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Abstract: In oenology, statistical analyses are used for descriptive purposes, mostly with separate
sensory and chemistry data sets. Cases that combine them are mostly supervised, usually seeking
to optimize discrimination, classification, or prediction power. Unsupervised methods are used as
preliminary steps to achieving success in supervised models. However, there is potential for unsu-
pervised methods to combine different data sets into comprehensive, information-rich models. This
study detailed stepwise strategies for creating data fusion models using unsupervised techniques at
different levels. Principal component analysis (PCA) and multiple factor analysis (MFA) were used to
combine five data blocks (four chemistry and one sensory). The model efficiency and configurational
similarity were evaluated using eigenvalues and regression vector (RV) coefficients, respectively.
The MFA models were less efficient than PCA, having gradual distributions of eigenvalues across
model dimensions. The MFA models were more representative than PCA, as indicated by high RV
coefficients between MFA and each individual block. Therefore, MFA approaches were better suited
for multi-modal data than PCA. This work approached data fusion systematically and showed the
type of decisions that must be made and how to evaluate their consequences. Proper integration of
data sets, instead of concatenation, is an important aspect to consider in multi-modal data fusion.

Keywords: wine storage; Chenin blanc; Sauvignon blanc; data concatenation; data fusion; multiblock;
multi-modal; multivariate analysis

1. Introduction

The fields of metabolomics, engineering, and chemistry have a long history of working
on data-orientated approaches for combining data sets from different sources, termed
chemometric data fusion [1–3]. Chemometric data fusion has a long history in other fields,
but its use in agricultural sciences is quite recent, even more so for the oenology field.

In order to compile a comprehensive account of the response of a wine to a certain
phenomenon or influence, data from different sources are gathered; for example, wine can
be profiled chemically and sensorially. Owing to the complexity of sensory data matrices,
the two evaluation approaches (chemistry and sensory) are generally discussed separately
from one another and similarities are inferred. This has been the case for wine authenticity
studies in which several measurements are taken and discussed separately [4]. Although
this works well for contained cases that have an application-based approach, cases that
require the collection of multiple responses across different stimuli or time require a data-
orientated approach. Combining data sets from different sources creates a comprehensive
profile of the behaviour of a product (in this case, wine) in response to stimuli [5,6]. This is
in alignment with the motivation for the fourth industrial revolution, which requires not
just gathering large amounts of different data, but looking at the data in smarter ways.
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Putting together chemistry and sensory data has its own set of challenges. Data
outputs for analytical chemistry instruments have progressed with the development of
standardized matrix arrangements for two- to four-dimensional data (e.g., hyphenated
techniques, such as LC-MS/MS, used in wine metabolomics, which use multiple detectors
with three-dimensional data outputs) [7]. This required the consolidation of statistical
treatments (normalization of peak intensities) and alignment across different detectors.
On the contrary, the complex and very often qualitative nature of sensory data is usually
communicated through descriptive narratives. Although there are standardized statistical
treatments for certain methods [8,9], there is still progress to be made to reach a consensus
on standardized matrix arrangements and outputs that encourage data consolidation.
Owing to the qualitative nature of many sensory evaluations, the assumptions made
through the statistical treatment of data are being continuously debated and tend to be
misconstrued as over-reaching or over-fitting [8].

Data fusion is defined not simply as putting together data sources, but rather as “inte-
grating multiple data sources to produce more consistent, accurate, and useful information
than that provided by any individual data source” isif.org (https://isif.org/, accessed on
29 August 2022). Data fusion is classified as low-level, mid-level, and high-level based on
the increasing complexity of the models and depending on the number of steps between
the capture of the raw data and the final fused model [10]. Low-level data fusion is the
simplest form, which usually uses raw data with little pre-modelling processing. Issues
and challenges related to pre-modelling processing have previously been described for
sensory [8,11] and chemical analyses [12–14] in oenological applications. Low-level data
fusion requires data sets to have compatible matrices, with a compatible matrix order
(2D, 3D, etc.) and at least one of the dimensional array (observations or variables) being
the same [10]. Low-level data fusion models are often used as a pre-modelling step in
mid- and high-level data fusion. From the low-level model, the pre-modelling processing
techniques used include the selection of variables (e.g., standardized deviates/coordinates)
or features (e.g., model dimensions), and a new matrix is then modelled [15,16]. Mid-level
data fusion is a systematic approach comprised of intermediate steps between the raw
data and the final model. This may be due to differences in the matrix dimensions and
directed goals requiring feature selections and/or pre-modelling processing. High-level,
also called decision-level, data fusion, is the most complex and involves several directed
steps. High-level data fusion strategies use both classical statistical analysis and machine
learning techniques [17]. High-level supervised models have been used in oenology for
the prediction and calibration of oenological processes, such as wine ageing [18]. Recently,
machine learning techniques, such as text-mining for qualitative sensory data [19] and
fuzzy logic [6,20], have been used for information mining in food applications.

In each of the three levels of data fusion, unsupervised modelling strategies in which
the objective is data exploration may be used. These unsupervised modelling strategies
look for patterns of grouping or similarity, or for the best-fit model. The objective of data
fusion may have a specific target in mind, in which case supervised modelling strategies
are used. In the field of oenology, most reported cases of data fusion are supervised, with
unsupervised methods being used as preliminary explorative steps that work to refine
the final model [15,17]. Supervised data fusion approaches are goal-orientated, targeting
and selecting only certain features from data blocks related to the phenomenon under
investigation, thereby reducing dimensionality and increasing the predictive, discriminant,
or classification power [3]. In trying to refine these supervised models, the data that do
not contribute to increasing the regression coefficients are discarded. Conversely, unsu-
pervised data fusion approaches retain most of the information captured while reducing
the dimensionality.

The most commonly used unsupervised data fusion methods in oenology are principal
component analysis (PCA) and multiple factor analysis (MFA) [15,21]. PCA is one of the
most popular multivariate statistical tools in applied science [22] which can be used for
low or mid-level data fusion (by matrix concatenation) or as a pre-processing model.

https://isif.org/
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The focus of PCA is efficiency, accomplished by reducing the dimensions of a data set
into more manageable dimensions called principal components, which make it easier to
visualize and interpret complex data [23]. These principal components standardize the
raw data to capture the essence of the correlations or covariance between the variable and
the observations (the common vectors). It is because of these functions that PCA is an
appropriate low-level data fusion model in applied food science [15]. The disadvantages
of PCA are its inability to handle data with high counts of zero or ‘missing data’, which
can be an issue for certain sensory data and chemical instrument outputs [23,24]. In
such cases, the raw data are revisited and pre-processed manually or through statistical
exclusions of some data before being modelled again. This rigorous approach can result in
overfitting/overcorrection that disregards the unsupervised intent of PCA modelling [15].

MFA is another popular multivariate tool in applied food science that goes beyond
the simple matrix concatenation approach of PCA [21,25]. MFA is a generalized PCA
with a multiblock data fusion approach that retains and standardizes each block before
fusion, retaining the weight and contributions of the variables in each block to avoid any
skewing by one data block [26]. MFA is part of the unsupervised multiblock category
of data fusion methods, which include techniques such as common dimension analysis
(CommDimm), and variations of parallel factor analyses (PARAfac). MFA has previously
been used as a multi-modal data fusion tool in genomics [27], biotechnology [28], and
sensory analyses [29,30]. In sensory analyses, multiblock techniques are used for combining
data from ordinal data, such as Napping, that cannot be simply concatenated. Other
familiar multiblock analyses commonly used for sensory data include STATIS, Distatis, and
others [31]. Combinations of data sets (qualitative or quantitative, continuous or discreet,
and categorical or integer) can thus be incorporated by pre-processing steps, such as
scaling, and weighing can be conducted before applying multiblock modelling [29]. Rapid
sensory methods that capture categorical data use CA and MCA as common multivariate
methods [8].

The problems with conducting data fusion are three-fold:

• The choice of model can be difficult due to the large number of available techniques
and their variants;

• The execution of some models is difficult due to the availability of software and may
often require advanced programming skills. In addition to this, a lack of transparency
when it comes to the different stages of data handling creates reproducibility issues
among the science community;

• Evaluating the performance of unsupervised data models is often descriptive of the
data, but does not include descriptions of the model.

The performance of unsupervised data fusion models is evaluated comparatively and
descriptively by looking at the distribution of the explained variance over different dimen-
sions and grouping of samples when using cluster analysis or confidence ellipses [21,29,32].
Recently, in order to compare the similarities between the sample configurations of different
models, regression vector coefficients have been used [30,33–36].

This study investigated the differences between concatenation (PCA) and multiblock
(MFA) data fusion strategies. These methods were chosen for their long-standing historical
use across many fields, their ease of access across different data analysis packages, and
their ease of execution, which increases reproducibility for interested scientists. These
methods were additionally chosen for their ability to incorporate both common and unique
information in an unsupervised approach, which allows for further inferences, especially
when deciding to create predictive models for the sensory data captured. This study was
focused on elucidating the phases of data analysis and detailed the rationale behind the
different steps of data fusion, from data set curation to the evaluation of the final fused
models. The data used in this study were based on the response of white wine to different
storage conditions [34]. Twelve sample sets, with seven samples per data set, a total of
84 individual samples, were used. The data were captured and grouped into five blocks:
antioxidant-related parameters (ARP), volatile compounds composition (VCC), UV-Vis
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spectrum (UV-Vis), infra-red spectrum (IR), and sensory. The purpose of building these
models was to create efficient, comprehensive, and representative data fusion models. The
performance of the models was evaluated by examining the distribution of the percentage
explained variance (%EV) and the slope of the exponential decay of the eigenvalues across
the different model dimensions as measures of information distribution. Comparisons
between model sample configurations were made using pair-wise regression vector (RV)
coefficients. Issues surrounding model efficiency and redundancies between data blocks,
and the representativeness of the data fusion model will be discussed.

2. Materials and Methods
2.1. Experimental Design

The materials and methods related to winemaking, wine treatments, sensory evalua-
tion, and chemical analysis (oenological parameters, thiols, glutathione, and major volatiles)
were previously published by Mafata et al. [34]. In brief, the experiment focused on the
stability of wines at various temperatures and for different time periods. The samples
belonged to two cultivars (Chenin Blanc and Sauvignon Blanc) from six wineries each
(twelve sample sets in total). The sample sets can be identified by three letters correspond-
ing to each winery (i.e., AVN, CDB, DTK, FRV, KZC, and PDB). Each sample set consisted
of seven wines corresponding to the experimental storage conditions (i.e., no storage
time/control, three and nine months of storage; and three temperatures: 15 ◦C, 25 ◦C, and
uncontrolled ambient temperature).

2.2. Sensory Data Methodology

The descriptive part of the sensory data methodology (panel parameters and instruc-
tions) was previously published in Mafata et al. [34]. For the purpose of the current study,
some relevant aspects are described here. The sensory method chosen for this experiment
was Pivot© Profile (PP) [37]. PP is a verbal, reference-based method that collects infor-
mation about the attributes, per sample, relative to the pivot [8]; in this case, the control
sample. The data were captured as a rating of either +1 (more than the pivot) or −1 (less
than the pivot), and for attributes that were not mentioned, a rating of zero was given. The
raw data were captured per data set, with judges and repeats kept separate and not further
concatenated [38].

Linguistic and semantic reductions of terms were performed manually, resulting in
a total of 200 attributes. Statistical consolidation was then performed separately for each
sample set. Each attribute was summed across the judges and repeats, translated into
positive ratings, and zero-sum terms were excluded. Positive translation was conducted
to convert the data from rating to frequency so that the modelling could be conducted by
CA [37]. Terms with less than 5% citations were removed, resulting in 29 to 36 attributes
per sample set.

2.3. Chemical Data Collection and Capturing

The chemical data were categorized into volatiles (VCC data set: thiols and ma-
jor volatiles) and antioxidant-related parameters (ARP data set: colour intensity (CI,
A520 + A420), colour hue (CH, A520/A420), total phenolics (A280), hydroxycinnamic acids
(A320) and browning (A420), CIElab parameters, glutathione, and total and free sulphur
dioxide) were discussed previously [34]. Ultraviolet-visible light spectrophotometric scans
(UV-Vis data set) were run from 280 nm to 780 nm (in 1 nm increments) in triplicate
on a Thermo Scientific Multiskan GO (Waltham, MA, USA) 1510-02586 microplate spec-
trophotometer. Infra-red spectra measurements (IR data set), in the mid-infrared range
(4000–600 cm−1), were collected using an Alpha-P ATR FT-MIR spectrometer (Bruker Op-
tics, Ettlingen, Germany). Each sample was scanned at a resolution of 4 cm−1 and at a
scanning velocity of 7.5 kHz, and then averaged over 64 scans to give a final reading.
Instrumental control and data capture were carried out using OPUS software (OPUS v. 7.0
for Microsoft, Bruker Optics, Ettlingen, Germany).
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2.4. Statistical Analysis

Multivariate analysis was performed separately for each winery and each cultivar, and
each sample set consisted of seven wines (2.1). The data were divided into five blocks based
on the properties and modality of acquisition: volatile compounds (VCC), antioxidant-
related parameters (ARP), UV-Vis spectra (UV-Vis), infra-red spectra (IR), and sensory
data (Table 1). In other words, each block consisted of twelve data sets, and each data
set contributed to five blocks. The raw sensory data were subjected to correspondence
analysis (CA) and the standardized deviates/residuals matrix was used for data fusion. All
PCA analyses in this study were based on the generalized Pearson correlation coefficient
with standard univariate scaling applied to all measurements before modelling. MFA was
performed on the correlation matrices of the chemistry data sets (observations vs. variables)
and the latent variables of the sensory data. The data blocks were first standardized by PCA
and then MFA was performed [26]. For each model, an exponential decay curve was plotted
using eigenvalues for each dimension and the slope was calculated using Microsoft Excel
(Excel Office 365, version 2002, Microsoft Corp., United States). Configurational similarities
for all score plots were calculated using pair-wise regression vector (RV) coefficients [33] and
inferred topology (iTOP) RV between the PCA and MFA data fusion models [39] (Figure 1).
Statistical calculations and modelling were performed using R and visualised using the
packages “FactoMineR” for MFA and “UBbipl” for PCA https://www.R-project.org/,
accessed on 29 August 2022 (R Foundation for Statistical Computing, Vienna, Austria).
Additional modelling was also conducted using Statistica™ 13 (TIBCO Software Inc., Palo
Alto, CA, USA).
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Figure 1. Structure of the data fusion strategy and model comparisons. Black arrows indicate the
pairs used for RV coefficient calculation and the red arrow indicates iTOP RV. *: the data block was
pre-processed, F: the data block was weighed. Abbreviations and further details are provided in
the text.
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Table 1. Summary of the five blocks, low-level, and mid-level data fusion approaches using multivariate analysis.

Level Blocks Input Pre-Processing Modelling Model Output

Description Value Type Matrix
Type Row Column Modelled

Matrix
Model
Type

Output
Matrix Type

Output
Matrix
Row

Output
Matrix Column

Model
Performance
Parameters

Individual
Data Blocks

ARP Concentrations,
absorbance values Discreet Correlation Samples Concentrations,

AU None Raw data PCA Scores Samples Principal
components

EV%,
eigenvalue,

decay slope R2

IR Spectral, reflectance Continuous Continuous Samples Wavenumber None * Raw data PCA Scores Samples Principal
components

UV-Vis Spectral, absorbance Continuous Continuous Samples Absorbance
wavelengths None Raw data PCA Scores Samples Principal

components

VCC Concentrations Discreet Correlation Samples Concentrations None Raw data PCA Scores Samples Principal
components

Sensory Pivot profile
reference-

based method

Discreet Rating Samples Ratings
(−1, 0, 1)

Conversion
to frequency

matrix
Positive FC CA

Scores Samples Factors
Standardized

deviates Samples Variables

Low
ARP + IR +

UV-Vis + VCC Block concatenation Mixed Mixed Samples See individual
data blocks

Matrix
concatenation

Concatenated
matrix PCA Scores Samples Principal

components

EV%,
eigenvalue,

decay slope R2

Mid

ARP + IR +
UV-Vis +

VCC + Sensory ‡
Block concatenation Mixed Mixed Samples

See individual
data blocks

except ‡

Matrix
concatenation

Concatenated
matrix PCA Scores Samples Principal

components

EV%,
eigenvalue,

decay slope R2

ARP + IR +
UV-Vis +

VCC + Sensory ‡
Blocks Mixed Multiblock Samples

See individual
data blocks

except ‡

PCA per
block on raw
data except ‡

Multiblock
standardized
deviates from

individual
PCA

MFA Scores Samples MFA dimensions EV%,
eigenvalue,

decay slope R2

Loadings Blocks MFA dimensions

* See text for discussion and details. Abbreviations: PCA—principal component analysis, CA—correspondence analysis, MFA—multiple factor analysis, and FC—frequency of citation.
‡ Sensory: CA standardized deviates.
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3. Results

The fusion of the five data blocks in this study (VCC, ARP, IR, UV-Vis, and sensory)
was unsupervised and explorative, from low-level to mid-level data fusion strategies with
increasing complexity (Table 1). This section is arranged according to both the complexity
of the conceptualisation of the approach, as well as the operational order taken in fusing
the data blocks.

3.1. Curation of Data Blocks
3.1.1. Assessment of Pre-Modelling Processing

It is important to first inspect the data blocks specifically for the purposes of data
fusion, as this will dictate which type and which level of fusion are needed; the decisions
taken might be different to the ones when data fusion is not the purpose [40]. When looking
at pre-modelling processing methods in view of data fusion, two criteria were considered
in this study, namely matrix compatibility and signal correction.

Matrix compatibility is an important eligibility criterion for low-level data fusion
strategies [41]. If matrices are incompatible, then pre-modelling processing must be per-
formed. The chemistry data sets (ARP, VCC, UV-Vis, and IR) were captured as compatible
correlation matrices (Table 1) and, thus, could be combined using either low-level or higher-
level data fusion strategies. In contrast, in order to obtain a compatible matrix for the
sensory data, the standardized deviates matrix was obtained from the CA model (Table 1).
The raw sensory data were captured as rating data, the matrix of which consisted of 0, 1,
and −1 ratings. These types of data sets cannot be modelled using PCA as they contain
large counts of zero measurements [22].

With regards to signal correction, spectral pre-processing is often considered for UV-
Vis and IR spectral data blocks and included as toolkits in most software [42,43]. In the case
of the UV-Vis data block, high model efficiency (%EV) was taken as a good indicator for
proceeding with the raw UV-Vis data for fusion without the need for pre-processing.

As IR had lower %EV and pair-wise RV coefficients (i.e., between the scores of the PCA
models with and without pre-processing), pre-modelling processing was considered in
order to improve the performance parameters. Infra-red spectral data are prone to spectral
irregularities, which are categorised under two phenomena, namely scattering and baseline
irregularities [12]. The mathematical conversions performed to correct these phenomena
fell under these two categories. Infra-red data regularly use multiplicative scatter correction
(MSC) for scattering, first derivative transformations for baseline corrections, and combina-
tions of the two [12]. In this section, the raw data, MSC, first derivative, and combinations
of MSC with the first derivative were investigated as potential methods of pre-processing
infra-red data.

The impact of the transformations on the efficiency of the PCA models was evaluated
by %EV (Table 2) and any effect on the sample set configuration was evaluated through
pairwise RV coefficients between the PCA models of the raw and the transformed data
(Supplementary Table S1). The raw data produced PCA models with the highest efficiency,
with average cumulative %EV for the first two principal components of 84 ± 9 for CB and
70± 6 for SB. All other pre-processing transformations lowered the efficiency of the models,
with some exceptions; MSC increased the efficiency of the PCA models of the PDB and
KZC CB sample sets by 7% and 4%, respectively. The KZC CB sample set model efficiency
was increased by the pre-processing methods, except for the first derivative transformation.
KZC had the second highest %EV of all the wineries; the 4% increase was thus relatively
negligible, and inspection of the spectra showed no obvious faults.
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Table 2. Cumulative percentage explained variance for the first two principal components of the
infrared raw data and its mathematical transformations.

Data Set Raw 1st Deriv MSC 1st Deriv + MSC MSC + 1st Deriv

Chenin Blanc

AVN 82 52 73 51 53
CDB 72 57 61 52 52
DTK 97 62 97 72 73
FRV 76 52 68 50 53
KZC 96 79 100 100 100
PDB 81 54 88 50 60

Average 84 59 81 63 65
Stdev 9 9 15 18 17

Sauvignon Blanc

AVN 72 43 55 40 39
CDB 74 54 63 51 51
DTK 63 45 46 39 40
FRV 74 50 51 40 41
KZC 62 43 51 38 39
PDB 77 45 52 38 39

Average 70 47 53 41 42
Stdev 6 4 5 5 4

Overall

Low 62 43 46 38 39
High 97 79 100 100 100

Average 77 53 67 52 53
Stdev 10 10 18 17 17

MSC—multiplicative scatter correction, 1st deriv—first derivative. The data sets are defined by three letters
corresponding to each winery (i.e., AVN, CDB, DTK, FRV, KZC, and PDB).

The RV coefficients showed high configurational similarities between the different pre-
processed models and the raw data, except for the KZC CB sample set (Table S1), meaning
that, generally, the pre-processing had very little effect on the sample configuration. The
raw data set had the lowest RV coefficients, ranging from 0.73 to 0.95 for CB (0.84 ± 0.06,
ave ± SD) and 0.70 to 0.90 for SB (0.78 ± 0.06). This means that the configurations of the
transformed spectra were more similar to each other than to the raw data. However, there
was a negligible difference in the configurations, with a maximum 15% increase in the RV
coefficients on average.

For the KZC CB sample set, the RV coefficients between the MSC and the raw data
(0.37) and 1st deriv (0.44) were the lowest. Overall, the MSC transformation resulted in
increased model efficiency (%EV) and relatively unique sample configurations (low RV
coefficients) in the KZC CB sample set. If the purposes of the data fusion in this study
were to gather information that would increase the discrimination power between the
sample sets, the MSC pre-processing would be suitable. As this study was explorative and
unsupervised, such measures were not considered necessary and the decision was made to
continue with the raw data for data fusion.

3.1.2. Performance of Individual Block Models

The chemistry data blocks each had a set number of variables (UV-Vis, 501 wave-
lengths; ARP, 14 parameters; VCC, 34 compounds; and IR, 879 wavenumbers); the sensory
data had a varying number of variables as the number of attributes was different for each
data set after pre-processing. A comparative exploration of the models’ packing efficiency
was conducted using the %EV (Supplementary Table S2) and the configurational similarity
of the scores (seven samples per set) was calculated through pairwise RV coefficients be-
tween the data sets (Supplementary Table S3). Overall, the UV-Vis models were the most
efficient, with cumulative %EV ranging from 78 to 99, and an average of 91 ± 7 for the
first two PCs. ARP was the second most efficient (75 to 94%EV, 84 ± 5), followed by IR
(64 to 98%EV, 78 ± 10) and VCC (72 to 83%EV, 77 ± 3). Sensory had the lowest cumulative
%EV (55 to 78%EV, 68 ± 6) for the first two dimensions of the CA, which is an inherent
characteristic of holistic techniques, such as sensory analysis [8].
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The sample configurations of UV-Vis and ARP were the most similar, with RV coef-
ficients ranging from 0.78 to 0.93 for CB and 0.73 to 0.93 for SB. This is understandable
as compounds with antioxidant properties can absorb UV-Vis energy [44]. Additionally,
the CIE lab and other colour indices listed in the ARP data block were calculated from
specific measurements in the UV-Vis spectrum. The RV coefficients for ARP vs. VCC
were the second highest, ranging from 0.55 to 0.83 for CB and 0.45 to 0.82 for SB. The
RV coefficients for UV-Vis vs. VCC were lower compared with those for ARP vs. VCC,
ranging from 0.31 to 0.81 for CB and 0.33 to 0.62 for SB. The RV coefficients were very low
between IR and the other chemistry data blocks (UV-Vis, ARP, and VCC), ranging from
0.10 to 0.71 for CB and 0.21 to 0.79 for SB. The RV coefficients between IR and sensory were
higher, ranging from 0.38 to 0.86 for CB and 0.51 to 0.72 for SB. The RV coefficients between
sensory and UV-Vis were poor, ranging from 0.59 to 0.74 for CB and 0.43 to 0.79 for SB. The
RV coefficients were higher between sensory and VCC, ranging from 0.60 to 0.87 for CB
and 0.60 to 0.85 for SB. As the sensory method evaluated only the aroma of the wines, it is
understandable that it resulted in higher configurational similarity with the VCC data set.

3.2. Low-Level Data Fusion

Low-level fusion involves the simple concatenation of raw data with compatible
matrix dimensions [10,45]. The ARP, VCC, UV-Vis, and IR data blocks had compatible
observations vs. variable correlation matrices, and thus could be fused using low-level
strategies. In order to integrate the sensory and chemistry data, a mid-level data fusion
strategy had to be employed; this is explored in the next section. The four chemistry data
blocks were first concatenated into one correlation matrix of seven observations (for each
sample set) vs. 1428 variables (corresponding to the sum of variables for the chemistry data
blocks) and modelled by PCA.

It has previously been shown that the individual models for the four chemistry data
blocks were highly efficient, with most of the explained variance captured within the first
two principal components (Section 3.1.2, Supplementary Table S2). Comparatively, the
low-level PCA fusion model was less efficient (Table 3); hence, a more in-depth exploration
of the data distribution was needed to assess the model’s performance. The overall stress
in the model and the slope of the exponential decay in the stress across the principal
components (Table 3) were used to evaluate the model’s efficiency [22].

The 1428 variables were fitted over six principal components and the stress was fitted
onto an exponential curve with R2 values between 0.81 and 0.99. CB had more efficient
models compared with SB, as measured by the slope, which ranged from 0.44 to 0.88 for
CB and 0.38 to 0.55 for SB (Table 3). Approximately 80% of the explained variance was
achieved within the first three principal components, indicating lower efficiency than the
individual models (Supplementary Table S2). This is characteristic of multimodal data
fusion due to the increased number of variables and the different types of data sources [3].
The KZC CB data set had the highest performance indicators again, with a slope of 0.87
(R2 = 0.95) and a cumulative %EV of 89 for the first two principal components (Table 3).

Due to the concatenated (one matrix) nature of the PCA data fusion strategy, it is
difficult to attribute the performance of the model to any one of the data blocks. In order to
try and address the issue of redundancy between the data blocks in this low-level strategy,
the sample configurations resulting from the PCA on the concatenated data were compared
with the individual data sets’ PCAs using RV coefficients (Supplementary Table S4). Al-
though the KZC CB sample set was previously an exception in the individual PCA models,
the low-level PCA data fusion model was not, as it had similar RV coefficient patterns
described for the other sample sets.
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Table 3. Performance parameters and stress distribution for low-level data fusion.

Cumulative %EV per PC

Cultivar Data Set Total Stress
(Eigenvalue) Slope R2 F1 F2 F3 F4 F5 F6

Chenin Blanc

AVN 589 0.55 0.989 41 68 84 92 97 100
CDB 591 0.46 0.970 41 69 82 90 95 100
DTK 742 0.88 0.966 52 85 93 98 99 100
FRV 688 0.44 0.926 48 69 81 88 95 100
KZC 962 0.87 0.947 67 89 95 98 99 100
PDB 837 0.56 0.910 59 78 86 92 97 100

Sauvignon Blanc

AVN 617 0.47 0.962 43 70 82 90 95 100
CDB 716 0.54 0.966 50 74 84 92 97 100
DTK 541 0.38 0.932 38 65 78 86 93 100
FRV 556 0.55 0.934 39 76 85 92 97 100
KZC 800 0.41 0.813 56 70 79 88 95 100
PDB 653 0.46 0.946 46 70 82 89 95 100

Range Min 541 0.38 0.813 38 65 78 86 93 100
Max 962 0.88 0.989 67 89 95 98 99 100

Data fusion of ARP, VCC, UV-Vis, and IR chemical data sets submitted to PCA. Abbreviations: VCC—volatile
compounds composition, ARP—antioxidant-related parameters, UV-Vis—ultraviolet-visible spectra, IR—infrared
spectra, PCA—principal component analysis, and %EV—percentage explained variation. The data sets are defined
by three letters corresponding to each winery (i.e., AVN, CDB, DTK, FRV, KZC, and PDB).

It may be misconstrued that the concatenated model is likely to be skewed by the
most variable dense data block, in this case, the IR (879 variables); as this data block
had the highest RV coefficients (IR vs. low-level PCA), the hypothesis seemed to have
some support. IR vs. low-level PCA had RV coefficients ranging from 0.88 to 0.96 for the
CB data sets and 0.83 to 0.95 for the SB data sets. As previously discussed, the sample
configuration of the IR data block was different from the other data blocks (Section 3.1.2,
Supplementary Table S3). A look at the RV coefficients between the low-level PCA model
and the other data blocks showed that the sample configurations were mainly case-specific
and no one-fits-all generalization of the patterns could be applied for the VCC and ARP
data sets. Although the UV-Vis data block had the second-highest number of variables
(507), it did not always have the second-highest RV coefficient. This meant that the number
of variables was not the most influential factor affecting the sample configuration of the
fusion model, but rather the amount of information the technique carried. As previously
discussed, IR is an information-rich technique and infra-red activity is a more general
property of organic molecules than UV-Vis [46].

3.3. Mid-Level Data Fusion
3.3.1. Principal Component Analysis (PCA)

In order to incorporate the sensory results into fused models, the data had to be in a
format compatible with the rest of the data blocks [3,23]. To achieve this, the standardized
deviates (standardized co-ordinates) from the CA model of sensory data were used. These
were added to the chemistry data blocks by concatenation and the new matrix was modelled
by (mid-level) PCA (Table 1). The distribution of the stress and performance indicators
of the model are listed in Table 4. As expected, the increased dimensionality due to
the addition of sensory data resulted in decreased model efficiency compared with both
the individual data blocks and the low-level fusion PCA. The CB models were the most
efficient, with the slopes of the exponential decay curves ranging from 0.43 to 0.83 (R2 > 0.90)
compared with those for SB ranging from 0.37 to 0.53 (R2 > 0.80). The KZC CB mid-level
PCA model was the most efficient, with a slope of 0.82 (R2 = 0.94) and a cumulative %EV
of 89 for the first two principal components.
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Table 4. Performance indicators and stress distribution of the mid-level PCA data fusion models.

Cumulative %EV per PC

Data Set Observations Total Stress
(Eigenvalue) Slope R2 F1 F2 F3 F4 F5 F6

Chenin Blanc

AVN 1458 601 0.45 0.97 41 68 81 89 95 100
CDB 1463 595 0.53 0.99 41 67 83 91 97 100
DTK 1461 747 0.83 0.96 51 84 92 97 99 100
FRV 1463 698 0.43 0.92 48 68 80 88 95 100
KZC 1458 968 0.82 0.94 66 89 95 97 99 100
PDB 1461 847 0.54 0.90 58 77 85 91 97 100

Sauvignon Blanc

AVN 1459 661 0.45 0.94 45 69 81 89 95 100
CDB 1457 721 0.53 0.97 50 73 84 92 97 100
DTK 1464 544 0.37 0.93 37 64 77 86 93 100
FRV 1463 561 0.53 0.93 38 75 84 92 97 100
KZC 1464 805 0.40 0.80 55 69 78 87 95 100
PDB 1458 661 0.45 0.94 45 69 81 89 95 100

Range Min 1457 544 0.37 0.80 37 64 77 86 93 100
Max 1464 968 0.83 0.99 66 89 95 97 99 100

The data sets are defined by three letters corresponding to each winery (i.e., AVN, CDB, DTK, FRV, KZC, and PDB).

In the data curation section (Section 3.1.2), it was noted that the sensory data model was
the least efficient, having the lowest cumulative %EV of all of the data blocks. However, the
concatenation of the sensory data with the chemistry data sets did not lower the cumulative
%EV compared with the low-level PCA. On average, the cumulative %EV across the model
dimensions decreased by 1% from low-level to mid-level PCA. As the addition of the
sensory data block was valuable to the overall information, the compromise in model
efficiency was acceptable.

The similarities in the sample configurations were again assessed using RV coefficients
(Table 5). The addition of sensory data resulted in lower RV coefficients between the mid-
level PCA and the PCA for individual blocks compared with the RV coefficients between
the low-level data fusion PCA and the PCA for individual data blocks.

As the fusion model is a composition of different data blocks originating from mea-
surements of the different properties of wine, a resulting model that has a unique sample
configuration was expected. Although the within-model redundancy cannot be calculated
for a concatenated matrix, the RV coefficients (mid-level PCA vs. individual blocks range
0.52–0.88) could be considered an indicator of relatively low redundancy. The exception
was, once more, the IR data block. As previously discussed (Section 3.1.2), the IR data
block provided the most unique sample configuration pattern compared with the other
data blocks, indicated by the low RV coefficients (IR vs. other data blocks, Supplementary
Table S3). The IR sample configuration was the most similar to that of the mid-level PCA
fusion model, indicated by high RV coefficients (mid-level PCA vs. IR) ranging from 0.88 to
0.96 for the CB data sets and 0.83 to 0.96 for the SB data sets. The pattern of RV coefficients
between the mid-level PCA data fusion model and the other individual data blocks could
not be generalized. The patterns were case-specific and unique for each data set. Much
like the IR data block, due to its nature, the sensory data contained a unique profile of the
wine, but, although the sensory experience is holistic, given the method used, the data
captured were not. Pivot profiling is a comparative method, and not a profiling method,
such as CATA, that includes a comprehensive list of attributes [8]. Compared with IR,
which is unique and information-rich, the sensory data in this case were unique, but not
as information-rich.
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Table 5. Pairwise RV coefficients (p ≤ 0.01) for the PCA/CA of individual blocks vs. the mid-level
PCA fused model.

Chenin Blanc Sauvignon Blanc

AVN

IR ↑0.90 ↗0.88
ARP ↘0.67 ↘0.61
VCC ↗0.80 ↓0.45

UV-Vis →0.76 ↗0.82
Sensory →0.73 ↘0.68

CDB

IR ↗0.88 ↗0.86
ARP →0.75 ↗0.83
VCC ↘0.60 →0.72

UV-Vis →0.78 →0.76
Sensory ↗0.84 →0.74

DTK

IR ↗0.88 ↑0.93
ARP ↘0.57 ↘0.68
VCC ↘0.65 ↘0.64

UV-Vis ↘0.56 ↗0.86
Sensory ↘0.66 →0.73

FRV

IR ↑0.95 ↗0.83
ARP ↗0.85 →0.75
VCC →0.74 →0.72

UV-Vis ↗0.86 →0.72
Sensory ↗0.84 →0.71

KZC

IR ↑0.96 ↑0.96
ARP ↘0.53 →0.79
VCC ↘0.52 ↓0.46

UV-Vis →0.78 ↑0.93
Sensory ↘0.63 ↘0.61

PDB

IR ↑0.92 ↑0.93
ARP ↗0.88 ↗0.86
VCC ↘0.69 ↘0.55

UV-Vis ↗0.88 ↗0.86
Sensory ↗0.82 →0.75

The data sets are defined by three letters corresponding to each winery (i.e., AVN, CDB, DTK, FRV, KZC, and
PDB). Arrows indicate RV values higher than (diagonally upward), equivalent to (horizontal), or lower than
(diagonally downward) 0.7. Significantly higher values are in green (vertically up) and significantly lower values
are in red (vertically down).

3.3.2. Multiple Factor Analysis (MFA)

Unlike PCA, which aims to reduce the dimensionality and produce the most efficient
model, the MFA seeks to create/build the most representative model of the relationships
between blocks of data [26]. The figures of merit related to the performance of the MFA
models are shown in Table 6. As a multiblock analysis, the stress calculated on the MFA
was relative to the different blocks, and not the individual variables within each block [26];
as such, the eigenvalues were lower than those of the PCA data fusion models. The
exponential decay curves had R2 values ranging from 0.84 to 0.99, except for PDB SB, which
had an R2 of 0.71. Generally, the models had low efficiency; CB had higher efficiency, as
indicated by the slopes (0.35 to 0.47), than SB (0.27 to 0.37). For all models, the stress was
distributed gradually across the different dimensions, with less than 80%EV accumulated
over the first three dimensions.
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Table 6. Stress distribution over components (C) in the MFA data fusion.

Cumulative %EV

Sample Set Total Stress
(Eigenvalue) Slope R2 C1 C2 C3 C4 C5 C6

Chenin Blanc

AVN 9.8952 0.43 0.96 40 67 79 89 95 100
CDB 9.7308 0.35 0.94 40 61 75 86 93 100
DTK 9.0578 0.43 0.99 41 64 78 89 96 100
FRV 9.7637 0.38 0.96 42 63 77 87 94 100
KZC 8.9517 0.47 0.97 42 68 82 90 96 100
PDB 9.0879 0.37 0.84 49 64 76 86 95 100

Sauvignon Blanc

AVN 9.3392 0.30 0.85 39 60 72 82 92 100
CDB 10.6642 0.37 0.99 33 58 76 86 94 100
DTK 10.3854 0.33 0.94 38 57 75 85 93 100
FRV 9.3328 0.35 0.93 39 63 75 85 94 100
KZC 10.7258 0.32 0.98 33 58 73 84 93 100
PDB 9.21612 0.27 0.71 43 56 70 82 93 100

Range Min 8.9517 0.27 0.71 33 56 70 82 92 100
Max 10.7258 0.47 0.99 49 68 82 90 96 100

The data sets are defined by three letters corresponding to each winery (i.e., AVN, CDB, DTK, FRV, KZC, and PDB).

An MFA model generates new weights for the different data blocks relative to each
other and can thus show the correlations between different data blocks. This means that
the MFA sample configuration was most representative of all the data blocks and was not
skewed by any individual data block (as might be the case with low/mid-level data fusion
PCA). RV coefficient values could be calculated between the sample configurations of the
data blocks after weighing (Supplementary Table S5). The RV coefficients for the MFA
(vs. individual data blocks) were higher than those of the mid-level data fusion PCA (vs.
individual data blocks), ranging from 0.52 to 0.95 for CB and 0.64 to 0.92 for SB. The RV
coefficients between MFA and the IR data block (ranging from 0.55 to 0.88 for CB and 0.64
to 0.87 for SB) were lower compared with those of the other data blocks (ranging from
0.76 to 0.95 for CB and 0.69 to 0.92 for SB). This is unlike the results for the PCA data
fusion models (low and mid-level), in which the RV coefficients between the PCA data
fusion model and the IR data block were the highest compared with the other data blocks
(Table 5 and Supplementary Table S4). This is indicative of how the number and nature of
the variables from the IR data block had a skewing effect on the PCA data fusion models.
This means that, in the concatenated matrices, the IR data block influenced the sample
configuration the most. This could not be directly demonstrated in the case of PCA due to
the nature of the statistical analysis.

The sample configurations of the mid-level PCA and MFA fusion models were cal-
culated using the conventional RV coefficient and inferred topology (iTOP) calculation
of the RV (Table 7). The inferred topology (iTOP) RV reportedly takes into account the
redundancy between data blocks and skewing by any one data block [39]. Although the
iTOP RV coefficients were slightly lower than the conventional RV coefficient, they were
similar. All RV coefficients were higher than 0.70, indicating very high similarity between
the two approaches (iTOP vs. conventional), but, as the two data fusion models contained
the same original data, this was expected. The burden now shifts to the 30% dissimilarity
between the data fusion approaches.

3.4. General Discussion

The case chosen to illustrate the stepwise approach to data fusion had its particularities
originating from the type of sensory method that generated the data and the fact that the
data sets were first considered separately due to the original experimental design. However,
these types of results are quite common in wine evaluation, where one or more analytical
chemistry techniques are used in addition to (usually) one sensory method.
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Table 7. Pairwise RV coefficients (p ≤ 0.01) between PCA and MFA for the mid-level data fusion.

SAMPLE SET RV ITOP RV

Chenin Blanc

AVN ↗0.82 →0.70
CDB ↗0.82 →0.75
DTK ↗0.80 ↘0.62
FRV ↑0.94 ↑0.93
KZC ↗0.85 ↗0.80
PDB ↑0.96 ↑0.95

Sauvignon Blanc

AVN →0.78 →0.77
CDB ↑0.93 ↑0.92
DTK ↗0.81 →0.70
FRV ↗0.89 ↗0.85
KZC ↗0.84 →0.79
PDB ↗0.81 ↗0.81

PCA—principal component analysis, MFA—multiple factor analysis, RV—regression vector, and iTOP—inference
topometry. The sample sets are defined by three letters corresponding to each winery (i.e., AVN, CDB, DTK, FRV,
KZC, and PDB). Arrows indicate RV values higher than (diagonally upward), equivalent to (horizontal), or lower
than (diagonally downward) 0.7. Significantly higher values are in green (vertically up) and significantly lower
values are in red (vertically down).

Different steps and levels of data modelling for the purposes of data fusion have
been presented, from individual data blocks, low-level, and mid-level data fusion to
multiblock data fusion. In assessing the different models, it is important to use multiple
evaluation parameters that take into account different aspects of the models. In this study,
the performance of the models was evaluated by looking at the distribution of the data
over all dimensions and the rate of eigenvalue decay as indicators of model efficiency. This
was because, for multiple data blocks and data fusion strategies, the orthodox use of %EV
as a sole indicator of model performance is not appropriate. This tactic is used for choosing
dimensions/factors on which to run pattern recognition analysis. Thus, this tactic does
not appropriately evaluate the overall model performance. The RV coefficients were used
to evaluate the representativeness of the fusion models and evaluate redundancy in the
cases where other parameters could not be used. The RV coefficients were used because the
comparison of various sample sets that consist of various data blocks using sample scores
and variable loadings is not appropriate. The approach could not provide meaningful
comparisons of information loss and information extraction for multiple data sets. This was
especially true for data fusion models that had large data plots (greater than a thousand)
that include untargeted spectral signals.

Low-level data fusion is generally appropriate for data blocks with only a small num-
ber of variables, as finding patterns in correlations between a large number of variables
can be tedious and the visual aids offer very little assistance with the complex interpreta-
tions [23]. The low-level and mid-level PCA fusion models did not offer any information on
the within-model correlations between data blocks. Although the models were highly effi-
cient, they were not representative. Owing to the incompatibility of the sensory data matrix
with the four chemistry data blocks, low-level PCA data fusion was not as comprehensive
as the mid-level strategies. Although the addition of the sensory data block resulted in
slightly lower model efficiency, the sensory aspect added to the overall informational value
and comprehensiveness of the data fusion model; thus, a compromise in model efficiency
must be made. For cases where the model efficiency was drastically lowered by the inclu-
sion of a data block, the influence of the additional block must be further investigated. This
can be achieved by revisiting the pre-modelling processing to “clean” the data.

Mid-level PCA data fusion models were skewed by the information-dense IR data
block. This was revealed by the lower RV coefficients for mid-level PCA vs. individual
blocks compared with mid-level PCA vs. the IR data block. The mid-level PCA sample
configuration was thus unrepresentative of all of the blocks. The mid-level MFA models
were less efficient than the PCA models, but were more representative of the commonality
between data blocks, indicated by high RV coefficients (the models had sample configu-
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rations more representative of all of the data blocks). Although the PCA fusion models
were highly efficient (rate of eigenvalue decay), this was rather indicative of the overfitting
of the data, as the models were also found to be unrepresentative due to skewing by the
information-rich IR data block. Hence, by comparison, MFA proved to be less biased
and more representative of the individual data blocks. Thus, multiblock approaches were
determined to be more appropriate data fusion methods compared with concatenation.

4. Conclusions

The aim of this study was to explore and compare PCA (low-level and mid-level) and
MFA data fusion approaches. The study evaluated model efficiency (%EV and slope of
the exponential decay in stress) and model representativeness (within-model and between-
model pairwise RV coefficients). Using these parameters, issues of overfitting of data and
redundancy between the different data blocks were inferred. Adding more data, especially
data of a different nature/origin, resulted in a decrease in model efficiency. As the addition
of more data of different variations is the motivation of data fusion, the model efficiency
was found to act as an ineffective evaluation parameter for data fusion models. The RV
coefficients were a more effective parameter for evaluating data fusion model performance.
However, RV could not be used within low/mid-level PCA data fusion models; only the
MFA multiblock strategy offered this feature. It is for these reasons that, for multivariate
and distinct data sets, such as those presented in this study, MFA should be considered an
appropriate option for unsupervised data fusion.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/beverages8040066/s1, Table S1: Pairwise regression vector (RV) coefficients (p ≤ 0.01) for
score configuration using IR raw data vs. its mathematical transformations using multiplicative scatter
correction (MSC), first derivative (1st deriv), and their combinations before Principal Component
Analysis (PCA). Table S2: Cumulative percentage explained variance (%EV) of the first two principal
components of the PCA (VCC, ARP, UV-Vis, and IR) and first two dimensions of the CA (sensory)
for individual data sets. Table S3: Pairwise RV coefficients (p ≤ 0.01) for the scores of the individual
data blocks. Table S4: Pairwise RV coefficients (p ≤ 0.01) for the PCA scores of the chemistry data
blocks vs. low-level PCA fused model. Table S5: Pairwise RV coefficients (p ≤ 0.01) between MFA
and individual data blocks PCA/CA.
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