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Abstract: In this work, gold nanoparticles (AuNPs) and curcumin drug were incorporated in
polyvinylidene fluoride (PVDF) nanofibers by electrospinning as a novel tissue engineering scaffold
in nerve regeneration. The influence of AuNPs on the morphology, crystallinity, and drug release
behavior of nanofiber membranes was characterized. A successful composite nanofiber membrane
sample was observed by scanning electron microscopy (SEM). The addition of AuNPs showed the im-
proved as well as prolonged cumulative release of the drug. The results indicated that PVDF–AuNPs
nanofiber membrane could potentially be applied for nerve regeneration.

Keywords: electrospinning; polyvinylidene fluoride; gold nanoparticles; nerve regeneration

1. Introduction

Nerve injury is a universal disease that affects millions of people all over the world,
especially young adults [1–4]. It may cause them to suffer from permanent cognitive, motor,
or mental disabilities, increasing their social and economic burden, and reducing their qual-
ity of life [5,6]. Although the peripheral nervous system of adult mammals has the ability to
self-regenerate [7], without therapeutic interference, spontaneous nerve regeneration may
lead to neurological insufficiency. Therefore, the study of tissue-engineered nerve grafts is
very necessary [8]. Some experimental and preclinical studies have reported the feasibility
of using tissue-engineered nerve grafts as substitutes for autologous nerve grafts to bridge
peripheral nerve defects [9–12]. In recent years, nanofiber nerve grafts developed by elec-
trospinning technology have attracted extensive scientific interest because of their good
biocompatibility [13–15]. Due to the nano size of fibers, they have many advantages such
as large specific surface area and high porosity [16]. It has been proven that electrospun
gelatin nerve conduits can promote nerve regeneration [17]. The nerve conduits containing
PLGA-SF-Cl prepared by electrostatic spinning method showed a superior repair effect in
repairing nerve damage in rats [18].

Electrospinning is currently one of the fabrication methods for the direct and con-
tinuous preparation of nanofibers. It is widely used in preparing biomaterials, which
could be applied in various fields such as tissue regeneration [19–22], drug carrier [23–25],
and wound dressing [26–29]. It is reported that the electrospun materials combined with
peptides could improve the performance of the materials for biological application such
as tissue engineering. To overcome the drawbacks of the quick release of the peptide, the
covalent linking of these peptides to polymer before or after the electrospinning could
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be used [30]. PVDF is a five-phase positive piezoelectric polymer with five crystal types
of α, β, γ, δ, and ε, among which β, γ, and δ are polar structures [31]. The crystal phase
structure of electrostatic spinning fiber membrane mainly exists in the form of β crystal,
and other crystal phases can be transformed into β crystal phase by various methods [32].
The existence of β crystal phase is the main reason for the significant piezoelectric effect of
PVDF. It is reported that PVDF membrane has antibacterial properties due to their excellent
performance [33]. The unique electroactive, flexibility, light weight, and long-time stability
under high voltage could offer the feasibility to be applied in extensive fields [34]. The
electrospun polymer piezoelectric fiber could mimic the physical, biological as well as ma-
terial properties of the native extracellular matrix. The PVDF and P(VDF-TrFE) electrospun
scaffolds could have an effect on the stimulation of bone repair as well as damaged nerve
cells due to the production of the electrical charges under the mechanical deformation [35].
Moreover, the PVDF electrospun fiber could provide the feasibility as the instructive scaf-
folds for neural stem cell survival and differentiation, and thus could potentially be applied
in the field of neural repair [36]. AuNPs have good biocompatibility and excellent metal
thermal effect [37], playing an important role in the field of medical detection. AuNPs could
be incorporated into nanofibers by electrostatic spinning, and composite nanofibers have
properties of both polymers and AuNPs. Using the special properties of PVDF to combine
AuNPs, it is possible to prepare two-dimensional nanofiber membranes with piezoelectric
effects, providing scaffolds to simulate the extracellular matrix microenvironment. Due
to the electrothermal effect of AuNPs embedded in the fibers [38], the release of drugs
in the fiber membranes can be promoted. Curcumin is a natural bioactive obtained from
powder rhizome of Curcumin longa, which has wide applications in the field of medication,
and could also exhibit the effects of promoting regeneration and functional recovery of
injured peripheral nerves [39]. Combined with the effects of the scaffold or nanotubes in
creating a favorable microenvironment for peripheral nerve regeneration, the curcumin
incorporated into the membrane could serve as one option for the purpose of improving
nerve regeneration and functional recovery [40,41].

In this paper, PVDF was used to prepare PVDF–AuNPs fiber membrane by electro-
static spinning technology, and the morphology of the fiber membrane was observed by
scanning electron microscopy to determine the optimal preparation process conditions.
The crystallinity and other properties were characterized. The in vitro release of loading
model drug curcumin was carried out. The loading of AuNPs could help to improve the
cumulative release of the drug. This drug release model has a promising application in
tissue embedding materials.

2. Materials and Methods
2.1. Materials and Instruments

Polyvinylidene fluoride (PVDF), purchased from Tianjin Jiechuang Yongtai New
Material Technology Co., Ltd., Tianjin, China; N,N-Dimethylformamide (DMF) and ethanol,
purchased from Tianjin Kemiou Chemical Reagent Co., Ltd., Tianjin, China; acetone,
purchased from Li’an Longbohua (Tianjin) Pharmaceutical and Chemical Co., Ltd., Tianjin,
China; gold nanoparticles (10 nm, in sodium citrate solution), purchased from Aladdin
Reagent (Shanghai) Co., Ltd., Shanghai, China. Curcumin, purchased from Wuhan Tianzhi
Biotechnology Co., Ltd., Wuhan, China; potassium dihydrogen phosphate, disodium
hydrogen phosphate, potassium chloride and sodium chloride were all purchased from
Tianjin Tianli Chemical Reagent Co., Ltd., Tianjin, China. All the other reagents were
conventional commercially available preparations.

FM-1012 electrostatic spinning machine (Beijing Fuyouma Technology Co., Ltd.,
Beijing, China); D/max2200PC X-ray diffraction (Rigaku, Tokyo, Japan); DSP20 type sur-
face wetting angle measuring instrument (Kruss, Hamburg, Germany); Hitachi S-4800 field
emission scanning electron microscope (Hitachi, Tokyo, Japan); Octane prime X-ray photo-
electron spectrometer (American EDAX Co., Ltd., Mahwah, NJ, USA); UV-5100 UV-visible
spectrophotometer (Shanghai Metash Instrument Co., Ltd., Shanghai, China)
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2.2. Preparation of Fiber Membranes

PVDF powder was dissolved in DMF and acetone mixed solvent at a certain volume
ratio (5:5, 6:4 and 8:2) to prepare the spinning solution with a mass fraction of 12%. The
AuNPs with the size of 10 nm in sodium citrate solution (>0.75 A520 Units/mL) were
added to the PVDF eletrospinning solution. The concentration of AuNPs was 0.60 nM,
which was calculated by determining the absorbance at 520 nm and using an extinction
coefficient of 1.25 × 109 M−1 cm−1 [42,43]. The DMF was mixed with 0.1 mL AuNPs
solution, which was stirred at room temperature for 3–4 h with magnetic agitator until
completely dissolved. Then, the spinning temperature was adjusted to the test parameters
(24 ◦C, 28 ◦C, 30 ◦C, 32 ◦C, 35 ◦C and 40 ◦C), and the distance between the spinneret and
the collector was adjusted to 15 cm. The spinning voltage was 23 kV, the jet speed of the
spinneret was 0.05 mm/s, and the spinning needle was NO.7 flat head needle. Finally, the
spinning fluid was transferred to the syringe and connected with the propulsion device to
process the fiber fabrication.

2.3. Characterizations
2.3.1. SEM

After the nanofiber membranes were prepared, Hitachi S-4800 field emission scanning
electron microscope was used to observe the morphology of the fibers. The samples’ surface
was sprayed with gold and SEM was applied to scan the PVDF–Au-formed fiber surface
morphology image [44].

2.3.2. XRD

XRD was performed to determine the crystallinity of the PVDF–AuNPs fabricated
fiber. Cu target was selected for X-ray diffraction test, and the scanning range was 5~50◦.
Scanning speed: 4.0000 (deg/min); voltage: 40.0 kV; current: 30.0 mA. The nanofiber
membranes were placed on the sample pool for X-ray diffraction determination, and the
data were recorded. The crystallinity of the PVDF–AuNPs’ fibers was calculated with
Jade6 software.

2.3.3. XPS

X-ray photoelectron spectrometer is a precision instrument that can not only qualita-
tively analyze the composition on the sample surface, but also quantitatively analyze the
content of each component [45]. The five elements of C, N, O, F and Au in the nanofiber
membranes were analyzed by X-ray photoelectron spectroscopy.

2.4. In Vitro Release Behavior of Model Drug Curcumin

Curcumin was selected as the model drug. A total of 2.5 mg curcumin was dissolved
in anhydrous ethanol and mixed with PVDF acetone solution. AuNPs solution of different
volumes (0.1 mL, 0.2 mL, 0.3 mL and 0.4 mL) was added to the solution of PVDF–AuNPs
before electrospinning.

The curcumin standard curve was set up to calculate the concentration of the curcumin.
A total of 10.0 mg of curcumin reference substance was carefully weighed, dissolved, and
diluted with anhydrous ethanol to 100 mL, and shaken well to obtain a standard solution.
The standard solutions of 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 mL were further diluted to 10 mL
with anhydrous ethanol. The absorbance was measured at wavelength of curcumin at
428 nm. Firstly, PBS buffer was prepared, and oxygen was removed with 800 mL deionized
water at 25 ◦C. Potassium dihydrogen phosphate (KH2PO4) 0.27 g, disodium hydrogen
phosphate (Na2HPO4) 1.42 g, sodium chloride (NaCl) 8 g, and potassium chloride (KCl)
0.2 g were fully stirred and dissolved. Then concentrated hydrochloric acid was added to
adjust pH to 7.4, and the constant volume to 1 L. The dissolution degree was determined
by small cup method. Dissolution conditions are as follows. Rotating speed: 50 r/min;
temperature: 37 ± 0.5 ◦C; dissolution medium: PBS buffer; each sample contained 2.5 mg
curcumin, and 3 mL samples were taken at 0, 10, 40, 70, 100, 160, 220, 280, 340, and 400 min
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(supplemented with fresh medium at the same temperature and volume at the same time).
The absorbance of the filtrate was measured by UV-VIS spectrophotometer. With PBS buffer
as blank control, the absorbance was measured at 428 nm, and the corresponding drug
concentration was calculated by using the regression equation of the obtained standard
curve and the cumulative dissolution was obtained.

3. Results and Discussion
3.1. Morphology of Fiber Membranes

As shown in Figure 1, the pure PVDF fiber membranes obtained under different
process conditions are observed. It can be found that different solvent volume ratio and
temperature have a great influence on the morphology of PVDF fiber membrane. When
the volume ratio of DMF and acetone is 8:2, there are large droplets in the obtained
fiber membrane. This is because the acetone content in the spinning solution is low and
the volatilization performance is poor; during electrospinning, the viscosity of spinning
solution is high and the stretching degree of fiber is not enough, so a more obvious
fiber membrane with droplets is formed. When the volume ratio is 6:4, the droplets are
significantly reduced, and the fiber diameter distribution is more uniform. This is because
from the increase in acetone content, the volatilization performance of the spinning solution
is improved, and the viscosity of the spinning solution is reduced, which is conducive to
refining and stretching into nanofibers in the electrospinning process. By comparing the
effects of temperature on the morphology of the fiber membrane at the same solvent and
volume ratio, it is found that the morphology of the fiber membrane is better at 28 ◦C, the
droplets are fewer, and the thickness distribution is uniform.
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Figure 1. SEM images of fiber membrane at eletrospinning temperature of 28 ◦C with the DMF to
acetone volume ratio of (a) 8:2, (c) 6:4, (e) 5:5; 30 ◦C with the DMF to acetone volume ratio of (b) 8:2,
(d) 6:4, (f) 5:5.

It can be seen from the above that when the volume ratio of DMF and acetone is 6:4
and the temperature is 28 ◦C, the morphology of the prepared fiber membrane is good,
as shown in Figure 1c. Compared with PVDF nanofiber membrane, the fiber diameter is
significantly smaller after gold loading. This can be observed in Figure 2. Figure 3 shows
that the morphology of pure PVDF fiber membrane and PVDF–AuNPs fiber membrane
under the process condition of 28 ◦C and 5:5 solvent volume ratio, and it also can be clearly
observed that the diameter of the fiber membrane is smaller. The reason for this may be
that the added AuNPs produce a thermal effect in the electrospinning process, resulting in
the transformation of PVDF molecular segments from crystalline to amorphous, which is
conducive to the refinement and stretching of droplets.
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Figure 3. (a) SEM images of PVDF electrospun nanofibers under the process condition of 28 ◦C
and 5:5 solvent volume ratio; (b) Diameter distribution histograms of (a). (c) SEM images of PVDF–
AuNPs electrospun nanofibers under the process condition of 28 ◦C and 5:5 solvent volume ratio (b).
(d) Diameter distribution histograms of (c).

As a kind of noble metal, AuNPs also increased the conductivity of the spinning
fluid, which carried more electric charges during electrospinning, so that more electric
splitting refining processes could take place. The electric field force acting on the surface
of the droplet was increased, and its thinning and stretching capacity was enhanced. The
diameter of the electrospinning fiber was smaller.

3.2. XRD

Through XRD characterization of PVDF–AuNPs fiber membranes, it can be found
that the fiber membranes are mainly β crystalline after electric field force polarization and
stretching, and the average crystallinity of the obtained fiber membranes is 14.18%. The
crystallinity of PVDF powder is about 34%. The change of crystallinity mainly depends
on the transformation of the PVDF crystal form. After electrospinning, the crystallinity
of the fiber membranes decreases, which proves that the content of β phase in the fiber
membranes increases, and the piezoelectric effect increases accordingly. The reason may
be that the loading of AuNPs increases the conductivity of the spinning solution used in
electrostatic spinning and promotes the stretching of PVDF from α spherulite structure to
the microfibrous β crystal structure.
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Figure 4 shows the XRD characterization results of the fiber membranes prepared
under the conditions of DMF and acetone at a volume ratio of 6:4 and a temperature
of 28 ◦C. The diffraction peaks of the fiber membrane at 2θ of 10.4◦, 19.2◦ and 27.8◦ are
observed. In the figure, it is obvious that the peak intensity corresponding to the β phase
is stronger, which indicates that the crystal shape of gold-loaded PVDF after polarization
and stretching by electrostatic spinning is still mainly composed of polar β phase, and the
crystallinity of gold-loaded PVDF fiber membrane is low.
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3.3. XPS

Figure 5 shows the photoelectron spectroscopy of PVDF–AuNPs fiber membrane,
which reveals that the constituent elements of the fiber membrane are mainly carbon and
fluorine. At the same time, through the fine spectrum of the fiber membrane, it is found
that fluorine and carbon mainly exist in the valence states of F1s and C1s without other
additional peaks. It shows that the surface of the fiber membrane is not polluted, and it
also shows that more AuNPs are embedded in the nanofibers.
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3.4. In Vitro Release of Model Drugs

The standard curve of curcumin is shown in Figure 6. The standard equation of
curcumin release is y = 0.2412x + 0.0425, R2 = 0.9996 (x is the concentration of curcumin, y
is the absorbance), and the linear relationship is good.

Figure 7 shows drug release from drug-loading fiber membrane. In the cumulative
release curve, fiber membrane loaded with smaller amounts of AuNPs at the volumes of
0.1 mL, 0.2 mL, 0.3 mL, and 0.4 mL at the first 5 h cumulatively release less than the blank
control group. This is because the amount of AuNPs loaded in the fiber membrane at the
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initial stage of release is not enough to produce the thermal effect promoting drug release,
and the gold nanoparticles mixed in the spinning solution have a chelation or adsorption
effect on curcumin, leading to the release variation. However, with the lapse of dissolution
time, the release rate of the blank control group showed a slowing trend in the subsequent
release of 5–9 h, while the release rate of gold-loaded fiber membrane increased, indicating
that the thermal effect of AuNPs in the fiber gradually accumulated during the solution
agitation process and reduced the crystallization degree of PVDF nearby. The drug release
curve of PVDF membrane with low AuNPs content showed a slow and controlled release
effect with a time-dependent effect.
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Figure 7. Cumulative release rate curve of drug-loaded fiber membrane in different groups:
PVDF + 0.1 mL AuNPs, PVDF + 0.2 mL AuNPs, PVDF + 0.3 mL AuNPs, PVDF + 0.4 mL AuNPs,
blank control group. The concentration of the AuNPs was 0.60 nM.

4. Conclusions

The optimized conditions for electrospinning PVDF–AuNPs membranes were as fol-
lows: DMF and acetone volume ratio 6:4, spinning temperature 28 ◦C. The fiber membrane
could have good morphology and no obvious defects can be obtained. The fiber membrane
has low crystallinity, large β phase crystal area, and good AuNPs embedding effect. In
PVDF fiber, AuNPs had the double cumulative effect of time and content, and a small
amount of AuNPs was not enough to produce the thermal effect to promote the release of
curcumin in a short time. When the addition of AuNPs increased, the electrothermal effect
could obviously improve the release of curcumin.
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