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Abstract: There is a deep need to navigate within our genomic data to find, understand and pave the
way for disease-specific treatments, as the clinical diagnostic journey provides only limited guidance.
The human genome is enclosed in every nucleated cell, and yet at the single-cell resolution many
unanswered questions remain, as most of the sequencing techniques use a bulk approach. Therefore,
heterogeneity, mosaicism and many complex structural variants remain partially uncovered. As a
conceptual approach, nanopore-based sequencing holds the promise of being a single-molecule-based,
long-read and high-resolution technique, with the ability of uncovering the nucleic acid sequence and
methylation almost in real time. A key limiting factor of current clinical genetics is the deciphering
of key disease-causing genomic sequences. As the technological revolution is expanding regarding
genetic data, the interpretation of genotype–phenotype correlations should be made with fine caution,
as more and more evidence points toward the presence of more than one pathogenic variant acting
together as a result of intergenic interplay in the background of a certain phenotype observed in
a patient. This is in conjunction with the observation that many inheritable disorders manifest
in a phenotypic spectrum, even in an intra-familial way. In the present review, we summarized
the relevant data on nanopore sequencing regarding clinical genomics as well as highlighted the
importance and content of pre-test and post-test genetic counselling, yielding a complex approach to
phenotype-driven molecular diagnosis. This should significantly lower the time-to-right diagnosis as
well lower the time required to complete a currently incomplete genotype–phenotype axis, which
will boost the chance of establishing a new actionable diagnosis followed by therapeutical approach.

Keywords: actionable genetic diagnosis; nanopore sequencing; long-read sequencing; complex
structural variants; single cells; genetic counselling

1. Introduction

A great proportion of genetic disorders manifest phenotypically by early adulthood,
resulting in a cumulative incidence of observed rare diseases between 1.5–6.2% in the
general population [1,2]. Due to the wide phenotypic heterogeneity and lack of robust
molecular testing strategies, diagnosis is challenging and is often delayed by several years.
According to the latest telomere-to-telomere human genome assembly, the size of the
human genome is of the order of 3.055 Gbp [3]. Besides the relatively large size of the
genome, dysfunctional methylation, histone modifications and RNA expression may also
elicit a phenotypic burden; therefore, a systematic approach is needed to correctly address
genotype–phenotype correlations [4]. Currently, diagnostically used cytogenetics and
molecular biology techniques depict only certain types of human genetic alterations (e.g.,
due to DNA fragmentation during library preparation for next-generation sequencing
(NGS), the detection of short tandem repeats, as trinucleotide repeat expansions are not
feasible, and also the detection of structural variants is quite limited [5]. The resolution of
G-band karyotyping is mostly limited to 3 Mbp, and the higher resolution providing an
array-comparative genome hybridization (array-CGH) approach cannot detect low-level
mosaicism, balanced translocations or uncover copy number variations where oligoprobes
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have not been designed in the array) [6]. A comprehensive meta-analysis has shown that the
diagnostic utility of the array-CGH and NGS approaches (whole-exome sequencing, whole-
genome sequencing) varies between 10–41%, but many cases it still remains unresolved [7].
Therefore, a new comprehensive cytogenomic approach is needed to improve the yield of
molecular cytogenomic diagnostics. Long-read nanopore sequencing permits the detection
of both nucleotide-level and structural-level variations and methylation pattern alterations,
and it is the only method that allows direct RNA sequencing [8].

Here, we reviewed the role of nanopore sequencing within the current molecular
testing strategies, its relevance to actionable genetic diagnosis and its impact on genetic
counselling. The human genome has a highly complex structure and functions as the back-
bone of the cell by coordinating the fate of many cellular functions. If critical damage occurs
at genomic level, critical cellular functions may occur, mostly in a cell-type-dependent
manner, revealing itself in various phenotypic alterations: (1) Some inheritable disorders
reveal themselves by the accumulation of a plethora of structural minor anomalies and
organ dysfunctions, even at the prenatal, perinatal or early childhood period [9]. A clini-
cal diagnosis and a targeted molecular testing approach should be performed. (2) Most
inheritable disorders mask themselves by a subtle phenotype alteration by early childhood,
showing unspecific signs and symptoms or age-dependent phenotype penetrance [10].
There is a high need for an effective and time-efficient diagnostic strategy for this group
of patients. (3) In the third case, there are patients with underlying genetic disorders with
age-dependent/incomplete phenotype penetrance, with mostly the first symptom being
the sign of organ dysfunction/a detrimental clinical event. The diagnostic approach and
journey for these patients also raises many unanswered ethical questions. The importance
of phenotyping accompanied by a detailed genetic anamnesis and at least a four-generation
extended pedigree should be utterly prioritized before targeted or high-throughput molec-
ular testing, otherwise the clinical utility of these tests is limited [6,11,12].

2. Molecular Testing—Timing and Approach

The timing of molecular testing is of essential importance. The molecular testing of
germ line cells is limited. In males, germline cells can be tested from a testis biopsy for
(1) nucleotide-level variations in a targeted fashion with Sanger sequencing (SS)/NGS
or a nanopore-based sequencing (ONT) approach, or (2) structural-level variations in a
targeted fashion with fluorescence in situ hybridization (FISH) with ONT. For a whole-
exome or whole-genome approach to detect nucleotide variations, NGS or ONT can be
applied. To detect structural variations array-comparative genome hybridization (array-
CGH), ONT or optical genome mapping (OGM) can be applied [13]. For methylation-based
analysis, a methylation-sensitive multiple-ligation-based assay (MS-MLPA), pyrosequenc-
ing or ONT can be applied. Therefore, ONT provides a comprehensive genome-testing
method whilst preserving native nucleic acid modifications [14]. As for preconceptual
testing, carrier screening, for most diseases, showing an autosomal recessive inheritance
pattern and is available in many countries at a reasonable price. Preimplantation testing
during in vitro fertilization and the application of preimplantation gene testing via the
detection of pathogenic structural variants in embryos could be of key importance [15].
For targeted prenatal testing, ONT has been successfully applied for the testing of fetal
DNA from maternal blood samples [16]. As for postnatal testing, for whole-genome se-
quencing and diagnosis, a world-record time of 7 h and 18 min has been achieved by the
ONT approach [17].

High-throughput deep-sequencing enables the uncovering of variant frequencies and
methylation CpG patterns in heterogenous samples. The recently developed nanopore
Cas9-targeted sequencing (nCATS) method has proven to provide the aforementioned
quality at a targeted level in a cost-effective way [14].

From a methodological approach, the following two major points need to be addressed
to deliver an effective molecular testing strategy: (1) what type of molecular alteration
should be detected, and (2) what are the functional consequences of the detected variants?
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At the DNA level, molecular alterations could be categorized by nucleotide variants and
structural variants. Nucleotide variants are usually DNA sequence variations ranging
in size between 1–100 bp that may be of critical etiological value in several inheritable
disorders and somatic pathogenic variants. Structural variants, ranging in size from
several hundred base pairs up to few Mbp, may also elicit inheritable disorders and tumor
predisposition or may be of a benign polymorphism value (Figure 1).
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Figure 1. Reliable detection of genetic variants by size and technique throughput. Different tech-
niques allow the detection of certain nucleotides or structural variants. The throughput of the
different techniques also varies. Of note, throughput is also instrument-dependent, and this is not
reflected entirely in the figure, as in some cases the instrumentation may change the throughput order
represented in the figure. Created with BioRender.com (accessed on 6 September 2022).

3. Nanopore Sequencing

Recent advances have led to the rapid and highly efficient deciphering of pathogenic
variants using nanopore-based sequencing, allowing rapid clinical diagnosis [18]. ONT
allows the uncovering of targeted nucleic acid sequences or whole-genome, epigenome
(5-methylcytosine), transcriptome and epitranscriptome (N6-methyladenine) analysis [18].
Nanoscale-sized nanopores act as biosensors for detecting ionic current changes in real
time during single-stranded DNA or RNA molecules (unwound by a motor protein pos-
sessing helicase activity) passing in a step-by-step manner [18]. A typical workflow starts
with high-molecular-weight DNA extraction coupled with optional fragmentation or size
selection (to remove overrepresented small DNA fragments). For library preparation, a
relatively short DNA repair and adapter ligation strategy could be used, followed by a
loading step on the nanopore-flow cells and real-time sequencing. By applying hybrid
error correction tools, the long-read error rate is nowadays between 1-4% of that of short
reads. Four main branches could use the advantages of ONT in clinical settings: (1) to
identify the background of genetic diseases, (2) to molecularly diagnose cancer patients
(e.g., acute leukaemias, solid tumors where certain molecular alterations may greatly in-
fluence the therapy of choice [19,20]), (3) rapid pathogen identification in an infectious
disease scenario, and (4) to rapidly sequence the major histocompatibility of genes for
recipient–donor tissues in transplantation medicine. The strength of nanopore sequencing
relies in resolving long-range information, which is one of the main limitations of short-
read sequencing technologies [21]. By coupling the unique molecular identifiers (UMI)
used in single-cell transcriptomics and genomic long-read transcriptomes, transcriptomes
may be sequenced at single-cell resolution with ONT [22]. In Figure 2 we present two
methodological approaches for targeted nanopore-based sequencing.
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Figure 2. Principles of targeted nanopore sequencing: adaptive sampling and Cas9-assisted methods.
High-molecular-weight DNA (HMW DNA) is extracted from relevant biological samples. After
quality checking for concentration and purity, two highly potent methods can be applied for a
targeted sequencing approach. The adaptive sampling approach can be used for selective enrichment
of regions of interest to be sequenced. To enrich prior sequencing during library preparation with
designed sgRNAs, the region(s) of interest can be selectively enriched and loaded to the nanopore-
based sequencing platform. After quality control assessment, two pipelines can be run, one for
methylation pattern analysis, and another for detection of nucleotide and structural variations.
This highlights the unique power of nanopore sequencing: parallel detection of both sequence and
methylation pattern. Created with BioRender.com (accessed on 6 September 2022).

4. Where to Fit Long-Read Sequencing in Clinical Genomics?

The relevant milestones that should shape the fitting of long-read sequencing are:
(1) The phenotype-driven molecular testing of both nucleotide variant (e.g., single

nucleotide variants, SNV [23,24], short insertion–deletions, indels [25], short tandem repeats
(STR) [26], trinucleotide-repeat expansions, etc.) and structural variant detection (e.g.,
deletions, duplications, cryptic microdeletions/duplications, both balanced and unbalanced
translocations [27], gene fusions, complex rearrangements [28], marker chromosomes [29],
etc.). Furthermore, methylation pattern detection allows the diagnosis of imprinting
disorders as well as haplotyping/phasing [30–32] being available when relevant.

(2) Targeted molecular testing in a time-dependent manner for the establishment of an
actionable diagnosis, e.g., gene therapy, a modified therapeutical approach and enzyme
replacement therapy. Recently, a feasibility study designed to address targeted gene analysis
from noninvasive prenatal testing (NIPT) samples using ONT has been described [16]. ONT
provides a direct construction of haplotypes, through relative haplotype dosage analysis
from maternal blood plasma, which is of importance in diseases such as ß-thalassaemia,
spinal muscular atrophy, Duchenne’s and Becker’s muscular dystrophies and Hunter’s
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disease [16]. As is summarized in Table 1, the molecular diagnosis of actionable rare
diseases and haematological malignancies is feasible in a rapid and reliable fashion with
ONT. Identified pathogenic variants in the GLA (leading to Fabry’s disease), GBA (leading
to Gaucher’s disease) or PAH (leading to phenolketonuria) genes involve a close follow-up,
and the affected patients may be eligible for specific enzyme replacement therapy and/
or substrate-reduction therapy [8,33,34]. As for rare disease diagnostics, one of the most
common causes of the intellectual disability, Fragile X syndrome, causing STR alterations
in the FMR1 gene as well other genes of interest causing intellectual disability, skeletal or
inborn heart disorders, has been successfully detected by the ONT platform. One of the
key questions in tumor diagnostics is to identify the actionable gene alterations that may
modify the therapeutic strategy in a rapid fashion as well to conclude whether the detected
alteration is limited to the somatic tumor-associated tissue or is a germline alteration.
The second part of Table 1 depicts such gene alterations that are actionable findings in
tumoral settings.

(3) Multiomical and high-resolution-based testing for the depiction of heterogeneity
and mosaicism. In several in vitro studies involving cell lines and primary cells, ONT has
been successfully applied, providing further evidence of nanopore application for variant
analysis (Supplementary Table S1).

The current limitations of ONT include the slightly different approach to DNA ex-
traction and library preparation. The input and quality of the sample DNA may limit the
sequencing throughput, and as for post-sequencing, the sequence and methylation pattern
need different analysis pipelines. Also the calling of SNVs although has been significantly
improved (varying between 1–4%) in recent years, it needs further enhancement to be
below 1% of the error rate [5].
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Table 1. Clinically actionable gene alterations successfully detected by ONT from processed human samples.

Region of Interest Sample DNA/RNA Extraction Library Prep Sequencing Platform Results Validation Reference

Genetic regions of interest for inborn errors of metabolism

GLA Blood Flexigene DNA kit (Qiagen) PBK004 MinION Detected GLA nucleotide variations Known GLA variants were sequenced [33]

GBA Blood Phenol-chloroform salting out LSK-109 GridION Detected variants, SNV SS [34]

PAH Blood, saliva, fibroblasts NA LSK-109 GridION
Successful SV, complex

rearrangements, SNV detection
with adaptive sampling

SS, Southern blot [8]

Genetic regions of interest for intellectual disability

TAF1 Blood DNA Midi kit (Qiagen) LSK-109 GridION Detected repeat expansions Fluorescence-based PCR [35]

C9orf72, FMR1 hiPSC from patients Phenol-chloroform extractions LSK-108 or LSK-109 MinION STR Southern blot [36]

RFC1, NOTCH2NLC,
FXN, AR, DMPK Blood

Qiagen Gentra PureGene blood
kit (NSW) or QIAsymphony DSP

DNA Midi Kit
LSK109 or LSK110 MinION or GridION STR and methylation profiling RP-PCR and Southern blot [37]

Genetic regions of interest for skeletal and or heart disorders

DMD Blood and saliva DNA extraction LSK-109 or LSK-110 MinION or GridION Detected SVs and SNVs SS [38]

ALMS1, DMD, ABCA4,
AGL, XYLT1 and other ROI Blood, saliva, fibroblasts NA LSK-109 GridION

Successful SV, complex
rearrangements, SNV detection

with adaptive sampling
SS, Southern blot [8]

Genetic regions of interest tumour predisposition

PML-RARA Blood and bone marrow Promega Maxwell Instrument LSK-108 MinION Gene fusion detection NGS—Illumina [39]

IGHV Blood QIAamp DNA blood mini kit LSK-109 MinION Detection of IGHV small subclones SS [40]

BRCA1, KRT19, BRAF,
KRAS, TP53 Breast tumor MasterPure kit (Lucigen) LSK-109 MinION SNV, SV, methylation

by Cas9-approach Illumina WGBS [14]

HLAB2 Blood Guanidium–HCl based
chloroform extraction NSK007 MinION HLA-B genotyping SS [41]

BCR-ABL1, FGFR2 fusions, Hematologic and solid
tissue specimens RNA extraction Promega LSK-108 MinION, Flongle Gene fusion detection NGS [42]

EGFR Blood plasma QIAamp Circulating Nucleic Acid Kit LSK-109 MinION EGFR amplifications NGS, SS [43]

NPM1, FLT3, CEBPA,
TP53, IDH1 and IDH2 Bone marrow QIAamp DNA Blood mini kit LSK-108 MinION SNV, indel detection SS [20]

BCR-ABL1 Blood Blood genomic DNA mini kit LSK-108 MinION Specific positions of translocation SS [44]

FLT3 Blood NA LSK-108 MinION FLT3 allelic mutations NGS—Ion Torrent [45]

mtDNA

mtDNA Blood QIAamp Mini Blood Kit NSK007 or RAD001 MinION SNV, homopolymer,
dinucleotide repeat

NIST-traceable mtDNA
sequencing standard [46]

NA—no available data on the used kit, NGS—next-generation sequencing, SS—Sanger sequencing, SV—structural variation STR—short tandem repeats.
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Actionable genetic diagnosis:
The definition of an actionable genetic diagnosis in conjunction with the ACMG’s

newest guidelines can be defined as an available medical intervention for certain genetic
disorders by reducing morbidity and mortality and enhancing the quality of life [47].
Possible medical interventions arise from a gene-therapeutic point, addressing pathogenic
variants at the DNA level in a tissue-specific/tropic fashion. Next, acting at the RNA level,
small interfering RNAs or anti-sense oligonucleotides may act at the cellular level to reduce
the phenotypic burden. At the protein level, enzyme-replacement therapy is available for
quite a few inborn error-of-metabolism disorders, and molecular chaperones enhancing
enzymatic activity or substrate-reducing agents with disease-modifying effect are available
for selected lysosomal storage disorders. Medical interventions of actionable genetic
diagnoses are applied nowadays in the postnatal lifecycle; however, the implementation of
disease-modifying therapies in the prenatal period [48] or as a new core concept a possible
new era of in utero gene therapy may also arise [49] (Figure 3).

Bioengineering 2022, 9, x FOR PEER REVIEW 7 of 13 
 

are available for selected lysosomal storage disorders. Medical interventions of actionable 

genetic diagnoses are applied nowadays in the postnatal lifecycle; however, the 

implementation of disease-modifying therapies in the prenatal period [48] or as a new 

core concept a possible new era of in utero gene therapy may also arise [49] (Figure 3). 

 

Figure 3. Actionable genetic diagnosis—identification of certain genetic diagnoses opens the 

pathway for either disease-specific therapy or medical actions that may significantly lower the 

burden of phenotype and enhance the quality of patients’ life. Created with BioRender.com. 

(accessed on 16 November 2022). 

5. Genetic Counselling—State of the Art 

Genetic counselling reflects the backbone of human genomics analysis by finding the 

answer to the following three fundamental questions: (1) Why is it recommended to opt 

for a genetic test? (2) What is our target nucleic acid sequence that should be analyzed by 

a suitable test available at that particular timepoint, highlighting the strengths and 

limitations of it? (3) How should we critically interpret and obtain insight about the data 

provided by the genetic analysis? 

One of the most challenging tasks of genetic counselling is to maximize the clinical 

utility and, at the same time, minimize the uncertainty of information [50]. This could be 

enhanced by setting up multidisciplinary professional healthcare teams who can 

synthesize and collaborate to precisely define and follow up phenotypic spectra, which 

may maximize the uncovering of phenotype–genotype associations. Thus, the clinical 

pathway of patients can be significantly improved, often influencing the screening 

strategies and/or therapeutic approach. 

  

Figure 3. Actionable genetic diagnosis—identification of certain genetic diagnoses opens the pathway
for either disease-specific therapy or medical actions that may significantly lower the burden of
phenotype and enhance the quality of patients’ life. Created with BioRender.com (accessed on
16 November 2022).

5. Genetic Counselling—State of the Art

Genetic counselling reflects the backbone of human genomics analysis by finding the
answer to the following three fundamental questions: (1) Why is it recommended to opt
for a genetic test? (2) What is our target nucleic acid sequence that should be analyzed
by a suitable test available at that particular timepoint, highlighting the strengths and
limitations of it? (3) How should we critically interpret and obtain insight about the data
provided by the genetic analysis?
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One of the most challenging tasks of genetic counselling is to maximize the clinical
utility and, at the same time, minimize the uncertainty of information [50]. This could be
enhanced by setting up multidisciplinary professional healthcare teams who can synthesize
and collaborate to precisely define and follow up phenotypic spectra, which may maxi-
mize the uncovering of phenotype–genotype associations. Thus, the clinical pathway of
patients can be significantly improved, often influencing the screening strategies and/or
therapeutic approach.

6. Role of Pre-Test Genetic Counselling

To define the genotype–phenotype correlation as precisely as possible, a detailed
phenotyping and pedigree building is essential, which can also be enhanced by artificial
intelligence (AI). Phenotyping begins with a detailed genetic anamnesis. This should
include a preconceptual anamnesis (age of the biological mother and biological father
at conception, mode of conception and use of periconceptual vitamins) and a prenatal
anamnesis (use of or contact with teratologic agents during the embryonal and/or fetal
critical period. TORCH-screening, pathological ultrasound findings, the use of prenatal
vitamins, drug use, and prenatal genetic tests such as NIPT, G-banding, chromosomal
microarray or whole-exome sequencing could be conducted) [51]. The anamnesis of
the perinatal period should cover the mode of delivery, possible hypoxic events, the
age of gestation, the weight, height and head circumference at birth, the APGAR score,
neonatal cardiorespiratory adaptation, the use of O2 therapy, newborn hearing screening,
newborn feeding difficulties and breastfeeding. With a special emphasis on the advances of
developmental milestones and the use of early childhood development therapies, language,
social skills and learning ability development should be questioned. At the end of genetic
anamnesis, the building of a four- or five-generation genetic pedigree is advised. For
the digitalization of pedigrees, different software packages (e.g., Evagene Clinical—a free
open-source software available at www.evagene.com (accessed on 6 September 2022) or
GenoPro Waterloo, Ontario, Canada—a paid software option available at www.genopro.com
(accessed on 6 September 2022)) can be used. Critical questions should be covered during
the pedigree assessment such as (1) the spontaneous abortion history of the index patient’s
mother and maternal grandmother; (2) any known perinatal death in the family; (3) the
occurrence of sudden cardiac death in the family; (4) any malignant tumor development
before the age of 45 in the family; (5) any recurring deep-vein thrombosis, any pulmonary
emboly in the family; (6) any consanguineous marriage in the family; and (7) any infertility
in the family.

Next, a genetic physical assessment should include the detailed phenotyping of minor
anomalies. Detailed phenotyping is an important way to evaluate the impact of penetrance,
the possibility of uncovering a second genetic alteration and of expanding the phenotypic
variability of a molecular finding [52–55]. The use of prenatal data may also enhance the
findings of a high-throughput molecular analysis [51]. If a targeted approach is used, the
detailed phenotype will determine the test of choice [56]. Guidelines on the standard use of
systematic phenotyping are available [57–59]. The use of artificial intelligence for the refine-
ment of minor anomalies (e.g., Face2Gene—a free open-source online platform [60]) can also
be useful. Systematic phenotyping includes the depiction of facial minor anomalies, which
should include the size of the nasal bridge, a nasal tip and nares assessment, canthal folds,
endocanthal lengths, interpupillary distance, exocanthal length, palpebral fissure slanting,
eyelash length and density, eyebrow thickness and/or conjoined eyebrows, philtrum size,
lower and upper lip thickness and slanting, intercommissural distance, enlarged interden-
tal space, a high narrow palate, bifurcated uvula, tongue size and asymmetry, bilateral
philtrum–mandibular angle distance, forehead size and protrusion, bitemporal distance,
ear set height, ear asymmetry, rotation of the external ear, jaw position and mandibular size.
Next, the shape and size of the skull as well as the hairline insertion and hair thickness
anomalies should be assessed. In addition, skin alterations (e.g., café-au-lait spots, angiok-
eratomas, etc.) and hand and feet minor anomalies should be assessed in addition to a

www.evagene.com
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regular physical examination. A detailed depiction of minor anomalies and their annotation
should be performed according to the human phenotype ontology (HPO) [61]. Next, the
objectifying of minor anomalies by precise measurements during minor anomaly depiction
should be calculated for age- and gender-specific percentile values. In addition, a detailed
depiction of growth curve tendencies by a comparison of percentiles specific to age, gender
and diagnosis (e.g., growth percentiles for girls between age 0–2 diagnosed with Down’s
syndrome) should be conducted. Based on the evaluation of the detailed genetic anamnesis,
physical examination and pedigree, the best-suited targeted or high-throughput analysis
should be chosen. Detailed information about the usefulness, benefits and limitations of
the proposed test should be provided. Then, informed consent should be signed, with
special emphasis on the reporting of secondary findings according to the latest ACMG
guidelines [47] (Figure 4).
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7. Role of Post-Test Genetic Counselling

The role of post-test genetic counselling is a critical evaluation of the results of the
applied genetic test in light of the phenotype. The evaluation of genotype alterations
should be in line with the observed phenotype. It is recommendable, when possible, that
the positive findings be confirmed by another technique. Of note, if variants of unknown
significance have been identified or the methylation pattern has also been determined in
addition to sequencing, it could be re-evaluated in the near future as more data on variants
of unknown significance start to shed light on either their benign or pathogenic effect. As the
genotype–phenotype correlation that has been established the genetic medical report should
contain the precise genetic alteration both at the cytogenetic and molecular nomenclature
(preferably according to the latest assembly, e.g., GRCh38), the accession number/link
of the detected variant, the interpretation of the variant at the cellular level and the next
detailed clinical significance should be provided. In the detailed clinical significance, the
possible therapeutical approaches and follow-up strategy should be written and discussed
with the patient and/or legal guardian by taking into account the national human genetic
laws of a specific country.
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8. Concluding Remarks

The precise uncovering of our genetic information of interest should be one of our
highest priorities, which should be conducted by providing the most complete molecular
landscape in order to establish next-generation genetic counselling and guidance. As
technology advances, AI has become more prevalent in molecular medicine, and genetic
data has become more prone to being sequenced at larger and larger scales. Timing is of
the essence to molecular diagnosis, as the patient will have the highest opportunity to
benefit from specific medical care and/or treatment the earlier the diagnosis is conducted.
Precise and detailed phenotyping should be performed in order to conclude the correct
genotype–phenotype correlation and medical care to be provided as soon as possible for
every actionable genetic diagnosis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering9120745/s1, Table S1: Relevant data on human cell
line samples processed by ONT. (References [62–66] are cited in the supplementary materials).
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ACMG American College of Medical Genetics and Genomics
AI artificial intelligence
arrayCGH array comparative genome hybridization
CRISPR clustered regularly interspaced short palindromic repeats
FISH fluorescence in situ hybridization
HMW DNA high-molecular-weight DNA
HPO human phenome ontology
nCATS nanopore Cas9-targeted sequencing
MS-MLPA methylation-sensitive multiple ligation-based assay
NGS next-generation sequencing
NIPT noninvasive prenatal testing
OGM optical genome mapping
ONT nanopore-based sequencing
SNV single nucleotide variation
SS Sanger sequencing
STR short tandem repeats
TORCH toxoplasmosis, others, rubella, cytomegalovirus and herpes simplex virus
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