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Abstract: Single-cell RNA-sequencing (scRNA-seq) is a recent high-throughput technique that can
measure gene expression, reveal cell heterogeneity, rare and complex cell populations, and discover
cell types and their relationships. The analysis of scRNA-seq data is challenging because of transcripts
sparsity, replication noise, and outlier cell populations. A gene coexpression network (GCN) analysis
effectively deciphers phenotypic differences in specific states by describing gene–gene pairwise
relationships. The underlying gene modules with different coexpression patterns partially bridge the
gap between genotype and phenotype. This study presents a new framework called scGENA (single-
cell gene coexpression network analysis) for GCN analysis based on scRNA-seq data. Although
there are several methods for scRNA-seq data analysis, we aim to build an integrative pipeline
for several purposes that cover primary data preprocessing, including data exploration, quality
control, normalization, imputation, and dimensionality reduction of clustering as downstream of
GCN analysis. To demonstrate this integrated workflow, an scRNA-seq dataset of the human
diabetic pancreas with 1600 cells and 39,851 genes was implemented to perform all these processes in
practice. As a result, scGENA is demonstrated to uncover interesting gene modules behind complex
diseases, which reveal biological mechanisms. scGENA provides a state-of-the-art method for gene
coexpression analysis for scRNA-seq data.

Keywords: scRNA-seq; gene coexpression network analysis; cell heterogeneity; gene modules;
biological mechanisms; human diabetic pancreas

1. Introduction

The vast majority of cells in a single organism share the same genome, although
gene expression differs between tissues and cell types. One of the long-standing issues in
biology and medicine is relating genotypes to phenotypes. The transcriptomic analysis
is an effective way to address some of these issues [1]. One conventional method of
transcriptomic analysis is an mRNA abundance measurement at the tissue or cell level
and averaging it over hundreds of millions of cells in bulk RNA-seq data [2]. The bulk
RNA-seq techniques have been successfully used in many studies, contributing to our
understanding of gene expression [3,4]. In spite of that, the downside of bulk RNA-seq
is that cell-specific mRNA abundance cannot be revealed, and biologically important
gene expression regulation in individual cells may go undetected [5]. Yet, our current
understanding of cell types and their dynamic alterations within biological systems is
severely lacking [6]. With ongoing efforts to tackle this shortcoming, single-cell RNA
sequencing (scRNA-seq) was introduced in 2009 by Tang et al. [7]. Since then, single-cell
technique has been underdevelopment till it became easily accessible and was named the
“method of the year” in 2014 by Nature Method [8].

The growth of scRNA-seq technology has many advantages over other existing meth-
ods, such as being a powerful technique to thoroughly characterize cellular disruption
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within tissues since it assesses the gene expression in individual cells [9]. Furthermore,
the scRNA-seq trajectory inference technique (which means a pseudotime analysis that
arranges cells along a pathway based on expression pattern similarities) can provide a
detailed understanding of dynamic cell differentiation [10]. Moreover, scRNA-seq datasets
are primarily utilized to identify cell types or to discover new biomarkers. Gene expression
in a single cell is considered stochastic, so the gene expression values and their interactions
in different cells vary enormously [11,12]. However, it is significant to develop a compre-
hensive understanding of these interactions between components and coordination in the
gene expression of an organism [13].

Gene coexpression networks (GCNs) have proven particularly useful in identify-
ing relationships and annotating functions of uncharacterized genes [14–16]. GCNs are
commonly developed to identify phenotype-specific biomarkers that contain genes with
functional associations based on coexpression relationships [17–19].

Although there is a rapid increase in available tools to analyze scRNA-seq data, no
systematic pipeline comprehensively analyzes scRNA-seq, including constructing a gene
coexpression network analysis. There are some accessible packages for GCNs, such as
weighted gene coexpression network analysis (WGCNA), coexpression of RNA-seq data
(Coseq), and coexpression modules identification tool (CEMiTool), petal, CoXpress, and
coexpressed biological processes (CoP) [20]. However, they were initially designed to
analyze microarray and bulk RNA-seq datasets [21,22]. Furthermore, these GCNs packages
cannot be directly used for analyzing single cells because of the sparse data in the scRNA-
seq data. To the best of our knowledge, there is no complete systematic pipeline including
all the above analysis procedures.

Therefore, this study aims to illustrate a single-cell gene coexpression network analysis
(scGENA) framework in a systematic pipeline to analyze scRNA-seq data. scGENA aims
to implement a complete R software package using scRNA-seq data with a step-by-step
guide for the entire analysis, including data preprocessing, differential gene expression,
data imputation, construction of gene coexpression networks, and investigating key gene
modules that enrich critical functions in diverse cell types.

2. Materials and Methods
2.1. Overview of scGENA

scGENA is a systematic pipeline for single-cell data analysis and contains five phases,
as illustrated in Figure 1. Phase 1 set up and preprocesses the scRNA-seq dataset to filter
low-dimensional and noisy single-cell expression genes. Phase 2 performs a differentially
expressed (DE) genes analysis to determine which genes are expressed significantly dif-
ferent in different conditions. These genes can reveal biological information about the
processes that are influenced by the conditions of interest. Phase 3 applies the SAVER
imputation method to estimate and replace dropout values in each gene cross cell’s actual
missing expression level, reducing technical differences while preserving biological vari-
ability across cells [23]. Phase 4 constructs a coexpression network analysis to shed light on
the transcriptional regulatory mechanisms underpinning numerous biological processes [24].
Phase 5 performs further analyses, including a functional enrichment analysis, differential
coexpression network analysis, and overlapping genes identification across different cell-types
to better interpret the biological insights. scGENA is fully implemented in R and available
at GitHub (https://github.com/zpliulab/scGENA) (accessed on 1 September 2020). The
following subheadings describe the details of each phase of scGENA.

https://github.com/zpliulab/scGENA
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2.2. Preprocessing of scRNA-seq

In the first phase, scGENA sets up and preprocesses the scRNA-seq dataset. The single-
cell data input is a matrix composed of genes as rows and cells as columns, containing the
counts of gene expression in every cell.

This study implemented a human pancreas with a nondiabetic and type 2 diabetic
disease dataset as case studies for illustration purposes. The dataset contained 1600 cells
aggregated from 12 nondiabetic and 6 T2D organ donors of cell types of α-, β-, δ-, and
PP-cells using the Fluidigm C1 cell-capturing process and 39,851 features (the human
whole-genome sequencing including genes and ncRNA transcripts), as summarized in
Table 1. We downloaded the data from the NCBI Gene Expression Omnibus (GEO) reposi-
tory with accession ID GSE81608. After the data preparation, we used the Seurat method
(https://satijalab.org/seurat/index.html (accessed on 1 September 2020)) for quality con-
trol, normalization, data exploration, and visualization of the preprocessing steps [25].

Table 1. Summary of single-cell data information in the proof-of-concept study.

GEO No. Type of Cells Cells Features Organism Protocol Ref.

GSE81608

α-
β-
δ-

PP

886
472
49
85

39,851 Homo sapiens SMARTer Xin et al., 2016 [26]

2.3. Differential Expression (DE) Analysis

Differential expression (DE) analysis is one of the most common tasks for scRNA-seq
data. Although there are well-established techniques for such research in bulk RNA-
seq data, tools for scRNA-seq data are still in the early stages [27]. We employed the
R/Bioconductor MAST (model-based analysis of single-cell transcriptomics) package for
this analysis based on empirical tests, which build two-part generalized linear models
designed explicitly for bimodal and zero-inflated single-cell gene expression data [28,29].
MAST accounts for dropout events using a hurdle model while modeling variations in
gene expression based on condition and technical variables. The hurdle model improves
differential gene expression by summarizing differences between two groups with pairs of
regression coefficients [28]. In this process, the highly differentiated genes were evaluated
across the resulting four cell types and divided into clusters; the adaptive threshold was a
cut-off value selected based on the gene’s median expression value (in this case, we limited
ourselves to genes that expressed in at least 0.25 within the cells). It also determined a
single cluster’s positive and negative expressed markers. We then selected the DE genes
in each cell type to construct the gene coexpression networks and for further downstream
analysis. In total, 2169 genes were selected as differentially expressed and presented in the
Supplementary Materials Table S1.

2.4. Data Imputation

Due to the low transcript abundances in single cells, current scRNA sequencing
technologies may fail to detect some gene expression. This can result in missing expressed
gene values, known as a dropout event [30]. Dropouts can potentially cause significant
bias in gene–gene correlations and other downstream analyses [31]. Recently, imputation
methods have been developed to estimate actual expression levels directly. Here, we
used the SAVER method in this pipeline because it imputed original zero values to actual
values [32]. SAVER estimates expression levels by borrowing information across genes and
applying a Bayesian technique. The main reason to use SAVER imputations is that it uses
gene-to-gene relationships to impute the values of each gene expression level in each cell.
It reduces technical variation while maintaining biological variability between cells [23].

https://satijalab.org/seurat/index.html
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2.5. Gene Coexpression Networks (GCNs) Analysis

The novel ensemble scGENA framework for constructing single-cell-based GCNs is
based on combining multiple methods to establish a systematic R-based pipeline. Previ-
ous tools and packages for building GCNs were designed to analyze bulk RNA-seq and
microarray data. Therefore, because single-cell data are intrinsically noisy and sparse,
traditional measures (such as Pearson, Spearman, or cosine correlation) cannot be used
effectively [33]. In contrast, mutual information (MI) has significant advantages over other
measures because it may capture complex nonlinear and nonmonotonic interactions and
represent the dynamics of groups or pairs of genes [34,35]. MI approaches are, therefore, often
the preferred method for such a network inference analysis. We employed the minet package
to discretize and compute the distance for the mutual information matrix as follows:

MIMij = I
(
Xi ; Xj

)
(1)

where i, j is the MI between Xi and Xj, and Xi ε χ, i = 1, . . . , n, is a discrete variable
representing the ith gene’s expression level. Additionally, the empirical estimator is selected
to estimate the amount of information shared by any pair of genes due to its ability to
decrease the bias without affecting variance [36].

3. Results and Discussion

In this paper, we used the transcriptomic data of human pancreas cells from [26]
to build an integrated systematic pipeline for a complete analysis of scRNA-seq data,
including data exploration, quality control, normalization, dimensional reduction, a cell
clustering, differential genes analysis, a gene coexpression network analysis, and a further
downstream analysis.

3.1. Data Preprocessing

We first explored the data library size and the distributions of genes within different
cells for 1600 samples of human donors α-, β-, δ- and PP cells from nondiabetic and T2D
organ in the preprocessing phase, as shown in Figure 2A,B. This step is necessary because
it enables researchers to understand the dataset comprehensively. Next, we employed
Seurat for data quality control (QC) and visualization. Seurat aims to detect and evaluate
heterogeneous sources of single-cell transcriptomic measurements and dataset integra-
tions [25]. The QC was performed to exclude cells with <1500 or >10,000 expressed genes
and with >15% of unique molecular identifiers (UMIs), as well as the contaminated cells.
Therefore, the number of remaining single cells was 1472, with 29,043 and variable genes of
2000 selected for the downstream analysis by calculating a group of genes in the dataset
with a significant level of cell-to-cell variation (using FindVariableFeatures, as a
Seurat function).

The quality control, variables, and nonvariable genes of single-cell data are displayed
in Figure 2C,D. The data are then logarithm-normalized by employing the LogNormalize
technique, which is regarded as a global normalization method that divides the gene counts
for a single cell and then multiplies by the scale factor. The result was then transformed
with the natural log using log(x + 1) to account for zero counts. The normalization process
is essential for uncovering a dataset’s underlying biological heterogeneity. The normal-
ization approaches are also important to prevent noise and bias and are necessary for
dimensionality reduction [37].
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These upstream analysis procedures, such as quality control filtering and normaliza-
tion, can significantly affect clustering and trajectory inference. Following the completion
of the preprocessing procedures, the subsequent analytical phases, which included dimen-
sionality reduction, clustering, and trajectory inference, focused on discovering patterns
in the data that gave biological insights. Dimensionality reduction reduces the dataset to
a more compact and potentially interpretable representation that enables researchers to
capture the key biological axes of variation and enhances clustering and trajectory inference
performance [38]. Figure 2E illustrates the dimensionality reduction plotted by a principal
component analysis (PCA) heatmap and gene clustering across cells by UMAP (uniform
manifold approximation and projection). The PCA, which provides a linear combination
of genes that best reflects the variation in the data, is the most often used dimensionality
reduction approach for scRNA-seq analysis. The PCA’s ability to lessen data dimensionality
while identifying the dimensions with the most variance makes it a useful dimensionality
reduction method prior to clustering [39]. Figure 2F visualizes the gene clusters in the dataset.
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3.2. DEs and Imputation

The field of biomedical research has entered the omics era with the emergence of
high-throughput technology, and research tools focused on bulk RNA-seq data no longer
meet this development’s objectives. However, dealing with such a massive volume of data
presents significant difficulties in extracting and analyzing data. Sequencing data analysis
frequently yields a list of genes that are differentially expressed. However, it is challenging
for many researchers to connect the vast number of differential genes or proteins to a
biological event to be examined. We need to group genes with similar expressions and
associate them with their biological phenotypes using DE tools to study the functional
enrichment analysis for these genes. In our pipeline, we used Seurat’s MAST method to
perform a differential gene expression analysis based on a generalized linear model [28].
We selected the differentially expressed genes based on the criteria previously mentioned
(see Section 2.3), which necessitate a gene being identified at the cut-off threshold in
either of the two cell groups and being differentially expressed (on average) by some
proportion between the two different cell groups, see Supplementary Materials Table S1. In
a study [40], MAST performed as the best single-cell DE testing technique, outperforming
bulk and single-cell approaches in a small-scale comparison on a benchmark dataset [41,42].
Figure 3A presents the DE genes based on the number of genes detected in each cell, while
Figure 3B shows how to classify cells depending on the presence of mitochondrial genes.
Out of these DE genes, we selected the top 10 from each group for further analysis based
on the logarithm fold-change threshold of the average gene expressions. These genes are
visualized in Figure 3C,D. We then clustered all the DE genes for each cell type using
UMAP and heatmap plots, as depicted in Figure 3E,F.

An imputation method was performed to impute the missing gene expression values in
the count matrix to reduce the effect of noise and dropout events. In this pipeline, we used
the SAVER method, which showed good performance for imputing most of the missing
values. Figure 4 compares the difference before and after imputation for the selected
2000 genes from the DE step across 50 samples. It dramatically imputed gene expression
compared to original and differentially expressed genes. As can be noticed in Figure 4, the
level of nonzero expression values changed from 28% to 94.6% after imputation. Therefore,
we used these imputed data for our downstream analysis.

3.3. Gene Coexpression Networks Analysis

GCN is an approach for inferring gene module function and gene-disease interactions
from genome-wide gene expression. This method builds networks of genes with a tendency
to coactivate across a group of samples and then interrogates and analyzes this network [43].
GCNs can be employed for various purposes, including candidate disease gene selection,
functional gene identification, and gene regulation discovery.

Since WGCNA was initially designed to analyze bulk RNA data [44], its performance
on single-cell data is limited because of the inherent sparsity of scRNA-seq data [21,22]. To
resolve this, our pipeline has a function that aggregates the transcriptionally similar cells
into a pseudobulk cell type before running WGCNA in our framework. Figure 5A shows
the pseudotime aggregation for the four cell types of this dataset. However, because of the
MI symmetry characteristic, it relies on the pseudotime input to infer the GCNs [45]. Then,
we utilized a signed consensus network based on the WGCNA algorithm for a particular
cell type (see [46,47]), computing component-wise values for topological overlap in the
dataset. Biweighted midcorrelations (defined in WGCNA as bicor) were computed for each
pair of genes, followed by a signed similarity matrix. The similarity between genes in the
signed network showed the sign of the connection of their expression patterns.
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On an exponential scale, the signed similarity matrix was then boosted to power β,
varying the cell types to accentuate strong correlations and lessen the emphasis on weak
correlations. The selection of the power β or soft thresholding, as called in the WGCNA
package, was based on the number of data samples (see [46]). The resulted adjacency matrix
was then turned into a topological overlap matrix. Figure 5B,C visualize the hierarchal
clustering tree (dendrogram) and gene coexpression networks of β-cells data. We have
selected only 25 genes for each module to visualize a clear network. Therefore, modules
were formed by utilizing module-cutting criteria such as a minimum module size of
100 genes, with a deepSplit score of 4, and a correlation threshold (mergCutHeight) of
0.2 that can be used to merge modules. Modules having a correlation larger than 0.8 were
combined. These parameters were selected to construct the block-wise networks based on
the samples’ data sets. As a result, four coexpression modules were significantly correlated
in β-cells; therefore, these modules’ genes were used for the functional enrichment analysis.



Bioengineering 2022, 9, 353 9 of 14

Figure 5D depicts the gene networks for β-cells module genes using a heatmap. The
heatmap of each row and column correspond to a single gene and the relationship between
genes. Module colors and gene dendrograms are also plotted on the left and top sides of
the heatmap. For the construction of gene coexpression networks for the other three cell
types and their identified modules, see Supplementary Material Figures S1–S3.
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3.4. Further Analysis

In this substep, we performed a functional enrichment analysis, differential coex-
pression analysis, and the identification of overlapping genes across the cell types for
co-expression network genes in each module to investigate the biological insights. A
functional enrichment analysis is specifically used to identify the gene sets linked with a
biological process or molecular function in order to interpret the underlying physiologi-
cal insights and reveal the dysfunctional mechanisms. Therefore, we carried out a Gene
Ontology (GO) terms enrichment using the R package ClusterProfiler, which included the
following three categories: biological process (BP), cellular component (CC) and molecular
function (MF). In this analysis, we demonstrated the top ten terms within each category that
were considerably enriched significantly in M1, as illustrated in Figure 6A. A subset of each
enriched term was chosen and shown as a network plot, with terms with similarity > 0.3
linked by edges with the best p-values from each cluster to further understand the relations
among the terms. All network modules’ GO terms listed are presented in Supplementary
Materials Tables S2–S12.

The essential GO terms in the three categories were, respectively, protein folding
(GO:0006457) for BP, the cell-substrate junction (GO:0030055) for CC, and unfolded protein
binding (GO:0051082) and protein folding chaperone (GO:0044183) for MF. The study of [48]
emphasizes that high inflammatory cytokines might induce the accumulation of unfolded
or misfolded proteins, i.e., endoplasmic reticulum stress in diabetic pancreatic islets. In
the CC category functional enrichment investigation, Zhang et al., 2022 [49] discovered
that the upregulated differentially expressed genes concerning acute pancreatitis were
connected with the cell–substrate junction. On the other hand, chaperones’ adaptive
unfolded protein response signaling maintained endoplasmic reticulum protein folding
equilibrium in healthy beta cells, according to Yong et al., 2021 [50]. Figure 6A shows that
several of our targeted genes included protein folding terms. We assumed that the BP



Bioengineering 2022, 9, 353 10 of 14

and MF protein-folding-related GO terms were relevant in pancreatic or diabetes disease.
Furthermore, several of our identified genes were enriched for the BP and MF categories,
with only a few enriched for CC. The enhanced GO terms may be crucial in revealing the
progression of diabetes disease.

Bioengineering 2022, 9, x FOR PEER REVIEW 10 of 16 
 

 
Figure 5. Coexpression analysis in scGENA. (A) Pseudotime trajectory of the cell types; (B) Dendro-
gram and modules colors clustering for β-cells ; (C) Gene coexpression networks for the four mod-
ules in β-cells (M1, M2, M3, and M4); (D) Coexpression network heatmap. 

On an exponential scale, the signed similarity matrix was then boosted to power β, 
varying the cell types to accentuate strong correlations and lessen the emphasis on weak 
correlations. The selection of the power β or soft thresholding, as called in the WGCNA 
package, was based on the number of data samples (see [46]). The resulted adjacency ma-
trix was then turned into a topological overlap matrix. Figure 5B,C visualize the hierarchal 
clustering tree (dendrogram) and gene coexpression networks of β-cells data. We have 
selected only 25 genes for each module to visualize a clear network. Therefore, modules 
were formed by utilizing module-cutting criteria such as a minimum module size of 100 
genes, with a deepSplit score of 4, and a correlation threshold (mergCutHeight) of 0.2 that 
can be used to merge modules. Modules having a correlation larger than 0.8 were com-
bined. These parameters were selected to construct the block-wise networks based on the 
samples’ data sets. As a result, four coexpression modules were significantly correlated in 
β-cells; therefore, these modules’ genes were used for the functional enrichment analysis. 
Figure 5D depicts the gene networks for β-cells module genes using a heatmap. The 

Figure 5. Coexpression analysis in scGENA. (A) Pseudotime trajectory of the cell types; (B) Dendro-
gram and modules colors clustering for β-cells; (C) Gene coexpression networks for the four modules
in β-cells (M1, M2, M3, and M4); (D) Coexpression network heatmap.

Once the coexpression gene modules are defined, researchers can utilize these find-
ings to perform several analyses, such as a differential coexpression network analysis.
Consequently, we used MODA for the differential coexpression network analysis [51],
which can analyze the different networks of each cell type of data. In order to reduce
the number of modules as much as possible, the gene was sampled; in other words, only
differential genes were selected as the input, as shown for the beta cells in Figure 6B. The
other cell types’ results are shown in the Supplementary Materials Figures S4–S6. Last but
not least, we identified the consistent and overlapped genes across all four cell types using
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the intervene R package [52] to plot a Venn diagram, as shown in Figure 6C. It is observed
that beta–alpha cells share many genes compared to other cell types. Identifying these
overlapping genes will assist the researcher in learning more about human islet cell biology
and pathophysiology, particularly the alpha-cell-derived paracrine signals’ role in normal
beta-cell survival and function [53]. The experimental analysis in the study [53] on human
and mouse islet cells indicated that the crucial variable was not necessarily a different
species but the differing alpha–beta-cell ratio. The set point of glucose homeostasis in the
body appears to be determined by paracrine interactions between alpha and beta cells. It
is still unclear how the various islet designs found in different animals connect to their
glycemic set points.
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islets. In the CC category functional enrichment investigation, Zhang et al., 2022 [49] dis-
covered that the upregulated differentially expressed genes concerning acute pancreatitis 
were connected with the cell–substrate junction. On the other hand, chaperones’ adaptive 
unfolded protein response signaling maintained endoplasmic reticulum protein folding 
equilibrium in healthy beta cells, according to Yong et al., 2021 [50]. Figure 6A shows that 
several of our targeted genes included protein folding terms. We assumed that the BP and 
MF protein-folding-related GO terms were relevant in pancreatic or diabetes disease. Fur-
thermore, several of our identified genes were enriched for the BP and MF categories, with 

Figure 6. Further analyses in scGENA. (A) The significantly enriched GO terms for the β-cells for BP,
CC, and MF. (B) Differential coexpression heatmap by MODA. (C) Genes overlapping among the
four cell types by the Venn diagram.

Furthermore, suppose specific genes in scRNA-seq data consistently exhibit identical
expression changes in biological processes or various tissues. In that case, we suspect these



Bioengineering 2022, 9, 353 12 of 14

genes are functionally associated and may be categorized as a module. We can utilize the
findings of the gene modules to perform many different analysis tasks.

4. Conclusions

Advances in scRNA-seq technology have resulted in the generation of datasets with
increasing size and complexity. As a result, an ecosystem of computational approaches
has been developed to address the issues associated with evaluating big datasets. In this
work, we proposed an integrative pipeline scGENA for a complete single-cell gene co-
expression analysis based on scRNA-seq data. scGENA integrates numerous models to
comprehensively perform several steps: preprocessing, dimensionality reduction, clus-
tering, differential genes identification, imputation, and network construction analysis.
Because scRNA-seq data are often sparse and noisy, it is challenging to build coexpression
and differential coexpression networks. We showed how to use the scGENA framework
to construct and analyze coexpression networks using scRNA-seq data in an integrative
and reliable way. The results demonstrated that the scRNA-seq-based method was good
and valuable for identifying cell types and revealing biological insights by analyzing gene
coexpression patterns.
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Figure S5: Differential co-expression heatmap for correlated genes in Delta cells; Figure S6: Dif-
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