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Abstract: Hypocrellins (HYPs) are natural perylene quinone derivatives from Ascomycota fungi.
Based on the excellent photosensitization properties of HYPs, this work proposed a photocatalytic
advanced oxidation process (PAOP) that uses HYPs to degrade rhodamine B (RhB) as a model organic
pollutant. A synergistic activity of HYPs and H2O2 (0.18 mM of HYPs, 0.33% w/v of H2O2) was
suggested, resulting in a yield of 82.4% for RhB degradation after 60 min under visible light irradiation
at 470–475 nm. The principle of pseudo-first-order kinetics was used to describe the decomposition
reaction with a calculated constant (k) of 0.02899 min−1 (R2 = 0.983). Light-induced self-degradation
of HYPs could be activated under alkaline (pH > 7) conditions, promising HYPs as an advanced
property to alleviate the current dilemma of secondary pollution by synthetic photocatalysts in the
remediation of emerging organic pollutants.

Keywords: photocatalytic advanced oxidation; organic pollutants; photosensitizer; ring-opening
reaction; self-degradation

1. Introduction

It is well known that the synthetic persistent organic pollutants (POPs) in the effluent
stream from printing and dyeing operations pose a serious risk of environmental haz-
ard and toxicity to human health. The removal of POPs from industrial water streams
is always a challenge due to their high stability against natural degradation [1,2]. A sig-
nificant amount of research addresses this issue through the development of techniques
such as photocatalytic advanced oxidation processes (PAOP), biological degradation and
adsorption, coagulation flocculation, and membrane filtration [3–8]. Among the reported
methods, the coagulation flocculation, membrane filtration and adsorption methods could
not completely detoxify the POPs from the environment. The biological treatment only
works under milder conditions with a longer exposure time. However, PAOP has the
advantages of a strong oxidizing property, fast reaction rate, free byproducts and low cost,
which make PAOP one of the most promising methods applied to the remediation of POPs.

PAOP is a green technology that uses light irradiation-generated reactive oxygen
species (ROS) for the oxidative degradation of organic matter, especially POPs [9]. UV/H2O2,
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UV/O3, and UV/Fe2+/H2O2 PAOP combine traditional Fenton and Fenton-like methods
and photocatalytic technologies and use the photolysis of oxidants to generate hydroxyl
radicals (OH·). OH· has exhibited good degradation activity on organic compounds with
small molecular weights and simple chemical structures [10–12]. With an oxidation po-
tential ranging from 1.77 to 2.74 V, OH· is considered to be the primary ROS agent that
targets the POPs and responds to their degradation [11,13]. To achieve efficient catalysis
of oxidants and improve the ability of the system to generate hydroxyl radicals, various
metal ions with different valence states other than iron (II) have also been developed as
photocatalysts [14]. In recent years, with the massive application of TiO2 photocataly-
sis, PAOP has used various types of semiconductor materials, represented by titanium
dioxide and modified semiconductor materials, as photocatalysts. In the photocatalytic
degradation of organic compounds mediated by semiconductor photocatalysts, the semi-
conductor photocatalysts are irradiated by light and excited to form electron–hole pair
(EHP), which induce redox reactions in water and generate OH·. Due to their efficient
generation of ROS, these photocatalysts have become one of the most compelling research
hotspots in PAOP. TiO2 is one of the most commonly used photocatalysts in PAOP. It has
the advantages of high chemical stability, high photocatalytic activity and photoinduced
hydrophilicity. The degradation yield of the organic pollutant RhB, with an initial concen-
tration of 2.08 × 10−5 M, reached 96% in UV-LED/TiO2 PAOP using a UV-LED lamp as
the light source [15]. PAOP with TiO2 prepared by a combination of cold plasma treatment
and solgel dip-coating technology could achieve 75% efficiency of RhB mineralization
under a 300 min UV exposure [16]. Echavia et al. used silica gel as a carrier to immobilize
TiO2 and measured its degradation performance for organophosphate and phosphoglycine
pesticides. The system achieved 100% removal of acephate and pesticide (dimethoate)
in a short time [17]. In addition to TiO2, inorganic photocatalysts (IPCs), such as BiVO4,
Bi2WO6, and (RGO)-Ag, have also been developed to improve the degradation of POPs
by PAOP [18–20]. Among them, g-C3N4/BiVO4 and hydrogen peroxide (H2O2) showed
synergistic activities in the degradation of diclofenac sodium [20].

However, the disadvantages of IPC are still challenging their further application in
PAOP. The complex procedures for the synthesis of IPC lead to high costs or unstable
catalytic performance. PAOP mediated by inorganic semiconductor photocatalysts mainly
depends on UV rather than visible light sources [14,21]. Moreover, the IPC suspension
could not be degraded naturally and will remain in the water stream after the reaction.
They face the challenge of efficient recovery for reuse to prevent secondary pollution of
the treated water stream [22]. Compared with IPC, organic photocatalysts (OPC) show a
greater chemical structural variety and thus promise more photocatalysis applications. In
recent years, various OPC, such as fullerenes, porphyrins and organometallic frameworks
(MOFs), have become a hot research spot in the field of solar photolysis of water [23–26]
and photodegradation of bisphenol A [27].

HYPs are natural 3,10-dihydroxy-4,9-perylene-quinone derivatives that originate from
the stroma of the medicinal fungus Shiraia bambusicola Henn. And Hypocrella bambusae (Berk. &
Broome) Sacc. (Ascomycetes) [28,29]. HYPs generally include hypocrellin A (HA), hypocrellin
B (HB), hypocrellin C, and hypocrellin D (Figure 1) with high photocatalytic activity in the
generation of ROS through intense competition between type I and type II reactions [28,30–35].
Due to their broadband adsorption and sensitivity to visible light with excellent abilities
to photodegrade biological molecules such as DNA and proteins [36–41], HYPs have been
recognized as a promising photodynamic therapy (PDT) for the treatment of various skin
diseases, such as white vulvar lesions and purpura pilaris [42–45]. As a renewable organic
photosensitizer, the pH-sensitive stability of HYPs has also been reported [28].

The HYPs showed advantages of excellent photochemical but self-degrading prop-
erties. Furthermore, it was reported that the O2

.- produced by HYPs through photocat-
alytic reactions could be captured by H2O2, resulting in a promotion of the OH· produc-
tion [20,28,46]. HYPs represent the potential to be introduced as a new photocatalyst
for POP degradation through PAOP. On this basis, we propose a HYPs/H2O2 PAOP
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containing the photocatalyst HYPs and H2O2 to overcome the secondary pollution from
artificial inorganic photocatalysts in the remediation of emerging organic pollutants. This
study investigates the possibility of applying the HYPs in PAOP to form a visible-light-
driven HYPs/H2O2 PAOP system and the performance of HYP/H2O2 in promoting radical
hydroxyl production. The performance of HYPs/H2O2 PAOP in promoting radical hy-
droxyl production and organic pollutant degradation was determined by using RhB as a
model compound (Figure 1). The degradation rate constants were calculated, while the
degraded structures of RhB during the HYPs/H2O2 PAOP were investigated by liquid
chromatography–mass spectrometry (LC/MS). As a natural perylene quinone derivative,
the light-induced self-degradation of HYPs in response to changes in the pH of the sur-
rounding aqueous solution is also discussed.
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Figure 1. Mechanism for the generation of hydroxyl radicals by the HYPs/H2O2 PAOP.

2. Materials and Methods
2.1. Chemicals

HYPs were produced by fermentation of Shiraia bambusicola (GDMCC 60438) described
by Yan et al. [47]. After fermentation, the HYPs were extracted from the collected mycelia
with dichloromethane (analytical reagent) and purified by recrystallization to a purity
of 95% (with 95.7% HA and 2.9% HB, w/w). RhB (≥95%) and RhB standards (analytical
standard, ≥97%) were purchased from Merck KgaA (Darmstadt, Germany). Methanol
(HPLC grade, ≥99%) was provided by Macklin Biochemical Co., Ltd. (Shanghai, China).
The H2O2 (30%, v/v, Fengchuan Chemical Reagent Co., Ltd., Tianjin, China), 1.3-butanediol
(99%, Shanghai Aladdin Biochemical Technology Co., Ltd., China), ethyl acetate (Analyt-
ical Reagent, ≥99.5%), sodium dihydrogen phosphate (Analytical Reagent, ≥99%) and
disodium hydrogen phosphate (Analytical Reagent, ≥99%, Damao Chemical Reagent
Company, Tianjin, China) were all analytical grade.

2.2. Preparation of the HYP Aqueous Solution

HYPs (0.04 g) were mixed with 14 mL ethyl acetate and 56 mL 1,3-butanediol. The
above mixed solution was stirred well and stored at 4 ◦C in the dark. The HYP aqueous
solution was diluted to specific concentrations before use.

2.3. Degradation of RhB in the HYPs/H2O2 PAOP

The HYPs/H2O2 PAOP was prepared by mixing 7.9, 15.8, 31.5, and 63.0 mL of
1.05 × 10−3 M HYP solutions and 1 mL of 9.9 M H2O2 in 76.1, 68.2, 52.5, and 21.0 mL
phosphate-buffered solution (50 mM, pH = 7), respectively. The solution was transferred to
a 125 mL (5 cm × 5 cm × 5 cm) quartz cuvette, and then 5 mL of 0.45 mM RhB solution was
added to a final reaction volume of 90 mL with a RhB concentration of 2.5 × 10−2 mM. The
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mixture was irradiated with a 3.5 × 105 lux LED light at 470–475 nm for 60 min (Figure 2).
The sample solutions were collected at the required time. The residual RhB content was
determined using an LC-20A high-performance liquid chromatograph (HPLC, Shimadzu
Corporation, Kyoto, Japan) equipped with a column (Inertsil ODS-3, 5 mm, 250 × 4.6 mm,
Shimadzu Corporation, Kyoto, Japan) and an SPD-20A UV detector (HPLC, Shimadzu Cor-
poration, Kyoto, Japan). A mixture of methanol and ultrapure water (75/25, v/v) with a flow
rate of 0.3 mL/min was used as the mobile phase. The injection volume was 20 µL, while
the detector wavelength was 552 nm. The RhB concentration was calculated according to
Equation (1):

y = 0.8091x − 1.6058 (R2 = 0.9968) (1)
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The RhB degradation yield was calculated according to Equation (2):

RhB degradation yield (%) =
C0 − Ct

C0
×100% (2)

where C0 and Ct are the RhB concentrations (M) before and after the reaction, respectively.
Since the kinetics of RhB degradation were generally assumed to follow the principle

of the pseudo-first-order reaction in aqueous solution, Equation (3) was used to fit the Ct-t
curves during the RhB degradation in PAOP [48].

d C(t)
d t

= −k app C(t) (3)

where t is the reaction time (min), C is the RhB concentration (M), and kapp is the apparent
rate constant.

2.4. Determination of the Yield of Hydroxyl Radicals in the PAOP System

The generation of OH· was determined by the method based on the detection of
hydroxylation products resulting from the specific reaction of salicylic acid with hydroxyl
radicals [49]. A total of 10 mL of 1.05 mM HYP solution, 1 mL of 9.9 M H2O2, 5 mL of
1.7 mM salicylic acid solution was mixed with deionized water to a total volume of 100 mL.
The mixture was transferred to the reactor with 3.5 × 105 lux light irradiation. After 30 min,
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0.5 mL of the reacting sample was collected and mixed with 2 mL of 0.04 mM FeCl3 solution
for 30 s. The absorption at 510 nm (A510) of the mixture was determined using a 760 CRT
UV–VIS spectrophotometer (INESA Analytical Instrument Co., Ltd., Shanghai, China).

The relative yield of hydroxyl radicals during PAOP was calculated using Equation (4).

Relative yield of the OH·(%) =
A − A0

AH
× 100% (4)

where A and A0 are the absorbance of the PAOP reaction mixture containing HYPs,
HYPs/H2O2 and H2O2 before and after irradiation, respectively, and AH is the absorbance
of the PAOP containing only H2O2.

2.5. LC–MS Analysis

During the reaction, 10 mL samples were collected every 30 min. The 20 mL sample
was filtered 5 times through nylon filter membranes (0.22 µm, Keyilong Lab Equipment
Co., Ltd., Tianjin, China) to remove the HYPs from the solution by adsorption. Prior to
analysis, the sample collected was vacuum concentrated using a RE600 rotary evaporator
(Yamato Scientific Co., Ltd., Tokyo, Japan). LC/MS analysis was performed with an Acquity
UPLC and Synapt G2 mass spectrometer system (Waters Corporation, MA, USA) equipped
with an Acquity UPLC-BEH-C18 column (1.7 µm, 2.1 × 50 mm, Waters Corporation, MA,
USA) and a SYNAPT G2 detector (Waters Corporation, MA, USA) using an electrospray
ionization (ESI) source. The MS parameters were as follows: cone voltage 20 V, source
temperature 120 ◦C, capillary voltage of 3.5 V, scanning frequency 60 Hz.

2.6. Determination of the Self-Degradation of HYPs

An 8 mL of HYPs (571 mg/L), 1 mL of H2O2 (30%), and 81 mL of phosphate-buffered
solution (50 mM, pH = 3, 5, 7, 8 and 9) were homogeneously mixed in a 5 × 5 × 5 cm quartz
cuvette. The mixture was irradiated with a 3.5 × 105 lux LED light at 470–475 nm and
stirred at 200 rpm for 1.5 h. After the reaction, the sample was immediately capped and
stored in the dark at 4 ◦C prior to analysis. The absorbance of the solution was determined
with a UV1800 spectrophotometer (Shimadzu Corporation, Kyoto, Japan) with a scanning
range of 310 nm–710 nm.

3. Results and Discussion
3.1. Stability of the HYP Aqueous Solution

Due to the hydrophobic nature of HYPs, they are only soluble in organic solvents, such
as dichloromethane, ethyl acetate and methanol. To promote the HYP distribution in water,
an aqueous micellar solution of HYPs was prepared in the solvents 1,3-butanediol/ethyl
acetate = 4:1 (v/v). After dilution with water at ratios of 1:5, 1:20 and 1:40, the micellar
solution showed remarkable stability when stored for 5 days. The spectra of the HYP
aqueous solution were similar to those of the HYPs-methanol solution, with the absorbance
peak shifted from 460 nm to 470 nm (Figure 3). Compared to studies on improving
the distribution of hydrophilic HYPs by chemical modifications [50–53], the method for
preparing an HYP aqueous solution without chemical reaction was simplified with the
additional advantages of (1) a 100% recovery rate derived from HYPs without purification
from side reactions. (2) In contrast to toxic organic solvents such as dichloromethane,
tetrahydrofuran, and N,N-dimethylformamide that can be used in chemical modification,
the ethyl acetate and 1,3-butanediol required in this process are considered to be less
harmful organic solvents that they are widely used and have been widely accepted in
the food industry. As a classic physical modification method for hydrophobic organics,
liposomes were applied to improve the water solubility of HYPs. It was reported that the
preparation of Liposomal HB required high-pressure homogenization, which means that
high pressure (180 MPa) and low temperature (−80 ◦C) were needed in the preparation
of liposomal HB [54]. However, the HYP aqueous solution proposed in this work was
prepared under room temperature and atmospheric pressure, lowering the demand for
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instruments and the cost of energy. It was reported that human serum albumin -HYP
derivative nanoparticles with good water solubility were prepared through chemical
modification and physical modification. During the preparation of the nanoparticles, the
pH was adjusted from 11 to 7, the assembly with human serum albumin was needed for
8 h, and dialysis was needed for 48 h [55]. However, there are no time-consuming steps or
pH adjustments in the procedure to prepare the HYP aqueous solution. Therefore, the HYP
aqueous solution proposed in this work provides a convenient, eco-friendly, and effective
way to prepare a stable water solution of HYPs for further use.
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spectra of the HYP aqueous solution and HYPs methanol solution.

3.2. Improved Degradation of RhB in the HYPs/H2O2 PAOP

As shown in Figure 4a, the HYPs/H2O2 combination achieved an 82.4% degradation
yield of RhB after a 60 min reaction, representing an improvement in degradation yield
of 62.4 or 27.6% compared to H2O2 or HYPs, respectively. According to the proposed
mechanism of photocatalytic generation of OH· by HYPs [28,31,32], the ground-state HYPs
(0HYPs) could be excited by light irradiation to triplet-state HYPs (3HYPs) that have
undergone energy transfer by reduction in water-soluble ground state oxygen (3O2) to
produce singlet state oxygen (1O2) through the type I pathway and superoxide anions (O2

−)
through the type II pathway. It has been hypothesized that OH· exhibits higher reactivity
toward RhB than toward other ROS [56,57]. The enhanced performance of HYPs/H2O2-
PAOP in degrading RhB demonstrated a synergy between HYPs and H2O2 in increasing
OH· production efficiency. As shown in Table 1, the calculated relative yield of OH· in
HYP/H2O2 PAOP was increased by 1.04- and 1.02-fold when compared to that of HYP
PAOP and H2O2 PAOP, respectively. Based on this, one of the possible mechanisms in
Figure 5 could be proposed using the example of HA. Due to the introduction of H2O2,
the reduction in 1O2 promoted the formation of sufficient 3O2, possibly benefiting an
acceleration of O2

− production through the type II pathway. By reacting with H2O2, the
increased O2

− yield could contribute to a higher OH· yield in the HYPs/H2O2-PAOP.
In the HYPs/H2O2-PAOP, the degradation yield of RhB showed a HYP-dose-dependent

pattern. At the end of a 60 min reaction, the degradation yield of RhB gradually increased to
20.0%, 58.5%, 82.4%, 86.1% and 84.7% with HYP increases of 0, 50, 100, 200, and 400 mg/L,
respectively (Figure 4b). A comparison of the technical performances of the HYPs/H2O2
PAOP and previously reported PAOP are shown in Table 2. It has been reported that a
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degradation yield of less than 80% of a 2.08 × 10−5 M RhB solution was obtained when
1600 mg/L TiO2 was under a 60 min UV exposure [15]. With excellent photocatalytic
degradability to persistent organic pollutants, a dosage of 1000 mg/L Bi2WO6 led to 30%
and 63% degradation yields of 1.0 × 10−5 M RhB after 60 and 180 min of photocatalytic
reaction, respectively [19]. Similarly, a 1000 mg/L dosage of Ag/Bi2WO6 produced an
80% degradation yield of 1.0 × 10−5 M RhB after 60 min of photocatalytic reaction [58].
Photodegradation of 2.0 × 10−6 M RhB with 200 mg/L reduced graphene oxide (RGO)-Ag
resulted in an approximately 70% degradation yield of RhB after a 60 min reaction [18]. The
HYPs/H2O2 PAOP showed competitive activity for efficient RhB degradation compared
to known inorganic photocatalysts. The silica-immobilized TiO2 PAOP system, which
utilized solar radiation as a light source, achieved 100% degradation yields of the small-
molecule organic compounds acephate and dimethoate under 105 min and 60 min of light
exposure, respectively [17]. Through a synergistic effect between photo and electricity,
g-C3N4/BiVO4-H2O2 PAOP achieved a 65% degradation yield for diclofenac sodium [20].
As RhB possesses a larger molecular weight and more complex chemical structure than
acephate, dimethoate and diclofenac sodium, the HYPs/H2O2 PAOP showed more effec-
tiveness in the treatment of POPs under visible light (Table 2).
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60 min reaction. (c) Regression of the pseudo-first-order reaction kinetics for RhB degradation in the
HYPs/H2O2 PAOP.

Table 1. The relative yield of OH· in the PAOP systems.

Reaction Mixture Relative Yield of the OH· (%)

H2O2 PAOP 100
HYP PAOP 98.3

HYP/H2O2 PAOP 201.7

To determine the reaction rate constant, the regression of ln (Ct/C0) versus reaction
times of 0, 5, 15, 30, and 60 min was performed. According to the correlation result,
the calculated reaction rate constant (k) of the degradation reaction was 0.02899 min−1

(Figure 4c). The k for RhB degradation using the newly developed laser-cavitation method
ranged from 0.00726 to 0.00937 min−1 [59]. The larger reaction rate constant showed
an improved reaction efficiency of the HYPs/H2O2 PAOP for RhB degradation. In the
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UV/H2O2 PAOP, the reaction rate constants for the photocatalytic degradation of acetone
and diethyl phthalate were between 0.0338–0.0666 min−1 and between 0.0048–0.1588 min−1,
respectively [60,61]. The HYPs/H2O2 PAOP should also show adequate performance in the
photocatalytic degradation of smaller organic compounds under visible light irradiation.
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Table 2. The performance of the PAOP system proposed in the work and previous work.

Photocatalyst Light Sources 1 Organic
Pollutants

Degradation Yield
(%), Initial

Concentration (M)
Reaction Time

(min) References

HA Vis RhB 82%, 2.5 × 10−5 60 This study
TiO2 UV RhB 96%, 2.1 × 10−5 180 [15]

TiO2 film UV RhB 75% 2, 1.0 × 10−5 300 [16]

Silica-TiO2 UV/Solar Acephate 100%, 1.0 × 10−4 105 [17]
Dimethoate 100%, 1.0 × 10−4 60

ZnO UV Reactive black 5 72%, 1.0 × 10−5 780 [62]
g-C3N4/BiVO4 Vis Diclofenac Sodium 65% 3, 3.1 × 10−5 180 [20]

Fe2O3/Cu2O(SO4) UV Acid orange 2 99%, 1.4 × 10−4 30 [63]
CuO/Cu2O UV Methyl orange >90%, 2.0 × 10−5 30 [64]

WO3 UV RhB 76%, 2.1 × 10−6 180 [65]
BaTiO2/GO UV Methylene blue >80%, 1.6 × 10−5 120 [66]

Bi2WO6 UV RhB 63%, 1.0 × 10−5 180 [19]
(RGO)-Ag UV RhB 70%, 2.0 × 10−6 60 [18]

Ag/Bi2WO6 UV RhB 80%, 1.0 × 10−5 60 [58]
1 UV for ultraviolet light, Vis for visible light, Solar for solar light; 2 Percentage of mineralization determined by
TOC analyze; 3 Synergy with hydrogen peroxide.

3.3. Possible Pathway for the Degradation of RhB in the HYPs/H2O2 PAOP

It was suggested that oxidation by OH· might also be involved in RhB degradation by
PAOP [15]. The intermediate products during the RhB degradation were investigated by
LC–MS analysis. According to the mass spectra (supporting information), 10 by-product
compounds during the degradation process were identified (Figure 6) [15,67]. The LC–MS
analysis also determined the existence of five intermediate structures, I, II, III, IV, and
V, with the ethyl groups removed from the RhB during the decolorization reaction. The
de-ethylation process is initiated by a hydroxyl radical attack on the nitrogen atoms No. 20
and No. 21, which has the highest frontline charge density of any atom in RhB, resulting
in the existence of structures I, II, III, IV, and V [67]. In addition, structure VI shows
hydroxyl substitution on the atom No. 20, revealing the reaction between hydroxyl radicals
and nitrogen atoms. Calculation of the frontline electron density shows high reactivity
from OH· to carbon atoms No. 7 [67]. Thus, the next step in the degradation of RhB is
the removal of the benzoic acid group, which is considered the chromophore group in
RhB. Structure VI had a hydroxyl-substituted unit on the carbon atom No. 7, showing
the reaction between the carbon atom No. 7 and hydroxyl radicals during the process of



Bioengineering 2022, 9, 307 9 of 13

benzoic acid group removal. Following the removal of the benzoic acid group, tricyclic
structures VII-IX were formed in solution. Since OH· had an affinity for the carbon attached
to the benzoic acid group, the released free benzoic acid group could be easily oxidized
to hydroxyl-substituted structures and finally degraded in PAOP [15]. According to the
number of C atoms, the hydroxyl-containing structure X was considered to be derived from
the VII-IX structure through the ring opening reaction. Furthermore, mineralization may
occur upon completion of the ring-opening reaction. It could be deduced that the processes
of demethylation, decolorization and ring opening occur during the degradation of RhB
through HYPs/H2O2 PAOP. After the completion of the ring-opening process, RhB has
been continuedly decomposed into smaller fractions by the OH·.
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3.4. The pH-Dependent Self-Degradation of HYPs

The self-degradation of HYPs in aqueous solution was studied at pH values of 3, 7, 8
and 9 (Figure 7a–d). Before performing light irradiation, the HYP aqueous solution with
pH ≥ 7 shows a clear red color. However, it turned dark green when the pH increased
from 7 to 9. The absorption spectrum shows a unique pattern with a specific absorption
peak at 470 nm. This reveals the integrity of the perylene quinone structure of the HYPs.
Under light irradiation, the HYP aqueous solution changed color with time in all solutions
with different pH values (Figure 7e). However, the intensity of the absorption spectrum
of the HYP solution showed a rapid decrease when the pH was above 7 (Figure 7c,d).
The absorbance at 470 nm of HYPs at pH 9 reached almost zero, while the absorbance
of HYPs under acidic or neutral conditions (pH = 3 and 7) decreased only slightly after
90 min of light irradiation (Figure 7a,b). The evidence promised the prospect of performing
self-degradation of HYPs by adjusting the solution to a weakly alkaline state.
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Figure 7. Influence of pH on the self-degradation of the HYP aqueous solution. (a) pH = 3,
(b) pH = 5, (c) pH = 7, (d) pH = 8, (e) pH = 9, and color changes during the self-degradation
of HYPs.

The HYPs/H2O2 PAOP is competitive with inorganic photocatalysts in terms of degra-
dation performance and environmental friendliness. Using a pH adjustment procedure
would be feasible to remove the HYPs from the aqueous solution to avoid any environmen-
tal contamination since HYPs maintain good neutral or acidic stability while being severely
degraded in an alkaline environment.

4. Conclusions

The photocatalytic degradation of RhB through the synergistic effect between H2O2
and an organic natural photosensitizer was performed. In a 2.5 × 10−2 mM RhB solu-
tion, a degradation yield of 82.4% was achieved after a 60 min reaction in PAOP with
0.18 mM HYPs and 0.33% (w/v) H2O2. The decomposition reaction follows the principle
of pseudo-first-order reaction kinetics with k = 0.02899 min−1. Owing to the property of
self-degradation in a weakly alkaline environment, HYPs were an environmentally friendly
photocatalyst in the PAOP of organic pollutants by alleviating a secondary pollution of
the water. It was revealed that the HYPs were promising visible-light photocatalysts for
application in the degradation of POPs. Further research on the effect of O2 concentration
on the photocatalytic generation of ROS by HYPs would be meaningful for developing a
high-efficiency HYPs/H2O2-PAOP. As natural and self-degradable compounds, we could
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prospect HYP-involved processes for environmentally friendly water photolysis and the
removal of persistent toxins such as phycotoxins and aflatoxin.
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