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Abstract: Sisal is widely cultivated in tropical areas for fiber production. The main sisal cultivar,
Agave H11648 ((A. amaniensis X A. angustifolia) X A. amaniensis) has a relatively scarce molecular basis
and no genomic information. Next-generation sequencing technology has offered a great opportunity
for functional gene mining in Agave species. Several published Agave transcriptomes have already
been reused for gene cloning and selection pressure analysis. There are also other potential uses of
the published transcriptomes, such as meta-analysis, molecular marker detection, alternative splicing
analysis, multi-omics analysis, genome assembly, weighted gene co-expression network analysis,
expression quantitative trait loci analysis, miRNA target site prediction, etc. In order to make the best
of our published transcriptome of A. H11648 leaf, we here represent a data descriptor, with the aim to
expand Agave bio information and benefit Agave genetic researches.

Dataset: https://www.ncbi.nlm.nih.gov/sra/SRP132128
Dataset License: CC-BY
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1. Introduction

Sisal is an important fiber crop in tropical areas around the world [1]. The main sisal cultivar is
Agave H11648 ((A. amaniensis X A. angustifolia) X A. amaniensis), which has been widely cultivated in
American, African and Asian countries [2]. The long life-cycle of A. H11648 has significantly restricted
genetic improvement by traditional breeding, which makes plant biotechnology an efficient way to
improve its fiber quality and yield [3]. The molecular basis of Agave species is lacking compared with
model plants [4]. The large genomes also challenge researchers to reveal the Agave secret [5]. In recent
years, the fast development of next-generation sequencing has brought an efficient method for gene
mining in minor crops [6]. Till now, next-generation sequencing has been successfully carried out in
several Agave species, which revealed the transcriptome dynamics of different tissues in A. deserti and
A. tequilana, crassulacean acid metabolism (CAM) photosynthesis in A. americana, shoot organogenesis
in A. salmiana and drought stress response in A. sisalana [7-10]. As the leaf is the main vegetative
part above ground and used for fiber production, we have conducted the transcriptome analysis of A.
H11648 leaf as a reference for gene mining in our previous study [11]. Several full-length cellulose
synthase genes were cloned in A. deserti, A. tequilana, A. americana and A. H11648 according to their
transcriptomes, which provides an approach for the reuse of published Agave transcriptomes. Besides,
these datasets can also be used for selection pressure analysis to estimate the domestication patterns
of Agave species [12]. Here, we present a data descriptor of A. H11648 leaf transcriptome dataset, in
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order to make the best of it. The dataset aimed to expand Agave bio information and benefit Agave
genetic researches.

2. Results

2.1. Illumina Sequencing and De Novo Assembly

A. H11648 leaf samples were collected for RNA isolation and library construction. Illumina
paired-end sequencing generated 60,791,648 raw reads, from which 49,252,060 clean reads were filtered.
98.97% and 96.10% clean bases had quality scores above 20 and 30, respectively (Figure 1). The GC
content was 48.86% (Figure 2) and the error rate was 0.0117%. De novo assembly generated 148,046
unigenes and the total length was 76,779,911 base pairs (bp). The mean length, median length and N50
length were 518.63 bp, 330 bp and 591 bp, respectively. Fragments per kilobase of exon per million
reads mapped (FPKM) values were calculated to estimate the expression patterns of each unigenes
(Table S1). Among these, there were 41405 (27.97%), 44598 (30.12%), 46351 (31.31%), 12016 (8.12%) and
3676 (2.48%) unigenes within the FPKM values ranging from 0-1, 2-3, 4-15, 16-60 and >60, respectively
(Figure 3).
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Figure 1. Quality scores of the left-end (a) and the right-end (b) raw reads. Blue and red lines represent
median and mean scores, respectively.

- wal 90

80 80

® 123456788 1513 3034 4549 60-64 7579 40-04 105-108 125-12¢ 145-149 O 12 3 4 5 6 7 B 9 15-19 30-34 4540 60-64 75-79 90-94 105-109 125-130  145-149

Positlon In read (bo) Pasition In read (be)

(a) (b)

Figure 2. Nucleotide bases distribution of left-end (a) and right-end (b) raw reads.
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Figure 3. Count numbers of unigenes at different FPKM ranges.

2.2. Value of the Data

This dataset was primarily established as a reference transcriptome for gene mining in A. H11648,
which also provided an important resource for molecular biology and genetic studies in Agave species.
There were a series of potential uses with the dataset, such as meta-analysis, gene cloning, selection
pressure analysis, molecular marker detection, alternative splicing analysis, multi-omics analysis,
genome assembly, weighted gene co-expression network analysis, expression quantitative trait loci
analysis, miRINA target site prediction, etc. [8,11-17].

2.3. Data Records

The raw data have been deposited to Sequence Read Archive (SRA) under the accession
of SRP132128. The BioProject, BioSample and SRA ID are PRJNA432160, SAMNO08435960 and
SRR6668799, respectively.

3. Materials and Methods

3.1. Plant Material and RNA Isolation

The A. H11648 plants have been planted in Wenchang experimental field (19°32'19” N 110°46’08”
E) of Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences
since 2013. Developing leaves were selected for sampling from the upper portion of 3-year-old plants.
The distal parts of leaves (leaf length < 30 cm) were cut for sampling. Leaf samples were collected
from three individuals for RNA isolation. Total RNAs were isolated with a Tiangen RNA Prep Pure
Plant Kit (Tiangen Biomart, Beijing, China) according to the instruction of the manufacturer’s protocol.

3.2. Library Construction and Illumina Sequencing

Equal mass of the three RNA samples were mixed together and sent to Genoseq Technology
Co. Ltd (Wuhan, Hubei, China) for next-generation sequencing. Ten micrograms of RNA were used
for cDNA library construction [11,18]. The mRNAs were obtained after purification with poly-T
oligo-attached magnetic beads, which were subjected for fragmentation with TruSeq RNA Sample Prep
Kit (Illumina, San Diego, CA, USA). Random hexamer primer and M-MuLV Reverse Transcriptase
(RNase H) were used for first-strand cDNA synthesis. The second-strand cDNA was synthesized by
DNA Polymerase I and RNase H. The ends of these double-stranded cDNA fragments were modified
with a single A base and adaptors. After gel purification, adaptor-attached fragments were utilized for
PCR amplification, with the aim to construct a cDNA library. Illumina sequencing was carried out
with the Illumina HiSeq platform to generate 150 bp paired-end raw reads.
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3.3. Data Processing

The quality of all reads was evaluated by FastQC software [19]. Adaptor sequences were removed
by Cutadapt [20]. Low-quality sequences were filtered by Trimmomatic [21]. The clean data were
subjected to Trinity for de novo transcriptome assembly [22]. Gene expression levels were estimated by
RNA-Seq by Expectation-Maximization (RSEM) and normalized to FPKM [23,24].

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5729/4/2/62/s1, Table
S1: FPKM values of unigenes in Agave H11648.
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