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Abstract: This article aims to provide new results about the intraday degree sequence distribution
considering phone call network graph evolution in time. More specifically, it tackles the following
problem. Given a large amount of landline phone call data records, what is the best way to summarize
the distinct number of calling partners per client per day? In order to answer this question, a series of
undirected phone call network graphs is constructed based on data from a local telecommunication
source in Albania. All network graphs of the series are simplified. Further, a longitudinal temporal
study is made on this network graphs series related to the degree distributions. Power law and
log-normal distribution fittings on the degree sequence are compared on each of the network graphs
of the series. The maximum likelihood method is used to estimate the parameters of the distributions,
and a Kolmogorov–Smirnov test associated with a p-value is used to define the plausible models.
A direct distribution comparison is made through a Vuong test in the case that both distributions are
plausible. Another goal was to describe the parameters’ distributions’ shape. A Shapiro-Wilk test
is used to test the normality of the data, and measures of shape are used to define the distributions’
shape. Study findings suggested that log-normal distribution models better the intraday degree
sequence data of the network graphs. It is not possible to say that the distributions of log-normal
parameters are normal.

Keywords: longitudinal; degree distribution; network graph; phone call data; power law; log-normal

1. Introduction

Most studies related to phone call network graphs are based on mobile call data [1–7] rather
than on landline phone call data [8–11]. Network graphs are seen as static, and rarely [11,12] are
they pursued in temporal studies. A local telecommunicating data set from Albania was used in [10]
to construct a static network graph. The tails of the empirical distributions were analyzed on the
greatest connected component related to: the number of phone calls per client, the total duration of
calls per client in seconds, and the distinct number of calling partners per client. The network graph
was considered in both cases, directed and not directed. A comparison between power law (PL) and
log-normal (LN) fit was made in the tail of the distributions, but it could not be concluded which of
them had a determinate dominance over the other. Tail analysis in vertex degree or vertex strength
distribution in communication network graphs is important because it gives information about hubs
and rare events. Hubs are highly connected vertices, which are hypothesized to act as focal points for
the convergence or divergence of information.

Considering the network graph as static, and the concentration only at its greatest connected
component may have influenced our findings in [10]. This study aims to provide new results about
the intraday degree sequence distribution considering phone call network graph evolution in time.
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Phone call communication relations have a survival time. Network graph evolution in time is
related to the network graph’s topology state, which is in a continuous change. A day’s snapshot is
used to show the topology state of the network graph in a time point.

This article tackles the following problem. Given a large amount of landline phone call data
records, what is the best way to summarize the distinct number of calling partners per client per day?
In order to answer this question, I construct an undirected phone call network graphs series, with
all network graphs of the series simplified. Further, a longitudinal temporal study is made on this
network graph series related to the degree distributions. PL and LN are compared on each of the
degree sequences of the network graph series.

The vertex degree is related to the number of distinct callers and the number of distinct subjects
that are called by an active phone client. This relation is conditioned by the fact that the network
graphs are undirected and simplified. The analysis aimed to determine the distribution that yielded
a better fit to model the data related to the degree sequence in each time step. It is shown that the LN
model is better, mainly because it covers a large amount of data, and it was determined by the tests to
be more reliable than the PL model. I also considered the distributions’ shape of the LN parameters
and described them. The results show that the distributions of LN parameters were not normal.

2. Materials and Methods

2.1. Data Preparation

The data set is provided by a local telecommunicating operator positioned in the south of
Albania, which covers approximately 4% of the landline market in the country. Clients’ identities
were substituted with numbers to conserve privacy (see Supplementary Material). The study is based
only on phone calls inside the operator’s client network, and not outside it. The reason for this
restriction is based on the evidence that phone number data which did not belong to the operator
would be incomplete.

Phone calls took place in November 2014. On 28 November, Albania celebrates Independence
Day, and on the 29th, Liberation Day. From a total of 81,591 phone calls, 41, which were without call
durations, and 7442, which lasted less than 10 s, were excluded from the study. The reason for this
exclusion is that these calls were lost calls or wrong numbers and might have affected the accuracy
of the results. Thus, the total data set used for the study was 90.83% of the initial data set. Active
clients are considered only those that were engaged in at least in one phone call (made or received)
that lasted at least 10 s, amounting to a total number of 3287. Multiple phone call relations between
any two clients were treated as single phone call relations. This statistical technique, about filtering
and extracting the best sample that would reflect the global calling patterns related to the number of
calling partners per client, has been applied by other authors in telecommunication data [1,2].

Degree distribution in the communication system was studied by observing 30 network graphs,
which were constructed by splitting the data set for each day of the month. The network graphs
are denoted by Gi = (Vi, Ei). The vertex set (active phone clients) is Vi, and the edge set is Ei (G1

is the network graph of the first day of the month, G2 for the second day, and so on). Each edge
represents a communication relation between two phone clients. Thus, if v1 and v2 are vertices,
then an undirected edge (v1, v2) is between them only if v1 has made or received at least one phone
call from v2 or the reverse. Multiple relations between two vertices are simplified as only one edge.
In Table 1, the topology techniques various authors have used are mentioned. The table includes the
following information: the type of telecommunication data, the time interval, the relation’s direction,
the relation’s mutuality, the relation’s simplification, and the relation’s weight. There is no precise
topology technique on how to treat mobile or landline data. Variability depends on the goal of the
scientific research.

G1, G2, . . . , G30 is defined as the temporal network graph series. The network graph Gi is
constructed based only on the data of the i-th day. Vertex degree [13] in a network graph is defined
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as the number of edges incident on that vertex. Let dv denote the degree of the vertex v and, with{
di

v
}

v∈Vi
, the vertex degree sequence of Gi. The fraction of vertices v that have dv = x is denoted by px.

This can also be interpreted as—the probability that a vertex chosen uniformly at random has a degree
equal to x. The set of {px}x≥0 defines the degree distribution of the network graph.

Table 1. A general overview of topology statistical techniques used to analyze phone call data.
Abbreviations: m: months; w: weeks; d: days; -: not applicable.

Authors Data Time Directed Mutual Simplified Weighted

Nanavati et al. [1,2] mobile 1 w, 1 m yes no yes no
Seshadri et al. [3] mobile 2 m no yes yes yes

Dong et al. [4] mobile 1 m no no yes no
Onnela et al. [6,7] mobile 18 w no Both (yes, no) - yes

Ye et al. [12] mobile 10 d yes no no no
Noka (Jani) & Hoxha [5] mobile (calls, SMS) 1 m no yes - yes

Aiello et al. [8,9] landline 1 d yes no no no
Gjermëni & Ramosaco [10] landline 1 m Both (yes, no) no yes yes

2.2. Temporal Statistical Analysis

At first, for each of the network graphs of the series {Gi}30
1 , the vertex degree sequence

{
di

v
}

v∈Vi

was computed. The normality of
{

di
v
}

v∈Vi
was controlled. Thus, a histogram and Q–Q plot were

constructed. The Shapiro-Wilk test was performed on the degree sequence, and the basic statistics were
calculated. If the p-value of the test [14–16] was less than chosen alpha level 0.05, it was considered as
evidence that the data did not come from a normally distributed population.

Skewness [17] and kurtosis were used to determine whether the empirical distribution was
heavy-tailed. Increasing kurtosis was associated with the “movement of probability mass from the
shoulders of a distribution into its centre and tails” [18]. Leptokurtic distributions (kurtosis values are
greater than 3) partly comprise heavy-tailed distributions [19]. Probability distribution functions that
decay slower than an exponential are called heavy-tailed distributions. According to [20], a distribution
is heavy-tailed if and only if its tail function is a heavy-tailed function. A non-negative function is said
to be heavy-tailed if it fails to be bound by a decreasing exponential function.

PL and LN distributions are heavy-tailed. These distributions are chosen to be fitted on data for
x ≥ xmin, because it is not always possible to get a good fitting for all the data. A random variable X
follows a PL distribution for X ≥ xmin if its probability mass function P(X ≥ xmin) is

f (x, xmin) =
x−α

ζ(α, xmin)

where ζ(α, xmin) = ∑∞
x=xmin

x−α is the general ζ−Riemann function. α is the scaling parameter of the
distribution. A random variable X follows a LN distribution for X ≥ xmin if

f (x, xmin) =
2√

2πσx

[
erfc

(
ln xmin − µ√

2σ

)]−1
exp

[
− (ln x− µ)2

2σ2

]
.

µ and σ are parameters of the distribution. The estimation procedure is based on the maximum
likelihood method [21,22]. This technique is also applied by other authors [23].

The Kolmogorov–Smirnov statistic (KS) is used to determine goodness-of-fit, and the p-value
based on 2500 instances of bootstrapping is computed for each of the fittings. Small KS values, and
p > 0.1 suggest that the fitted distribution is a plausible one for the set of the data, such that x ≥ xmin.
If p ≤ 0.1, then it is said that the data does not come from either a PL or an LN distribution. A reliable
p-value is obtained when the number of data in the tail of the distribution, ntail , is greater than 100 for
PL and greater than 300 for LN [21,22].

When both PL and LN are plausible models for the data, a Vuong log likelihood test [24] between
them is computed. The sign of the log likelihood ratio,R, can be reliably used to determine which of
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the models is better than the other if the p-value is less than 0.1. Otherwise, both models are considered
equally plausible.

After that, a box plot description of temporal change on the estimated parameters of the
distributions αi, µi, σi and their estimated xi

min for i = 1, 30 is constructed. Three cases are considered:

• Case 1: the fitting made from 1;
• Case 2: the fitting made from the estimated xmin of each distribution;
• Case 3: the fitting made from the min

(
xPL

min, xLN
min
)
, where both distributions are plausible.

Furthermore, a shape description of parameter distributions of the best-fitted degree distribution
models is made. A visualization of the log–log plots of the complementary cumulative distribution
function (CCDF) (P(dv ≥ x)) is provided for Case 1, 2, and 3 at G1 and G30.

The statistical computation related to these distributions are made based on the following packages
in the R statistical computation platform [25]: poweRlaw [26], fBasics [27], igraphdata [28], and
igraph [29].

3. Results

After constructing the undirected landline phone call network graphs series, each of the network
graphs of the series is simplified. Further, the data set I analyze here is the degree sequence

{
di

v
}

v∈Vi

of each Gi where i = 1, 30. In this section, the results of the study are presented. They are divided into
two subsections.

3.1. Descriptive Analysis of Degree Values

In Figure 1 and Table 2, an illustration for the case of G1 and G30 related to the histogram and
Q–Q plot and the basic statistics for the set of degree values are shown. For all Gi, based on the Q–Q
plots, a strong deviation from the straight line can be seen. Moreover, after running the Shapiro-Wilk
normality test in each of them, the p-values were always less than 2.2× 10−16 < 0.05. This means that
the data did not come from a normal distribution.
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Figure 1. These are the histograms and the Q–Q plots of degree values of G1 and G30. Histogram axes
are logarithmic.
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Table 2. A summary of some basic statistics for the set of degree values of G1 and G30.

Basic Stats G1 G30

Minimum 1 1
First Quartile 1 1

Median 2 2
Third Quartile 3 3

Maximum 66 49
Mean 2.79 2.77

Skewness 7.25 5.77
Kurtosis 108.41 57.91

Mode 1 1

Furthermore, for all Gi,

• the degree sequence is unimodal;
• the mode is 1;
• mean > median > mode;
• the peak of the data is on the left and the right tail is longer;
• skewness is greater than 1;
• kurtosis is greater than 3.

This means that, in all degree sequences
{

di
v
}

v∈Vi
, a highly right (positively) skewed distribution

is present. They are leptokurtic and heavy-tailed.

3.2. Statistical Analysis of Fitted Distributions

The results of the estimated α and xmin for the PL distribution are given in Table 3. Information
about the total number of data n in

{
di

v
}

v∈Vi
, as well as the quantity of the data that are in the tail of

the distribution ntail , is also given. Based on p-values where p ≤ 0.10, PL is rejected only once out of
30 (G20). The p-value is not reliable in six cases (G7, G10, G12, G15, G16, G26), since ntail < 100.

The results for the estimated parameters, σ, and xmin for the LN, information about the total
number of data n in

{
di

v
}

v∈Vi
, and the quantity of data in the tail of the distribution ntail is given in

Table 4. Based on p-values (p ≤ 0.10), LN is rejected three times out of 30 (G2, G12, G21). The p-value
is always reliable, since ntail > 300 in all the cases. For each Gi, the KS value of LN is always lower
than the corresponding KS value of PL.

Table 3. Parameter estimates and the goodness-of-fit (KS) for the power law (PL) distribution.

Gi n
PL

xmin (ntail) α KS (p)

1 1597 5 (245) 3.27 0.02 (0.665)
2 1428 6 (153) 3.95 0.04 (0.274)
3 1561 5 (276) 3.07 0.03 (0.195)
4 1534 8 (108) 3.78 0.03 (0.813)
5 1522 7 (117) 3.64 0.03 (0.459)
6 1530 7 (132) 3.49 0.03 (0.509)
7 1531 9 (74) 3.66 0.02 (0.895)
8 1560 6 (199) 3.37 0.03 (0.388)
9 1487 7 (110) 3.64 0.03 (0.801)

10 1564 9 (76) 3.69 0.03 (0.846)
11 1545 7 (131) 3.67 0.03 (0.819)
12 1531 8 (97) 3.46 0.04 (0.274)
13 1547 7 (121) 3.58 0.04 (0.359)
14 1552 7 (133) 3.69 0.02 (0.988)
15 1555 9 (79) 3.88 0.04 (0.569)
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Table 3. Cont.

Gi n
PL

xmin (ntail) α KS (p)

16 1554 8 (90) 4.11 0.02 (0.992)
17 1555 6 (195) 3.43 0.03 (0.483)
18 1560 7 (126) 3.42 0.03 (0.653)
19 1494 5 (235) 3.24 0.03 (0.204)
20 1568 5 (257) 3.31 0.04 (0.062)
21 1523 7 (137) 3.61 0.04 (0.192)
22 1505 7 (130) 3.49 0.03 (0.489)
23 1479 7 (117) 3.87 0.04 (0.377)
24 1512 5 (247) 3.14 0.02 (0.682)
25 1559 5 (260) 3.15 0.03 (0.204)
26 1545 10 (60) 3.78 0.03 (0.702)
27 1530 6 (163) 3.35 0.04 (0.130)
28 1505 6 (176) 3.18 0.04 (0.253)
29 1524 7 (127) 3.49 0.03 (0.528)
30 1472 6 (151) 3.58 0.02 (0.819)

Table 4. Parameter estimates and the goodness-of-fit (KS) for the log-normal distribution.

Gi n
LN

xmin (ntail) µ σ KS (p)

1 1597 1 (1597) 0.48 0.93 0.01 (0.196)
2 1428 1 (1428) 0.52 0.88 0.01 (0.016)
3 1561 3 (619) 0.38 0.99 0.01 (0.793)
4 1534 2 (906) 0.83 0.84 0.01 (0.239)
5 1522 2 (913) 0.79 0.81 0.01 (0.426)
6 1530 1 (1530) 0.54 0.93 0.01 (0.184)
7 1531 4 (400) 0.12 1.03 0.01 (0.703)
8 1560 1 (1560) 0.56 0.95 0.01 (0.251)
9 1487 1 (1487) 0.52 0.90 0.00 (0.948)

10 1564 1 (1564) 0.50 0.95 0.00 (0.876)
11 1545 2 (932) 0.71 0.86 0.01 (0.424)
12 1531 1 (1531) 0.49 0.96 0.01 (0.037)
13 1547 1 (1547) 0.53 0.92 0.01 (0.653)
14 1552 2 (949) 0.84 0.81 0.01 (0.247)
15 1555 1 (1555) 0.47 0.97 0.00 (0.969)
16 1554 2 (910) 0.78 0.81 0.01 (0.556)
17 1555 2 (926) 0.72 0.88 0.01 (0.413)
18 1560 4 (397) −0.52 1.16 0.01 (0.895)
19 1494 1 (1494) 0.51 0.92 0.00 (0.898)
20 1568 1 (1568) 0.56 0.90 0.01 (0.162)
21 1523 1 (1523) 0.57 0.93 0.02 (0.009)
22 1505 2 (894) 0.74 0.87 0.01 (0.464)
23 1479 2 (859) 0.81 0.80 0.01 (0.223)
24 1512 1 (1512) 0.5 0.95 0.01 (0.622)
25 1559 1 (1559) 0.48 0.96 0.01 (0.379)
26 1545 1 (1545) 0.47 0.99 0.01 (0.467)
27 1530 3 (577) 0.10 1.03 0.01 (0.871)
28 1505 1 (1505) 0.52 0.95 0.01 (0.590)
29 1524 2 (917) 0.66 0.89 0.01 (0.740)
30 1472 2 (882) 0.74 0.80 0.01 (0.488)

Information about the LN and PL distribution, for cases where both are plausible, is shown in
Table 5. Since min

(
xPL

min, xLN
min
)
= xPL

min, it can be said that LN is conditioned by PL. The sign of the log
likelihood ratio,R does not reliably determine which of the models is better than the other, because
p-value is not less than 0.1. In this way, both models are considered equally plausible. “-” denotes
cases where no comparison between LN and PL can be made, because they are defined as not plausible
when x ≥ min

(
xPL

min, xLN
min
)

(G2, G12, G20, G21).
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Table 5. Results of the Vuong log likelihood ratio testR for LN and PL.

Gi
LN Conditioned by PL LN vs. PL

xmin (ntail) µ σ R p

1 5 (245) −3.36 1.59 0.516 0.606
2 - - - - -
3 5 (276) −0.02 1.08 1.232 0.218
4 8 (108) −490.96 13.36 0.268 0.788
5 7 (117) −48.44 4.40 0.087 0.931
6 7 (132) −5.14 1.77 0.328 0.743
7 9 (74) −10.23 2.22 0.114 0.909
8 6 (199) −7.20 2.03 0.253 0.8
9 7 (110) −505.22 13.89 -0.007 0.994

10 9 (76) −512.04 13.85 0.424 0.671
11 7 (131) −519.53 14.02 0.459 0.647
12 - - - - -
13 7 (121) −123.13 7.00 0.342 0.732
14 7 (133) −266.38 10.02 0.052 0.958
15 9 (79) −20.99 2.88 0.063 0.95
16 8 (90) −440.36 11.97 −0.032 0.975
17 6 (195) −2.79 1.48 0.447 0.655
18 7 (126) −1.35 1.29 0.458 0.647
19 5 (235) −0.21 1.07 0.928 0.353
20 - - - - -
21 - - - - -
22 7 (130) −2.56 1.45 0.361 0.718
23 7 (117) −5.83 1.71 0.243 0.808
24 5 (247) −6.89 2.09 0.399 0.69
25 5 (260) −0.66 1.19 0.855 0.393
26 10 (60) −490.04 13.32 0.081 0.936
27 6 (163) −3.12 1.55 0.0378 0.705
28 6 (176) −0.26 1.14 0.772 0.44
29 7 (127) −6.08 1.88 0.185 0.85
30 6 (151) −2.60 1.40 0.411 0.68

Box plots of the temporal change on the estimated parameters of the distributions αi, µi, σi and
their estimated xi

min for i = 1, 30 are shown in Figure 2. Case 1 is based on box plots LN1 and PL1;
Case 2 is based on box plots LNxmin and PLxmin ; Case 3 is based on box plots LNxmin−PL .

Figure 2. Box plots of temporal changes of xmin and parameters α, µ, σ of the distributions.
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It was found that between weekdays, weekends, and holidays, there was no substantial change
related to the degree sequence of the network graph. The PL was not rejected in either of the weekends
or holidays, but it was not reliable for one of the weekends (G16, G17). LN was rejected for one of the
weekend days (G2) but was otherwise always reliable. For weekdays, PL and LN models were both
rejected and accepted.

Some statistics about the temporal change of LN parameters are given in Table 6. A shape
description of the LN parameter distribution is given as follows:

1. µ: In all three cases, µ does not come from a normal distribution, and its shape is described
as follows:

• Case 1: approximately symmetric and platykurtic;
• Case 2: highly negative skewed and leptokurtic;
• Case 3: highly negative skewed and platykurtic.

2. σ: In Cases 1 and 2, based on the Shapiro-Wilk test, the normal distribution was not rejected, but
it was in Case 3. The shape of the σ distribution is described as follows:

• Case 1: approximately symmetric and platykurtic;
• Case 2: moderately skewed and platykurtic;
• Case 3: moderately skewed and platykurtic.

Table 6. A summary of statistics related on the temporal change of LN parameters.

Statistics
µ σ

LN1 LNxmin LNxmin−PL LN1 LNxmin LNxmin−PL

Minimum 0.47 −0.52 −519.53 0.88 0.80 1.07
First Quartile 0.48 0.48 −230.57 0.93 0.87 1.46

Median 0.51 0.52 −6.49 0.95 0.93 1.96
Third Quartile 0.53 0.71 −2.65 0.94 0.96 9.27

Maximum 0.57 0.84 −0.02 0.99 1.16 14.02
Mean 0.51 0.53 −133.67 0.94 0.92 4.99
Stdev 0.03 0.27 208.53 0.03 0.08 5.11

Skewness 0.31 −2.04 −1.05 −0.28 0.64 0.89
Kurtosis −1.09 5.67 −0.80 −0.31 0.85 −1.06

p-value (Shapiro-Wilk) 0.045 2.2 × 10−5 7.63 × 10−7 0.43 0.09 6.2 × 10−6

Figure 3 shows a visualization of the log–log plots of the CCDF (P(dv ≥ x)) of the three cases at
G1 and G30. In Case 1, the PL model, when it is fitted from xmin = 1, is a bad fit for the data; in Case 2,
the range of LN fitting is greater than the range of PL fitting; in Case 3, there is no significance difference
between the two models.
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Figure 3. Visualization of the log–log plots of the complementary cumulative distribution function
(CCDF). The dashed lines refer to the CCDF distributions of the LN model and the solid line refers to
the PL model.

4. Discussion

The best way to summarize the distinct number of calling partners per client per day, when
considering the evolution of the network graph in time, is via an LN model, even though it was
rejected 2 more times than the PL model was. This is based on the evidence that p-values, which
are used to define the LN model as plausible or not, were always reliable. In the PL model fittings,
six times out of 30, the p-values were not reliable. Furthermore, the range of data that is modeled via
LN was always greater than that modeled via PL; furthermore, when the tails of each distribution were
compared, no significance differences were found. Therefore, it cannot be said that the distributions
of the LN parameters are normal. It would be interesting to define a distribution that models the
parameters of LN as the best-fitted degree sequence distribution of the network graphs series.

Supplementary Materials: Data records used for this study are available at DOI: 10.13140/RG.2.2.29159.55208/1.

Conflicts of Interest: The authors declare no conflict of interest.
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