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Abstract: Ovarian, cervical, and endometrial cancer are the three most common gynecological malig-
nancies that seriously threaten women’s health. With the development of molecular biology technology,
immunotherapy and targeted therapy for gynecologic tumors are being carried out in clinical treatment.
Extracellular vesicles are nanosized; they exist in various body fluids and play an essential role in
intercellular communication and in the regulation of various biological process. Several studies have
shown that extracellular vesicles are important targets in gynecologic cancer treatment as they promote
tumor growth, progression, angiogenesis, metastasis, chemoresistance, and immune system escape. This
article reviews the progress of research into extracellular vesicles in common gynecologic tumors and
discusses the role of extracellular vesicles in gynecologic tumor treatment.
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1. Introduction

The three most common gynecologic malignancies, cervical cancer (CC), endometrial
cancer (EC), and ovarian cancer (OC), seriously threaten women’s health [1]. According to
cancer statistics in 2021, CC was the fourth most common cancer and the fourth leading
cause of women dying from cancer with about 604,100 new cases and 341,831 deaths
worldwide in 2020 [2]. EC is one of the most common gynecologic cancers in countries
with high human development indexes. Its morbidity and mortality are increasing globally,
with about 417,367 new cases and 97,370 deaths worldwide in 2020 [1–3]. OC is one of the
most lethal gynecologic malignancies, with about 313,959 new cases and 207,252 deaths
worldwide in 2020. Compared with healthy cells, tumor cells release more EVs and have
different types of physicochemical properties [4]. With the development of gynecologic
oncology, EVs are receiving more attention in gynecologic tumor treatment [5].

Extracellular vesicles(EVs) are lipid vesicles that can be secreted by most cells. The
outer layer of an extracellular vesicle is wrapped by a layer of lipid membrane; its inner
layer contains different types of nucleic acids and proteins, and it has a biologically active
function in transmitting information between cells [6–8]. EVs are a collective term for
multiple subtypes, which exist in body fluids such as blood, semen, urine, saliva, breast
milk, amniotic fluid, and ascites [9,10]. According to the nomenclature of the International
Society for Extracellular Vesicles, researchers should consider using operational terms for
EV subtypes that refer to the physical characteristics of the EVs, their biochemical composi-
tion, and descriptions of the conditions or cell of origin, in place of terms such as exosome
and microvesicle that have contradictory definitions and inaccurate biosignatures [11]. EVs,
which are composed of phospholipids, were first identified in platelets in 1967 and were
considered as waste products of cells [12]. In the following decades, an increasing number
of studies found a correlation between the active components carried by exosomes secreted
in the pathological setting and the development and prognosis of the pathological state,
which can be applied to the detection, prognosis, and guidance of the treatment of early
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cancers [13–15]. Techniques for the detection and purification of extracellular vesicles are
also developing and improving. Therefore, in this paper, we review the research progress
into EVs in common gynecologic tumors and discuss the research prospects and directions
of EVs in gynecologic tumor treatment (Table 1).

Table 1. Role of EV biomarkers in the gynecologic cancer microenvironment.

Marker Type Cancer
Type EV Marker EV Source Function Potential Clinical

Application Ref.

Protein

OC

ATF2
Cells Enhance angiogenesis

Therapeutic target
[16]MTA1

ROCK1/2

sE-cad Serum, ascites Enhance angiogenesis [17]

claudin-4 Cells Biomarker

Early detection

[18]

HGF

Serum

Biomarker

[19]STAT3 Biomarker

IL-6 Biomarker

TGFβ Cells Biomarker [20]

FGF9 Cells Biomarker Prognosis
prediction

[21]

FATS Plasma Biomarker [22]

Clathrin Milk Enhance the anti-cancer effectiveness of cisplatin
Nanocarrier

[23]

LAMP2B Cells Enhance the sensitivity of chemotherapy [24]

Protein receptor PKR1 Serum Enhance angiogenesis

Therapeutic target

[25]

miRNA

miR-130a Cells Enhance angiogenesis [26]

miR-205 Cells Enhance angiogenesis [27]

miR-141-3p Cells Enhance angiogenesis [28]

miR-940 Ascites Stimulate TAM polarization [29]

miR-221-3p Serum Promote cancer cells invasion and migration [30]

miR-6780b-5p Ascites Promote cancer cells invasion and migration [31]

miR-21-5p Cells, Plasma Promote cancer cells invasion and migration [32]

miR-21 Serum Biomarker

Early detection

[33]

miR-141 Serum Biomarker

miR-200a Serum Biomarker

miR-200b Serum Biomarker

miR-200c Serum Biomarker

miR-203 Serum Biomarker

miR-205 Serum Biomarker

miR-214 Serum Biomarker

miR-21 Plasma Biomarker

[34]miR-100 Plasma Biomarker

miR-200b Plasma Biomarker

miRNA OC

miR-320 Plasma Biomarker

Early detection

[34]

miR-16 Plasma Biomarker

miR-93 Plasma Biomarker

miR-126 Plasma Biomarker

miR-223 Plasma Biomarker

miR-1290 Serum Biomarker [35]

miR-1260a Plasma Biomarker

[36]miR-7977 Plasma Biomarker

miR-192-5p Plasma Biomarker

miR-21-5p Cells Biomarker [37]
miR-29a-3p Cells Biomarker
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Table 1. Cont.

Marker Type Cancer
Type EV Marker EV Source Function Potential Clinical

Application Ref.

miR-200a Ascites Biomarker

Prognosis
prediction

[38]
miR-200b Ascites Biomarker

miR-200c Ascites Biomarker

miR-1290 Ascites Biomarker

miR-484 Serum Biomarker [39]

miR21 Cells Increase chemoresistance

Therapeutic target

[40]

miR-7 Cells Inhibit cancer cells invasion and migration [41]

miR-155-5p Cells Inhibit cancer cells invasion and migration [42]

miR-29a-3p Cells Promote cancer cells invasion and migration [43]

miR497 Cells Reduce cisplatin resistance Nanocarrier [44]

circRNA

circRNA051239 Plasma Promote cancer cells invasion and migration Therapeutic target [45]

circFoxp1 Serum Biomarker and increase cisplatin resistance
Prognosis

prediction and
therapeutic target

[46]

Cdr1as Serum Biomarker Prognosis
prediction [47]

LncRNA
MALAT1 Serum Enhance angiogenesis and biomarker

Therapeutic target
and prognosis

prediction
[48]

lncRNA ATB Cells Enhance angiogenesis

Therapeutic target

[49]

Lipid PS Ascites Inhibit T cell activation [50]

Enzyme ARG-1 Plasma, ascites Inhibit T cell proliferation [51]

Protein

CC

TIE2 Cells Enhance angiogenesis [52]

Wnt2B Cells Enhance stroma remodeling and
cancer progression [53]

KPNβ1

Serum Biomarker Early detection [54]
CRM1
CAS
IPO5

TNPO1

HPV E6 Cells Biomarker Early detection [55]

HMGB1 Cells Inhibit cell proliferation and promote
cell apoptosis

Therapeutic target

[56]

miRNA

miR-223 Cells Activates STAT3 signals [57]

miR-221-3p

Cells Enhance angiogenesis [58,59]

Cells Enhance lymphangiogenesis and
lymphatic metastasis [60]

miR-663b
Cells Enhance angiogenesis [61]

Cells Enhance the metastatic ability of cancer cells [62]

miR-155-5p Cells Promote cancer cells invasion and migration [63]

miR-142-5p Cells Suppress and exhaust CD8 T cells [64]

Let-7d-3p
Plasma Biomarker

Early detection

[65]miR-30d-5p

miR-21 Cervicovaginal
lavage sample Biomarker [66]miR-146a

miR-146a-5p

Plasma Biomarker [67]miR-151a-3p
miR-2110
miR-21-5p

miR-125a-5p Plasma Biomarker [68]

miR-1468-5p Cells Biomarker Prognosis
prediction [69]

miRNA

miR-423-3p Plasma Inhibit the macrophage M2 polarization

Therapeutic target

[70]

miR-106a
Cells Reduce cisplatin resistance [71]miR-106b

miR-1323 Cells Enhance cancer progression and radioresistance [72]
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Table 1. Cont.

Marker Type Cancer
Type EV Marker EV Source Function Potential Clinical

Application Ref.

miR-22 Cells Enhance the sensitivity of radiotherapy [73]

miR-320a Cells Reduce cisplatin resistance Nanocarrier [74]

miR-142-3p

Plasma Biomarker Early detection [75]

mRNA

CC

CXCL5

KIF2A

RGS18

APL6IP5

DAPP1

snoRNA

SNORD17

SCARNA12

SNORA6

SNORA12

SCRNA1

SNORD97

SNORD62

SNORD38A

lncRNA

LINC01305 Cells Enhance cancer progression
Therapeutic target

[76]

AGAP2-AS1 Cells Promote cancer cells invasion and migration [77]

HOTAIR Cervicovaginal
lavage sample Biomarker Early detection [78]MALAT1

MEG3

DLX6-AS1 Serum Biomarker Prognosis
prediction [79]

Protein

EC

LGALS3BP Plasma Promote cancer cells invasion and migration,
enhance angiogenesis Therapeutic target [80]

ANXA2 Plasma Biomarker Early detection [81]

SERPINA5 Plasma Biomarker Prognosis
prediction [82]

miRNA

miR-148b Cells Inhibit cancer cells invasion and migration

Therapeutic target

[83]

miR-141-3p Cells Intercellular communication between cancer cells and
neighboring fibroblasts [84]

miR-200b-3p Cells

miR-133a Cells Enhance cancer progression [85]

miR-27a-5p Serum Promote cancer cells invasion and migration [86]

miRNA-21 Cells Enhance the macrophage M2 polarization [87]

miR-15a-5p Plasma Biomarker

Early detection

[88]

miR-200c Urine Biomarker [89]

miR-26a-5p Plasma Biomarker [90]

miR-142-3p
Plasma Biomarker [91]miR-146a-5p

miR-151a-5p

miRNA-93
Serum Biomarker Prognosis

prediction
[92]

miRNA-205

miR-192-5p Cells Inhibit cancer cells EMT and metastasis

Therapeutic target

[93]

miR-320a Cells Inhibit cancer cells invasion and migration [94]

miR-503-3p Cells Inhibit cancer cells invasion and migration [95]

miR-302a Cells Inhibit cancer cells invasion and migration [96]

miR-499a-5p Cells Inhibit cancer cells invasion and migration,
inhibit angiogenesis [97]

lncRNA
DLEU1

Cells Promote cancer cells invasion and migration
[98]

NEAT1 [99]

circRNA hsa_circ_0001610 Cells Reduce the sensitivity of radiotherapy [100]
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2. Progress of the Research into EVs in the Diagnosis and Treatment of OC

OC is a common malignant tumor in gynecology. It has been reported that epithelial
OC is the most common type of OC, and because 60 percent of cases are diagnosed at stage
III or IV, it is associated with a poor prognosis [101]. The 5-year survival rate of stage I OC
can reach 89%, and it decreases to 20% after the disease develops to stage IV [101]. Due
to the lack of typical symptoms and specific biomarkers, most patients with OC are not
diagnosed until the advanced stages, making it the gynecologic cancer with the highest
mortality [102,103]. Although several novel drugs have been developed and applied in
clinical trials, the clinical cure rate for patients with advanced OC has not been significantly
improved [104–106]. Therefore, improving the diagnostic rate of early stage disease and
clinical treatment effect is crucial to reducing the morbidity and mortality of OC. Moreover,
exosomes derived from OC have the potential to become new biomarkers and therapeutic
targets [107].

2.1. OC Development and Metastasis

EVs play a vital role in the development and metastasis of OC. OC cells release exo-
somes into the surrounding environment, increasing the intercellular interaction with the
cells related to tumor development, metastasis, and invasion. Currently, known metastatic
pathways include hematogenous metastasis, lymphatic metastasis, and transperitoneal
metastasis [108–110]. The major pathways spread to the greater omentum through the
peritoneal cavity, and OC cells are shed and accumulate in the peritoneal fluid [111]. Many
biomolecules have been identified in the EVs secreted by OC. These molecules affect cell
signaling and alter the tumor microenvironment by inducing tumor growth and metasta-
sis [112]. Proteomic analysis of OC-derived EVs has shown that many proteins common
to EVs from various origins, including TSG101, Alix, heat shock proteins, tetraspanins,
rabs, annexins, and cytoskeletal proteins, may be associated with the biogenesis, struc-
ture, and trafficking of EVs [113]. Proteins (ATF2, MTA1, ROCK1/2, and sE-cad) [16,17],
long noncoding RNAs (MALAT1, lncRNA ATB) [48,49], microRNAs (miR-130a, miR-205,
and miR-141-3p) [26–28], and a protein receptor (PKR1) [25] in EVs promote tumor an-
giogenesis, increase the vascular permeability, and provide a nutrient supply for tumor
growth and metastasis. Arginase 1 (ARG-1) and phosphatidylserine (PS) released by EVs
inhibited T cell activation and proliferation and promoted OC growth in the form of im-
munosuppression [50,51]. Tumor-derived extracellular vesicular miR-940 induced M2-type
polarization in macrophages [29], and the M2-type macrophage extracellular vesicular
miR-221-3p inhibited cyclin-dependent kinase inhibitor 1B and promoted OC prolifera-
tion and metastasis [30]. High metastatic OC cells conferred high metastatic properties
to low metastatic cancer cells via extracellular vesicular circRNA051239, leading to the
enhanced proliferation, migration, and invasion of the recipient cells [45]. Ascites-derived
EVs transferred miR-6780b-5p to OC cells, which was shown to promote the onset of ep-
ithelial mesenchymal transition and accelerate OC metastasis [31]. Extracellular vesicular
miR-21-5p inhibited the expression of cyclin-dependent kinase 6 and increased the volume,
size, and weight of OC in vivo [32].

These findings demonstrate the role of EVs in promoting tumor development and
metastasis and as potential targets for subsequent treatment.

2.2. Diagnosis and Prognosis of OC

Early precise diagnosis and late dynamic follow-up of gynecologic tumors have
always been important topics. Through fluid sampling, liquid biopsy is significant for
disease diagnosis, prognosis, and efficacy assessment. EVs secreted by tumor cells are
available in various body fluids and can be distinguished from non-cancerous EVs, leading
to their potential to be cancer biomarkers and becoming a part of the standard test for
liquid biopsies [114]. In addition, the stability of EVs gives them a higher specificity and
sensitivity [115].
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A study first reported the diagnostic value of extracellular vesicular miRNAs in OC in
2008, identifying the upregulation of eight specific miRNAs in the serum EVs of OC patients;
the study found that miR-200a/b/c was an effective indicator to identify benign and
malignant ovarian tumors [33]. Research has shown that the claudin-4 protein is released
from OC cells via EVs, and the claudin-4 protein obtained from peripheral blood EVs had a
sensitivity of 51% and specificity of 98% differentiating between healthy people and OC
patients [18]. In addition, a clinical study sample showed patients with OC had a higher
expression of plasma EVs miR-21, miR-100, miR-200b, miR-320, and miR-1290 and a lower
expression of miR-16, miR-93, miR-126, and miR-223 [34,35]. Similar studies showed that
miR-1260a, miR-7977, and miR-192-5p expression in plasma EVs was significantly reduced
in OC patients and could be used as potential diagnostic and prognostic biomarkers [36].
Moreover, researchers utilizing a microfluidic device discovered that HGF, STAT3, and
IL-6 were highly elevated in the serum EVs of patients with early stage high-grade serous
OC, compared to the benign and late-stage HGSOC [19]. In ovarian cancer-associated
fibroblasts (CAFs)-derived EVs, transforming growth factor beta (TGFβ) was upregulated
compared to the normal omentum fibroblasts [20]. The extracellular vesicular miR-21-5p,
miR-29a-3p, and miR-30d-5p were significantly overexpressed in clear cell carcinoma of
the ovary compared with normal cells [37].

In addition, EVs have the potential to be prognostic predictors of OC. It has been shown
that the levels of miR-200a, miR-200b, miR-200c, and miR-1290 were increased in the ascites
of OC patients, and the level of miR-200b was associated with overall survival rate [38].
As an EV-associated gene, the expression of fibroblast growth factor 9 (FGF9) in ovarian
epithelial tissue was lower than that in normal ovarian tissue, and the downregulated
FGF9 showed good prognostic value in patients with OC [21]. The plasma EV-derived
fragile site-associated tumor suppressor (FATS) was significantly decreased in OC patients;
meanwhile, low levels of plasma EVs-derived FATS were closely associated with the
Federation International of Gynecology and Obstetrics (FIGO) stage III/IV, high grade,
ascites, elevated CA-125, and lymph node metastasis and prognosis of OC patients [22].
The circRNA circular forkhead box protein P1 (circFoxp1) in the serum EVs of patients
with epithelial ovarian cancer (EOC) was significantly increased, particularly in those who
presented with cisplatin resistance. CircFoxp1 expression was positively correlated with
the FIGO stage, primary tumor size, lymphatic metastasis, distant metastasis, residual
tumor diameter, and clinical response in OC, and was an independent predictor of survival
and disease recurrence for patients with EOC [46]. The expression of circRNA Cdr1a in
serum EVs derived from OC patients was less expressed in the cisplatin-resistant group
than in the cisplatin-sensitive group, and Cdr1as enhanced the cisplatin chemosensitivity
of OC in vivo. Therefore, extracellular vesicular Cdr1a in serum can serve as a promising
biomarker for cisplatin-resistant OC patients [47]. The OC patients with simultaneously
low serum extracellular vesicular miR-484 expression and high serum CA-125 levels tended
to suffer the worst clinical outcomes. The multivariate analysis confirmed that the low
serum extracellular vesicular miR-484 level was an independent indicator [39]. Serum
extracellular vesicular metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)
expression was higher in OC patients than in the healthy control group. High levels of
extracellular vesicular MALAT1 were associated with an advanced FIGO stage, a high
histological grade, and lymph node metastasis, indicating that serum extracellular vesicular
MALAT1 could be used as a biomarker in the prognosis prediction of OC [48].

These results suggest that the active substances carried by EVs have the potential to
become biomarkers for the diagnosis and prognosis of OC.

2.3. Treatment of OC

Surgery and chemotherapy are the most commonly used methods for the treatment of
OC. Conventional targeted drug-controlled systems for oncology treatment cause serious
side effects, including organ toxicity and the attenuation of host immune response. It is easy
to develop drug resistance in the late stage of chemotherapy, which adversely affects the
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treatment [116,117]. Based on the properties of EVs, their clinical value can be developed by
regulating their secretion to strengthen antitumor immunity, making use of their homing
effect, and using them as carriers for drug transport.

It was shown that overexpression of the plasma extracellular vesicular circFoxp1 could
promote OC cell proliferation and reduce cisplatin sensitivity, while knockdown of circ-
Foxp1 inhibited OC cell proliferation and enhanced chemotherapy effects [46]. In addition,
extracellular vesicular miR21 conferred chemoresistance and an aggressive phenotype in
OC cells through its transfer from neighboring stromal cells, indicating that preventing
the extracellular vesicular transfer of miR21 from stromal cells could be a new strategy for
suppressing OC growth [40]. In addition, studies have shown that the macrophage miR-7
is transferred to EOC cells by EVs and inhibits the EGFR/AKT/ERK1/2 signaling pathway,
thereby inhibiting OC metastasis and invasiveness [41]. The transmembrane family protein
205 was considered to contribute to cellular platinum resistance via increased extracellular
vesicular efflux of platinum agents, and one study used the transmembrane family protein
205 inhibitor L-2663 to selectively reduce the secretion of EVs and block the platinum efflux
from platinum-resistant OC cells as a target for combination therapy [118]. Researchers
isolated EVs from fresh milk, wrapped the chemotherapeutic drug cisplatin, and intro-
duced the drug into cisplatin-resistant OC, which allowed the drug to escape endosomal
capture and improved the anticancer effect of drug delivery on the cisplatin-resistant OC.
Compared with the pure cisplatin treatment, it achieved a better therapeutic effect [23]. The
OC cells’ extracellular vesicular miR-155-5p prevented the formation of an immunosuppres-
sive tumor microenvironment by downregulating PD-L1 and other immunosuppressive
factors, thus inhibiting OC development and macrophage infiltration [42]. Similarly, by
downregulating the tumor-associated macrophages (TAMs)-derived EVs miR-29a-3, PD-L1
expression and OC cell proliferation and immune escape were inhibited [43].

As carriers of drug transport, EVs have low immunogenicity and toxicity, high circulat-
ing and tissue stability, and inherent homing ability [119]. One study used tumor-derived
EVs to encapsulate miR497 to achieve targeted therapy and reduce drug resistance [44].
Another study improved vascular normalization by targeting miR-484 with RGD-modified
EVs, thereby enhancing the OC chemosensitivity [24].

The pre-metastatic ecotone is a microenvironment formed by EVs secreted by tumors
before extensive metastasis. The therapeutic effect of OC can be achieved using the homing
ability of exosomes on primary cancer cells [120]. Researchers embedded OC ascites-
derived EVs into 3D stents and implanted them in animal models to mimic pre-metastatic
ecological sites. As a preferential site for cancer cell metastasis, promoting tumor cell
adhesion in a nonpharmacological mode of action can prolong OC survival [121].

3. Progress in the Treatment of EVs in CC

CC is the fourth most common cancer in women after breast, colorectal, and lung
cancer, and is one of the leading causes of female death worldwide, with most deaths
occurring in low- and middle-income countries [2,122]. There are two common histological
subtypes of CC: cervical squamous cell carcinoma and cervical adenoma [123]. The FIGO
staging, which combines physical examination, endoscopic surgery, and imaging, is the
most commonly used staging of CC [124]. High-risk human papillomavirus (HPV) is a
common virus, and most people will be infected with it at some point in their lives [125].
Numerous studies have confirmed that persistent HPV infection is a necessary etiology for
the formation of CC [126–128]. Although the detection and prevention of CC have made
great progress, the survival rate of patients has not changed significantly [129]. Studies
have demonstrated that EVs are associated with HPV infection and can play an essential
role in different stages of CC development by promoting cell proliferation, mediating
immune escape, and remodeling the tumor microenvironment. Therefore, they have
become important biomarkers for CC diagnosis and treatment [65,69].
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3.1. Development and Metastasis of CC

Zhang et al. found that the cervical squamous carcinoma cell-derived EVs miR-223
could target and transform the 3’-UTR of transforming growth factor beta receptor 3
and 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1, inhibiting their expression, and
promoting tumor growth. They also induced monocytes/macrophages to secrete IL-6, and
the secretion of IL-6 activates the signal transducer and activator of transcription3 in cervical
squamous cancer cells, expressing more miR-233, and accelerating tumor growth [57].

The role of EVs in CC angiogenesis has also been reported. The extracellular vesicular
miR-221-3p secreted by CC cells promoted the invasion, migration, and angiogenesis
of CC microvascular endothelial cells through downregulation of MAPK10 and THBS2
expression [58,59]. CC adenocyte-derived EVs were found to deliver tyrosine kinase with
immunoglobulin and epidermal growth factor homology domains 2 (TIE2) to macrophages
and promote tumor angiogenesis [52]. EVs from CC cells, especially from high-risk HPV-
positive cells, promoted angiogenic responses in neighboring endothelial cells through the
upregulation of the Hedgehog–GLI signaling pathway [130]. Cervical cancer-derived EVs
were found to deliver miR-663b to human umbilical vein endothelial cells (HUVEC) and
inhibit vinculin expression, thereby promoting vascular growth and tumor growth [61].
Other research showed that the extracellular vesicular miR-221-3p secreted by CC cells
promoted lymphangiogenesis and lymphatic metastasis through the downregulation of
vasohibin-1 signaling [60].

EVs from human HPV-positive cell lines were more effective in promoting neurite
growth than EVs from HPV-negative cell lines. Further studies revealed that EVs derived
from HPV-positive CC cell lines effectively stimulated neurite growth and mediated tumor
innervation, affecting the tumor microenvironment [131]. The CC cell-derived extracellular
vesicular miRNAs, including let-7d-5p, miR-20a-5p, miR-378a-3p, miR-423-3p, miR-7-5p,
miR-92a-3p, and miR-21-5p, were regulated by viral E6/E7 oncogenes in HPV-positive
tumor cells, thus affecting the growth of HPV-positive cancer cells [132]. The CC cell-
derived extracellular vesicular Wnt2B, a member of the Wnt protein family, promoted the
transformation of normal fibroblasts to CAFs by activating the Wnt/β-catenin signaling
pathway, thereby promoting the growth and development of primary tumors [53]. The
cancer cell-derived extracellular vesicular miR-663b was endocytosed by CC cells after
TGF-β1 exposure and inhibited the expression of mannoside acetylglucosaminyltransferase
3, thus accelerating the epithelial–mesenchymal transition (EMT) process and ultimately
promoting local and distant metastasis [62]. HIV-infected patients face a higher risk of
HPV infection and CC [122]. It has been shown that T cell-derived extracellular vesicular
miR-155-5p infected with HIV promoted the proliferation, migration, and invasion of CC
cells [63]. The long noncoding RNA (lncRNA) LINC01305 was mainly distributed in EVs
and was transferred to recipient cells to enhance CC progression [76]. The lncRNA AGAP2-
AS1 from EVs was involved in CC cell proliferation by regulating the miR-3064-5P/SIRT1
signaling pathway [77]. EVs secreted by CSCC cells were found to deliver miR-142-5p to
lymphatic endothelial cells via the ARID2-DNMT1 -IFN-γ signaling pathway, inducing the
expression of indoleamine 2,3-dioxygenase, thereby inhibiting CD8+ T cells [64].

3.2. Diagnosis and Prognosis of CC

CC cell-derived EVs can pass through the interstitial cells and tissue fluids, thus col-
lecting in body fluids such as cervical vaginal lavage and blood. They are potential markers
for the diagnosis and prognosis of CC because they contain characteristic substances that
reflect the physiological state of CC cells.

One study sequenced 121 plasma samples from healthy volunteers, CC patients, and
cervical intraepithelial neoplasia patients for extracellular vesicular miRNA. The study
found that plasma extracellular vesicular let-7d-3p and miR-30d-5p were differentially
expressed in plasma samples and normal tissues adjacent to the tumor. They are potential
biomarkers for the noninvasive screening of CC and precancerous lesions [65]. Liu et al.
collected cervical vaginal lavage fluid specimens and isolated EVs from 45 CC patients,
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25 HPV-positive subjects, and 32 HPV-negative subjects. They found increasing levels of
miRNA-21 and miRNA-146a expression in extracellular vesicular from CC patients [66].
Another study collected 90 cervical vaginal lavages (30 CC patients, 30 HPV-positive
non-cancerous volunteers, and 30 HPV-negative non-cancerous volunteers) and the Hox
transcript antisense intergenic RNA (HOTAIR), MALAT1, and maternally expressed gene
3 (MEG3) of extracellular vesicular lncRNAs were extracted for quantification. These three
lncRNAs were found to be clustered in CC EVs, with significant differences in expression
between CC patients and non-cancerous patients, and had the potential for the detection
and diagnosis of CC [78]. One study measured the expression level of miRNA in the
plasma EVs of 97 patients with CC and 87 normal controls, and it was found that miR-146a-
5p, miR-151a-3p, and miR-2110 were upregulated in plasma EVs, which were potential
biomarkers [67]. In another study, plasma from CC patients and healthy controls was
sequenced for extracellular vesicular miRNA, and the miR-125a-5p expression levels were
significantly lower in CC patients than in healthy controls, which could be considered as a
diagnostic marker for CC [68].

Pauline et al. identified multiple nuclear transporter proteins in CC cell-derived
EVs and found that the combination of KPNβ1, CRM1, KPNα2, CAS, RAN, IPO5, and
TNPO1 as a biomarker group had the highest diagnostic power for CC [54]. One study
analyzed the transcriptional profiles of CC EVs and found significant differences in the
tumor-promoting content and enrichment of mRNA from protumor cells and HPV E6, and
these transcripts may serve as potential exosome biomarkers for CC [55]. Some scholars
screened plasma extracellular vesicular RNAs from CC patients before and during cisplatin-
based concurrent chemoradiotherapy). They found that miRNA (miR-142-3p), mRNAs
(CXCL5, KIF2A, RGS18, APL6IP5, and DAPP1), and snoRNAs (SNORD17, SCARNA12,
SNORA6, SNORA12, SCRNA1, SNORD97, SNORD62, and SNORD38A) in combination
could clearly distinguish between normal and tumor specimens and could be used for the
diagnosis of CC [75]. They also compared plasma extracellular vesicular miRNA before and
during cisplatin-based concurrent chemoradiotherapy similarly and found a significant
correlation between plasma extracellular vesicular miRNA and the degree of early tumor
progression and metastasis [133].

Some scholars researched the serum extracellular vesicular lncRNA DLX6-AS1 levels
in 111 patients with CC, 60 patients with cervical intraepithelial neoplasia, and 110 healthy
women; it was found that the lncRNA DLX6-AS1 levels were significantly elevated in pa-
tients with CC. In addition, high expression of lncRNA DLX6-AS1 was positively correlated
with lymph node metastasis, differentiation, FIGO staging, and shorter survival. Patients
with a high expression of lncRNA DLX6-AS1 were prone to recurrence of CC. Therefore,
serum extracellular vesicular lncRNA DLX6-AS1 is a potential marker for predicting the
overall survival of CC patients [79]. One study reported that the CC cell-derived extracellu-
lar vesicular miR-1468-5p was highly expressed in peripheral serum blood and positively
correlated with PD-L1+ lymphatic vessels and PD-1+ CD8+ T cells, thus being valuable in
determining the prognosis of CC [69].

3.3. Treatment of CC

Exosomes are important in the proliferation, angiogenesis, and cell metastasis of CC,
and are effective in the corresponding treatment. Jin et al. used 5-Aminolevulinic acid
photodynamic therapy for the treatment of CC and found that the therapy inhibited miR-
34a expression and increased high mobility group box1 (HMGB1) EVs’ secretion, thereby
inhibiting cell proliferation and promoting apoptosis [56]. Another study demonstrated
that mifepristone inhibited the CC HeLa cell-derived extracellular vesicles by upregulating
their ISG15 protein expression levels, thereby inhibiting CC metastasis [134]. Zhang et al.
found that the EVs of HPV-16 E7-pulsed DCs inhibited the migration and M1 polarization of
macrophages, thereby blocking CC progression [135]. Yan et al. found that the extracellular
vesicle miR-423-3p could inhibit macrophage M2 polarization, thereby suppressing CC cell
progression and tumor growth [70].
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Sensitivity to radiotherapy tends to decrease in the later stages of tumor treatment. Tak-
ing EVs as the target, some scholars have addressed the problem by inhibiting or increasing
the release of EVs. Raji et al. found that miR-106a/b in cisplatin-resistant Hepatocarcinoma
cells exosomes could reduce the resistance of CC cells to cisplatin by upregulating the level
of silent information regulator 1 (SIRT1) in the CC cells [71]. Fang et al. found that miR-1323
was transferred by EVs derived from CAFs. Downregulation of miR-1323 inhibited cell pro-
liferation, migration, invasion, and increased cell radiosensitivity in CC [72]. Konishi et al.
found that miR-22-enriched EVs could alter the expression of the c-Myc binding protein and
human telomerase reverse transcriptase genes in CC cells, thereby improving the sensitivity
of in vitro CC radiotherapy [73]. Zhou et al. found that miR-320a expression was low in
cisplatin-resistant CC. Myeloid Cell Leukemia Sequence 1, a cisplatin-resistant molecule,
was regulated by engineered miR-320a EVs, thereby reducing resistance to cisplatin therapy
in CC [74].

EVs can also act as drug carriers to enhance drug targeting and biocompatibility.
Aqil et al. used milk-derived EVs as nanodrug carriers to compare the efficacy of the direct
oral administration of curcumin with EV delivery for treating CC mice. They found EVs as
carriers achieved better efficacy, and there were no significant biocompatibility issues [136].

4. Progress in the Treatment of EVs in EC

EC is the sixth most common cancer among women [2]. Over the past 30 years, the
number of cases has increased by 132% [137]. Aging, obesity, polycystic ovary syndrome,
and Lynch syndrome are common risk factors for EC [138]. Tumor metastasis is the
main cause of death caused by EC. Most patients with early diagnosis of EC have a
good prognosis, while about 20% of patients with local metastases and 10% of patients
with distant metastases have poor survival results [139]. Over the past few decades,
the treatment of EC has hardly changed, with surgery remaining the preferred modality.
Adjuvant therapies include adjuvant radiotherapy, chemotherapy, and hormonal therapy,
and there are still few treatments for EC metastases [139,140]. Therefore, diagnosis and
treatment in the early stages of EC are effective ways to reduce EC mortality.

4.1. Development and Metastasis of EC

There is evidence that EVs are associated with the angiogenesis, growth, and develop-
ment of EC cells and the metastatic potential of EC [141].

Song et al. found that plasma EVs from EC patients contained lectin galactoside-
binding soluble 3-binding protein (LGALS3BP), which promoted tumor growth and an-
giogenesis through the PI3K/Akt/VEGFA signaling pathway [80]. Li’s study found that
CAFs-derived EVs had reduced miR-148b expression compared to NFs, thereby increasing
EC invasiveness [83]. Maida et al. found that EC cells delivered small regulatory RNAs
to endometrial fibroblasts via EVs, and that EC cells may alter the peripheral stroma by
transferring extracellular vesicular RNA [84]. Shi et al. found that miR-133a, which may
regulate the downregulation of FOXL2 in EC tissues, was present in EC cell-derived EVs
and could be delivered to normal endometrial cells [85]. Jia et al. found that EC cell-derived
EVs deleted in lymphocytic leukemia 1 (DLEU1) accelerated EC progression by regulating
the miR-381-3p/E2F3 pathway [98]. Another study showed that serum extracellular vesic-
ular miR-27a-5p in patients with polycystic ovary syndrome enhanced the migration of EC
cells, which led patients with polycystic ovary syndrome to EC progression [86]. Fan et al.
found that the lncRNA nuclear-enriched abundant transcript 1 (NEAT1) existed in the EVs
of CAFs, which interfered with the microenvironment of EC through the miR-26a/b-5p-
STAT3-YKL-40 signaling pathway and promoted the development of EC [99]. Xiao et al.
found that EC cells under hypoxic conditions promoted M2-like macrophage polarization
through the delivery of extracellular vesicular miRNA-21, which altered the tumor immune
microenvironment and could be a potential mechanism for promoting EC progression [87].
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4.2. Diagnosis and Prognosis of EC

The current clinical screening of EC relies on a vaginal ultrasound and endometrial tissue
biopsy, but both of them lack specificity [142]. Therefore, a method that can screen EC early
and accurately is needed. Several studies analyzed biological fluids from EC patients and
identified extracellular vesicular biomarkers with diagnostic and prognostic values.

Herrero et al. found that the Annexin 2 (ANXA2) protein was elevated in the plasma
EVs of EC patients with specificity and sensitivity. Moreover, the ANXA2 levels were
positively correlated with the risk of recurrence, demonstrating that ANXA2 was a potential
diagnostic and prognostic biomarker [81]. Song et al. detected Serpin family A member 5
(SERPINA5) protein levels in plasma EVs. It was found that circulating plasma levels of the
extracellular vesicles of SERPINA5 were elevated in EC patients, SERPINA5 expression was
reduced in EC patients with distant metastases, and low SERPINA5 expression indicated
poor survival [82]. Zhou et al. compared plasma from healthy subjects and EC patients
and found that the extracellular vesicles of miR-15a-5p, miR-106b-5p, and miR107 were
significantly upregulated in the plasma of EC patients compared to healthy subjects. In
particular, the expression of the extracellular vesicles of miR-15a-5p was associated not only
with the depth of the infiltration and invasiveness of EC, but also with the reproductive
levels of testosterone and dehydroepiandrosterone sulfate, which is promising for the early
diagnosis of EC [88]. Srivastava et al. compared urine-derived extracellular vesicular
miRNA expression profiles from patients with EC and patients with symptoms of EC but
no diagnosis and found that 54 of the 84 miRNAs studied were amplified in the qPCR, with
hsa-miR-200c-3p as the most enriched, suggesting it as a biomarker for the diagnosis of
EC [89]. Zheng et al. isolated EVs from the sera of 100 EC cases and 100 healthy control
patients and extracted RNA from them. They found that increased extracellular vesicles of
miRNA-95 and decreased miRNA-205 were associated with reduced overall survival in EC
patients and may be prognostic biomarkers for EC patients [92]. Wang et al. sequenced
plasma EVs from EC patients and normal humans. They found that the plasma-derived
extracellular vesicular miR-26a-5p levels were significantly lower in EC patients, especially
in patients with combined lymph node metastasis. Human lymphatic endothelial cells took
up the extracellular vesicular miR-26a-5p secreted by EC cells, which induced lymphatic
vessel formation by activating Lymphoid enhancer-binding factor 1. This can be used as a
biomarker for early identification of lymph node metastasis risk in EC patients [90]. Fan
et al. analyzed plasma miRNA from 93 patients with EC and 79 normal subjects. The
miR-142-3p, miR-146a-5p, and miR-151a-5p were significantly elevated in the plasma of EC
patients, and miR-151a-5p expression was also considerably elevated in EVs, showing a
potential for the noninvasive diagnosis of EC [91].

4.3. Treatment of EC

Exosomes play an essential role in the development and progression of EC and provide
new ideas for the treatment of EC. Song et al. found that overexpression of the SERPINA5
protein in plasma EVs could inhibit the metastatic potential of EC cells in vivo by inhibiting
the integrin β1/FAK signaling pathway. In addition, the extracellular vesicular SERPINA5
protein hindered tumor growth and metastasis in xenograft models. Thus, the SERPINA5
EVs may be a new strategy for treating metastatic EC [82]. Wang et al. found that upregula-
tion of miR-192-5p by TAMs-derived EVs inhibited the IRAK1/NF-kB signaling pathway,
effectively promoting apoptosis and impeding EMT in EC cells, thereby inhibiting EC
progression. The results proved that the miR-192-5P-modified TAMs-derived EVs may be a
potential target for EC therapy [93]. Mojtahedin et al. used LED irradiation to alter exosome
ontogenesis, angiogenic capacity, and metastatic behavior to produce tumor-suppressive
effects on Ishikawa cells [143]. Gu et al. found that TAMs-derived EVs acted as carriers
of hsa_circ_0001610, transferring hsa_circ_0001610 to EC cells and releasing cyclin B1 ex-
pression through the adsorption of miR-139-5p, thereby reducing the radiosensitivity of EC
cells. This suggests that hsa_circ_0001610 could serve as a potential intervention for EC
radioresistance [100]. Park et al. used Aurea helianthus extract to induce extracellular vesic-
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ular miRNAs in EC cells to reach the goal of prevention and treatment of EC in five aspects:
inhibiting migration and invasion, increasing drug sensitivity, reducing inflammation, and
promoting cellular senescence [144]. Zhou et al. showed in vivo and in vitro studies where
CD45RO-CD8+ T cell-derived EVs released high levels of miR-765 and modulated the
miR-765/PLP2 signaling pathway to inhibit the pro-tumorigenic effects of estrogen on
uterine corpus EC. Zhang et al. found that the miR-320a EVs secreted by CAFs inhibited the
proliferation of Ishikawa and HEC-1B cells by downregulating the hypoxia-inducible factor
1alpha/VEGFA signaling pathway, thereby inhibiting EC proliferation and improving the
sensitivity of radiotherapy [94].

More scholars exploited the tumor homing effect of human umbilical cord mesenchy-
mal stem cells (hUCMSCs) to explore the treatment of EC. Pan et al. investigated hUCMSCs-
derived extracellular vesicular miRNA-503-3p and found that upregulation of EVs could
inhibit mesoderm-specific transcript, thereby inhibiting EC growth [95]. Li et al. found that
miR-302a delivered by hUCMSC-derived EV significantly reduced EC cell proliferation
and migration by reducing the expression of AKT, reducing the phosphorylation of AKT,
and downregulating the cyclin D1 expression, which may be an effective treatment for
EV [96]. Liang et al. found that hUCMSCs-derived EVs delivered miR-499a-5p as a vector,
which could be effectively taken up by Ishikawa cells and upregulate miR-499a-5p expres-
sion. miR-499a-5p EVs inhibited the proliferation of Ishikawa and HUVEC cells through
VAV3 gene targeting. Moreover, they inhibited the pro-angiogenic ability of HUVECs cells,
thus inhibiting tumor growth and angiogenesis in EC and exerting tumor suppressive
effects [97].

5. Conclusions

Gynecological malignancies, especially OC, CC, and EC, cause high economic burdens
and physical damage to patients across the globe. With the progress in the medical field,
the diagnosis and treatment of gynecological malignant tumors are constantly develop-
ing and improving. EVs widely exist in living organisms, whose biological functions
are gradually being recognized, and research involving their role in diagnosis and their
therapeutic applications is being carried out. Understanding how EVs serve as biological
markers, tumor-promoting factors, tumor-suppressing factors, and targeting vectors in the
development of gynecologic tumor diseases can help to explain their biological functions
more comprehensively and objectively and provide clinical assistance in the diagnosis and
treatment of gynecologic tumors.

Although vesicle diagnosis and treatment techniques have shown great diagnostic and
therapeutic potential for gynecologic tumors, research in the field is still at the exploratory
stage. In addition, the immaturity of the research methods hinders its translation into
clinical application. A deeper understanding of the formation and regulatory mechanisms
of EVs will facilitate a better understanding of the biological functions, heterogeneity,
and functional diversity of EVs, as well as efficiently prepare and improve unified and
standardized EVs, therefore better realizing their clinical significance.
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