:

- Cisco stock with 6329 records.
- Alcoa stock with 2528 records.
- American Express stock with 2528 records.
- Disney stock with 2528 records.

Disney stock with 2528 records. The dataset has one column with numerical values. We selected
this dataset as a basis framework due to its well-studied properties and real-life nature. The original
datasets can be found in Tsay [24,25] and Table 1 contains a randomly chosen block of 10 lines from the
first one — both original raw values and normalized, which were used in order to properly compare
different models.

Table 1. Records example of the Cisco stock daily returns dataset.

Cisco Normalized

−0.05382 0.50755
0.01827 0.63085
−0.00909 0.58405
0.00909 0.61515
−0.02752 0.55253
−0.01878 0.56748
0.01878 0.63172
0.08895 0.75173
−0.00855 0.58498
0.01702 0.62871

We divided each dataset into a validation set of 800 records and a training set with the rest.
In addition to the proposed model, we performed tests with single neuro-fuzzy models and

competing models:

- Bipolar sigmoid neural network. To train the neural network, we used the well-known
Levenberg–Marquardt algorithm [26] and parallel implementation of the resilient backpropagation
learning algorithm (RPROP) [27] as the popular batch optimization methods.

- Support vector machines with sequential minimal optimization.
- Restricted Boltzmann machines as an example of a stochastic neural network. We also used a

resilient backpropagation learning algorithm for their learning.

We created custom software for the neuro-fuzzy model written on Microsoft. Net Framework
with the Math.NET Numerics package [28] as a linear algebra library. The Accord.NET package [29]
was used for the competing models’ implementations.

The experiments were performed on a computer with 32 GB of memory and with Intel® Core
(TM) Core i5-8400 processor (Intel, Santa Clara, CA, USA), which has six physical cores, a base speed
of 2.81 GHz and 9 mb of cache memory.

Root Mean Square Error (RMSE) and Symmetric Mean Absolute Percent Error (SMAPE) criteria
were used to estimate prediction accuracy:

RMSE =

√√√√√ N∑
k=1

(y(k) − ŷ(k))2

N
,
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SMAPE =
2
N

N∑
k=1

∣∣∣ŷ(k) − y(k)
∣∣∣

ŷ(k) + y(k)
,

where y(k) is a real value, ŷ(k) is a predicted value, and N is the training set length.
Visualization of the learning process is presented in Figures 8 and 9. Figure 8 shows the

improvement in the forecasting plot obtained by averaging.Data 2019, 4, x FOR PEER REVIEW 9 of 12 
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The proposed model, as can be seen from Table 2, allows better accuracy to be achieved by small
amount of member models and with a tolerable cost in computational resources.
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Table 2. Experimental results.

Model
Cisco Stock Daily Log Returns

Execution Time (ms) RMSE (%) SMAPE (%)

Proposed model m = 4, hφ = 2 196 4.007 5.08246

m = 6, hφ = 2 279 4.007 5.09458

m = 8, hφ = 2 361 4.104 5.16344

m = 12, hφ = 2 417 4.058 5.14296

Single model hφ = 2, βc = 0.65, βQ = 0.91 92 4.012 5.14493

Bipolar Sigmoid Network Resilient BackProp 307 4.022 5.14132

Bipolar Sigmoid Network Levenberg-Marquart 1377 4.054 5.16275

Support Vector Machine 10800 4.021 5.13844

Restricted Boltzmann Machine 210 4.018 5.14531

Alcoa Stock Daily Log Returns

Execution time (ms) RMSE (%) SMAPE (%)

Proposed model m = 4, hφ = 2 60 9.017 15.299

m = 6, hφ = 2 77 9.032 15.385

m = 8, hφ = 2 102 9.452 16.025

m = 12, hφ = 2 145 9.578 16.245

Single model hφ = 2, βc = 0.65, βQ = 0.91 27 9.111 15.377

Bipolar Sigmoid Network Resilient BackProp 192 9.894 16.667

Bipolar Sigmoid Network Levenberg-Marquart 472 9.896 16.711

Support Vector Machine 1136 9.910 16.634

Restricted Boltzmann Machine 72 9.889 16.663

American Express Stock Daily Log Returns

Execution time (ms) RMSE (%) SMAPE (%)

Proposed model m = 4, hφ = 2 102 10.028 16.880

m = 6, hφ = 2 154 10.001 16.998

m = 8, hφ = 2 189 10.044 17.022

m = 12, hφ = 2 211 10.045 17.025

Single model hφ = 2, βc = 0.65, βQ = 0.91 58 10.022 16.917

Bipolar Sigmoid Network Resilient BackProp 188 10.06 17.043

Bipolar Sigmoid Network Levenberg-Marquart 458 0.999 16.885

Support Vector Machine 1584 10.141 17.858

Restricted Boltzmann Machine 87 10.054 17.038

Disney Stock Daily Log Returns

Execution time (ms) RMSE (%) SMAPE (%)

Proposed model m = 4, hφ = 2 41 8.90 12.908

m = 6, hφ = 2 52 8.902 12.952

m = 8, hφ = 2 102 8.997 12.984

m = 12, hφ = 2 145 9.009 12.989

Single model hφ = 2, βc = 0.65, βQ = 0.91 27 8.960 12.983

Bipolar Sigmoid Network Resilient BackProp 166 8.991 12.953

Bipolar Sigmoid Network Levenberg-Marquart 468 9.024 12.985

Support Vector Machine 825 8.997 12.949

Restricted Boltzmann Machine 65 8.989 12.939
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4. Conclusions

In this paper, we introduced a novel ensemble neuro-fuzzy model for prediction tasks and a
procedure for its initialization. The model output is an averaging of the outputs of its members, which
are multiple input single output (MISO) models with multidimensional Gaussian functions in the
consequent layer. Such combination leads not only to better accuracy, but also significantly improves
the hyperparameter selection phase.

Software numerical simulations of real life financial data have demonstrated the good
computational performance due to lightweight member models and ability to train them in parallel.
Prediction accuracy of our model has been compared to single neuro-fuzzy models and well-established
artificial neural networks.
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