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Abstract: With advances in portable and wearable devices, it should be possible to analyze and
interpret the collected biosignals from those devices to tailor a psychological intervention to help patients.
This study focuses on detecting anxiety by using a portable device that collects electrocardiogram (ECG)
and respiration (RSP) signals. The feature extraction focused on heart-rate variability (HRV) and
breathing-rate variability (BRV). We show that a significant change in these signals occurred between
the non-anxiety-induced and anxiety-induced states. The HRV biomarkers were the mean heart rate
(MHR; p̄ = 0.04), the standard deviation of the heart rate (SD; p̄ = 0.01), and the standard deviation
of NN intervals (SDNN; p̄ = 0.03) for ECG signals, and the mean breath rate (MBR; p̄ = 0.002),
the standard deviation of the breath rate (SD; p̄ < 0.0001), the root mean square of successive
differences (RMSSD; p̄ < 0.0001) and SDNN (p̄ < 0.0001) for RSP signals. This work extends the
existing literature on the relationship between stress and HRV/BRV by being the first to introduce
a transitional phase. It contributes to systematically processing mental and emotional impulse
data in humans measured via ECG and RSP signals. On the basis of these identified biomarkers,
artificial-intelligence or machine-learning algorithms, and rule-based classification, the automated
biosignal-based psychological assessment of patients could be within reach. This creates a broad
basis for detecting and evaluating psychological abnormalities in individuals upon which future
psychological treatment methods could be built using portable and wearable devices.

Keywords: digital health; wearable technology; heart rate variability; respiration rate variability;
breathing rate variability; anxiety assessment; mental health monitoring; real-time anxiety detection

1. Introduction

Stress and related psychological conditions, primarily anxiety and depression, are a
significant societal burden, and nearly 300 million people are globally affected [1], with the
prevalence increasing as of 1990 [2]. The COVID-19 pandemic globally exacerbated these
effects [3]. On a psychological level, stress and related mental health diseases, particularly
depression and anxiety disorders, are important topics not only in modern Western societies
but worldwide. The COVID-19 pandemic has had a significant negative impact on average
stress levels and mental health. In 2020, the American Psychological Association wrote,
“We are facing a national mental health crisis that could yield serious health and social
consequences for years to come” [4].

As a result of these circumstances, the need for stress-reducing measures is very high.
The standard approach to assess anxiety is based on questionnaires (e.g., the Beck Anxiety
Inventory and the Hamilton Anxiety Rating Scale) during a medical interview. With the
increasing demand for mental-health assistance during the ongoing pandemic, there is often
a substantial delay before patients can access medical attention. Another major drawback
of the medical interview approach is the strong subjective component of the questionnaire
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responses. Therefore, there is a need for the more objective and continuous evaluation of
a patient’s emotional status in order to prevent exacerbation of the effects and provide
timely intervention. In addition to the increase in the use of wearable devices, monitoring
electrocardiogram (ECG) signals or respiration (RSP) rate provides new possibilities to
continuously monitor emotional states. One option could be to directly improve the brain
status via wearable devices. However, to achieve that goal, a person’s psychological status
must first be assessed. Our previous study showed that ECG and RSP signals are especially
useful for detecting stress and anxiety with technical examination methods [5,6].

Several other studies employed ECG [7,8] and RSP signals [9,10] as physiological
measures for an anxiety state. Identifying biomarkers for anxiety is an essential first step
to developing a machine-learning algorithm for the automatic detection of anxiety [11].
Heart-rate variability (HRV) is one of the most prominent biomarkers when using ECG
signals to investigate emotions, as outlined in a recent review [12]. Breathing-rate variability
(BRV) was also extensively investigated [10,13]. Therefore, HRV and BRV biomarkers for
anxiety detection are examined in this study.

2. Materials and Methods
2.1. Data Used

The Anxiety Dataset 2022 [14] was used, which contains 19 participants, 14 males
and 5 females (age 26.15 ± 8.69 years; range of ages: 18–56 years) from different cultural
backgrounds. All the participants were students recruited from Simon Fraser University in
Canada. The data on ECG and RSP signals were obtained with a portable device (MP45,
BIOPAC Systems, Inc., Goleta, CA, USA) and were recorded at a sampling frequency
of 500 Hz. While the signals were being recorded, the participants were watching eight
video clips of different lengths (between 1 and 15 min) that alternated between being
anxiety-inducing and non-anxiety-inducing (see Table 1). The recorded data in units of
mV were saved in a MATLAB (ver. 2020b) array for further processing. The dataset
is publicly available in the Figshare repository https://figshare.com/articles/dataset/
Anxiety_Dataset_2022/19875217, accessed on 22 September 2022.

Table 1. Video clip details: clip number, anxiety-inducing (AI)/non-anxiety-inducing (NAI),
description, and duration.

Video Clip Details

Clip Number AI/NAI Description Duration

Clip 1 AI Animation, puppy, amputation 3′16′′

Clip 2 NAI Animation, music 1′59′′

Clip 3 AI Animation, orphan 3′38′′

Clip 4 NAI Happy clips and images 1′37′′

Clip 5 AI Natural disasters 5′17′′

Clip 6 NAI Minions 3′51′′

Clip 7 AI Car crashes 14′42′′

Clip 8 NAI Nature 7′00′′

A distinctive feature of the present study is that we did not use an emotionally
“neutral” video; to advance the investigation, the video clips were split into those that had a
nontransitional video phase in the center of the video clip and those that had a transitional
video phase at the boundary with the assumption that a difference in HRV and BRV could
be found within the nontransitional phase but not within the transitional video phase.
This approach is based on the consideration that the change in the recorded physiological
signals resulting from the induced anxiety state does not happen instantaneously or rather
it is not as fast as the transition between the two types of videos (anxiety-inducing vs.
non-anxiety-inducing). This assumption is based on the excitation transfer theory that
postulates that, after removing the stimulus (here, switching from anxiety-inducing to
non-anxiety-inducing videos), the individual would have residual arousal.

https://figshare.com/articles/dataset/Anxiety_Dataset_2022/19875217
https://figshare.com/articles/dataset/Anxiety_Dataset_2022/19875217
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2.2. Data Preprocessing

To remove the typical noises of ECG and RSP signals, such as baseline wander, powerline
interference, and electromyographic (EMG) and electrode motion artifact noise [15,16], the
ECG and RSP signals were bandpass-filtered (Butterworth filter) in MATLAB with the
following settings: ECG data were filtered with a second-order Butterworth filter with
bandpass frequencies of 0.5 and 20 Hz, following the recommendations of Hejjel and
Kellenyi [17]; RSP data were filtered with a second-order Butterworth filter with bandpass
frequencies of 0.04 and 0.3 Hz, following the manufacturer’s instructions for the utilized
sensor (belt) and the recommendations of Jhuang and Ma [18]. Next, the data were
chronologically split into eight segments according to the eight video clips for data analysis.

2.3. Data Analysis

To analyze the filtered data, HRV/BRV analysis was conducted using Kubios HRV
software (ver. 3.5.0, available at http://www.kubios.com, accessed on 22 September
2022). HRV/BRV refers to variations in both instantaneous heart/breathing rates and the
intertime series between consecutive peaks. Therefore, we first extracted the peak-to-peak
intervals for the ECG data (RR intervals) with the built-in function of Kubios HRV, and with
the MATLAB tool breathTimes for RSP data (https://de.mathworks.com/matlabcentral/
fileexchange/81066-breathtimes, accessed on 22 September 2022).

These steps were followed by the HRV/BRV analysis of ECG/RSP data in a duration range
of our video clips that equated to short-term HRV/BRV analysis. As described by McNames
and Aboy [19] (HRV), Castaldo et al. [20] (HRV), and Bandara and Wijesiriwardana [21] (BRV),
the mean heart rate (MHR)/mean breathing rate (MBR), standard deviation (SD), root mean
square of successive differences (RMSSD) of the R peaks, and standard deviation of the NN
intervals (SDNN) are among the more popular features used to assess HRV and BRV. The
NN interval is analogous to the RR interval, but refers to the normalized ECG data after
removing an artifact [22]. The data were further sorted between clips with a nontransitional
video phase in the center of the video and those with a transitional video phase at the
boundary to test of our assumption that there would be a difference in the signals, with
an effect not arising for the transitional video phases where confounding emotions are at
play. Following the recommendations of McNames and Aboy [19], a segment length of
60 s was chosen for the nontransitional video phase in the center of the video, which was
then analyzed using a segment by segment using Kubios. In this way, the indices were
calculated for each 60-second segment. For the transitional phase, 15 s were chosen. The
transitional phase was located at the beginning and end of each video clip.

2.4. Statistical Analysis

The statistical analysis was conducted with MATLAB (ver. R2020b). First, the indices
were extracted from the MATLAB files exported from Kubios HRV in the previous step.
Then, the indices of all the participants, which had been separated by the non-transitional
video phase and the transitional video phase, were combined into one array for each video
clip. The video clip arrays of each type of video anxiety-inducing and non-anxiety-inducing,
were finally combined into four arrays, two for the non-transitional video phase and two
for the transitional video phase. To investigate a statistically significant difference, ANOVA
was used to test for a mean difference and the Wilcoxon test was used to determine the
difference in the median. The average of both p-values was used as an overall evaluation
of significance.

3. Results and Discussion

We evaluated the changes in the recorded ECG and RSP signals between the transitional
and nontransitional phases, and between non-anxiety-inducing vs. anxiety-inducing video
clips. Time domain features for the ECG and RSP signals, and frequency domain features
for ECG signals were evaluated: features in the anxiety-inducing vs. non-anxiety-inducing
clips were compared using the ANOVA and Wilcoxon tests. On the basis of a review

http://www.kubios.com
https://de.mathworks.com/matlabcentral/fileexchange/81066-breathtimes
https://de.mathworks.com/matlabcentral/fileexchange/81066-breathtimes
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of several studies, Castaldo et al. [20] described the expected change in the HRV indices
when stress was induced. According to this meta-analysis, MHR should increase for stress-
induced states, whereas the other time domain HRV indices (SD, RMSSD, SDNN) should
decrease. RMSSD is a measure of interbeat interval variance. Our results agreed with these
expectations with the exception of MHR, which was lower for the anxiety-inducing state.
The same results should apply to RSP, since HRV and BRV are related [21].

For the frequency domain, the low-frequency (LF) power (0.04–0.15 Hz) accounts for
the activation of both parasympathetic and sympathetic systems, while the high-frequency
(HF) power (0.15–0.4 Hz) is associated with parasympathetic system activation. A low
LF/HF ratio reflects parasympathetic dominance, while a high LF/HF ratio indicates
sympathetic dominance [22]. The results of this study agreed with these expectations,
except for MHR, which decreased. The changes in the ECG time domain features in
the nontransitional video phase showed lower MHR, SD, and SDNN results for the
anxiety-inducing clips. For the RMSSD, no statistically significant difference was observed
(p = 0.18, ANOVA; p = 0.58, Wilcoxon; p̄ = 0.38). For the transitional video phase, no
significant changes were found for any of the ECG time domain HRV measures. All the
ECG time domain results with corresponding p-values are summarized in Table 2, and the
corresponding box plots are shown in Figure 1.

Figure 1. Box plots of the time domain ECG features in the nontransitional video phases. Mean heart
rate: MHR ( bpm); standard deviation of the heart rate: STDHR; root mean square of successive
differences: RMSSD; standard deviation of NN intervals: SDNN. Arrows indicate which of the two
populations (non-anxiety-induced state or anxiety-induced state) had a higher (upward arrow) or
lower (downward) value for ease of visualization.
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Table 2. ECG time domain HRV features. Mean heart rate: MHR; standard deviation (SD) of heart
rate; root mean square of successive differences: RMSSD; standard deviation of NN intervals: SDNN;
non-anxiety-induced (NAI); anxiety-induced (AI).

ECG Time Domain HRV Features

Feature Mean (NAI, AI) SD (NAI, AI) Range p-Value
ANOVA

p-Value
Wilcoxon p̄-Value

Non-transitional

MHR 75.40, 73.75 8.93, 8.41 57.37–98.95 0.03 0.049 0.04
SD 3.95, 3.55 1.88, 1.80 0.98–23.00 0.01 0.002 0.01
RMSSD 0.03, 0.03 0.02, 0.02 0.01–0.19 0.18 0.58 0.38
SDNN 0.04, 0.03 0.01, 0.01 0.01–0.13 0.01 0.05 0.03

Transitional

MHR 77.88, 76.62 9.46, 8.88 65.75–95.08 0.68 0.59 0.63
SD 4.10, 4.30 1.70, 1.89 1.53–7.27 0.33 0.97 0.65
RMSSD 0.03, 0.04 0.01, 0.02 0.01–0.09 0.22 0.45 0.34
SDNN 0.06, 0.04 0.09, 0.01 0.01–0.46 0.41 0.97 0.69

For the ECG frequency domain, a significant increase in LF and a decrease in HF were
observed, as was an increase in LF/HF ratio. The transitional video phase again yielded no
significant difference between the anxiety-inducing and non-anxiety-inducing recordings.
The results for the ECG frequency domain are summarized in Table 3, and the box plots
are shown in Figure 2. The results for ECG were reinforced by the results for RSP: the BRV
time domain indices (SD, RMSSD, SDNN) were lower in the nontransitional phase for the
anxiety-inducing video clips in comparison to the non-anxiety-inducing video clips. A
small increase (4.7%) in MBR was observed for the anxiety-inducing state in comparison
to the lower MHR detected from the ECG signals (Table 2). All BRV analysis results were
significant for the nontransitional video phase, and were not significant for the transitional
video phase according to the ANOVA and Wilcoxon tests (Table 4 and Figure 3).

Table 3. ECG frequency domain HRV features. Note: low-frequency: LF [ms2] (non-anxiety-
induced/anxiety-induced); high-frequency: HF [ms2]; LF/HF ratio: LF/HF; non-anxiety-induced
(NAI); anxiety-induced (AI).

ECG Frequency-Domain HRV Features

Feature Mean (NAI, AI) SD (NAI, AI) Range p-Value
ANOVA

p-Value
Wilcoxon p̄-Value

Non-transitional
LF 968.90, 823.39 1055.0, 802.79 14.85–6659.1 0.06 0.29 0.18
HF 758.70, 545.88 1372.1, 696.71 22.70–12740 0.01 0.27 0.14
LF/HF 2.93, 2.96 4.35, 4.07 0.06–35.92 0.92 0.79 0.85

Transitional
LF 790.11, 643.20 625.27, 546.89 57.35–2179.7 0.48 0.39 0.44
HF 546.75, 734.15 338.76, 777.12 90.73–3113.7 0.38 0.85 0.62
LF/HF 1.83, 1.35 1.68, 1.15 0.09–6.24 0.36 0.52 0.44

Table 4. RSP time domain BRV Features. Mean breath rate: MBR; standard deviation of breath rate
(SD); root mean square of successive differences: RMSSD; standard deviation of NN intervals: SDNN;
non-anxiety-induced (NAI); anxiety-induced (AI).

RSP Time-Domain BRV Features

Feature Mean (NAI, AI) SD (NAI, AI) Range p-Value
ANOVA

p-Value
Wilkoxon p̄-Value

Non-transitional

MBR 16.14, 16.90 2.87, 2.53 10.25–23.01 0.002 0.002 0.002
SD 2.13, 1.52 1.28, 1.06 0.05–8.03 <0.0001 <0.0001 <0.0001
RMSSD 0.76, 0.45 0.59, 0.38 0.01–3.24 <0.0001 <0.0001 <0.0001
SDNN 0.52, 0.32 0.38, 0.23 0.02–2.03 <0.0001 <0.0001 <0.0001

Transitional

MBR 16.32, 16.84 2.71, 2.48 10.88–21.43 0.58 0.65 0.61
SD 2.71, 1.94 1.42, 1.22 0.63–5.84 0.11 0.08 0.1
RMSSD 0.79, 0.64 0.49, 0.55 0.13–2.02 0.43 0.13 0.28
SDNN 0.55, 0.43 0.33, 0.32 0.12–1.25 0.31 0.09 0.2
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Figure 2. Box plots of frequency domain ECG features in nontransitional video phases. Low
frequency: LF [ms2]; high frequency: HF [ms2]. Arrows indicate which of the two populations
(non-anxiety-induced state or anxiety-induced state) had a higher (upward arrow) or lower
(downward) value for ease of visualization.

Figure 3. Time domain RSP box plots nontransitional video phases. Mean breathing rate:
MBR (bpm); standard deviation of the breathing rate: STDBR; root mean square of successive
difference: RMSSD; standard deviation of NN intervals: SDNN. Arrows indicate which of the
two populations (non-anxiety-induced state or anxiety-induced state) had a higher (upward arrow)
or lower (downward) value for ease of visualization.
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On the basis of a review of several studies, Castaldo et al. [20] described the expected
change of HRV indices when stress was induced. According to this meta-analysis, MHR
should increase for stress-induced states, whereas other time domain HRV indices (SD,
RMSSD, SDNN) should decrease. In particular, SDNN at a resting state is strongly
correlated to respiratory sinus arrhythmia (RSA) [23], which was decreased when inducing
both positive and negative emotions [13]. The same pattern should apply to RSP, since HRV
and BRV are related [21]. Moreover, RSP is closely related to the ANS activity: negative
mood states such as anxiety and stress activate the sympathetic part of the ANS, and result
in faster and shallower breathing. Our results for all indices agreed with these expectations
except MHR, which was lower for the anxiety-inducing state. This is an interesting finding
as it shows an inverse relationship between HR and HRV indices, which was reported in
the literature [24].

For the frequency domain features of the ECG signal, the LF power (0.04–0.15 Hz)
accounts for the activation of both parasympathetic and sympathetic systems, whereas
the HF power (0.15–0.4 Hz) is associated with parasympathetic system activation and
reflects the change in HR related to the respiratory cycle [22]. LF power is expected to
increase in anxiety-induced states due to vagal activity when RSP rates are very low (below
8.5 resp/min) [22] and HF power is expected to decrease with negative emotions, such as
anxiety, worrying, stress, and panic [12]. Thus, the LF/HF ratio reflects the induced shift of
the ANS balance towards sympathetic activation and parasympathetic withdrawal; hence,
it should also increase [25], although the LF/HF ratio is a more controversial feature as it
was originally based on 24 h recordings [23].

RSP is closely related to ANS activity: negative mood states, such as anxiety and stress,
activate the sympathetic part of the ANS, and result in faster and shallower breathing,
as confirmed by our findings of an increase in MBR during stress induction. Overall,
the effects of stress on the physiological state can be effectively measured with ECG
and RSP signals, reflecting changes in ANS activity. Corresponding HRV/BRV analysis
provides detailed information about cardiac and respiratory activity. In the time domain,
in addition to the HRV and BRV, there was variation in the intertime series between
consecutive peaks. In the frequency domain, LF/HF activity was examined, which is in
direct relation to vagosympathetic balance. In the present study, stress was induced by
means of video clips that were alternately anxiety-inducing and non-anxiety-inducing.
The results of the study showed a significant decrease in the HRV and BRV time domain
variability measures, specifically for SD (HRV, BRV), RMSSD (BRV), and SDNN (HRV,
BRV), for the stress-induced states. This is in accordance with the majority of studies
in the literature that investigated the influence of stress on HRV, as summarized in the
meta-analysis by Castaldo et al. [20], and the influence on BRV, as discussed by Bandara
and Wijesiriwardana [21]. In contrast to the literature, in the present study, MHR decreased
(p = 0.03, ANOVA; p = 0.049, Wilcoxon; p̄ = 0.04). MBR was significantly increased for the
stress-induced states, again in accordance with previous findings [26].

4. Conclusions

In conclusion, this study proved the possibility of monitoring the state of anxiety
induced through videos by assessing objective measures: HRV and BRV. The novelty of
introducing a transitional phase between the stress-induced and non-stress-induced states,
and the subsequent analysis shed new light on the findings in the currently available
literature about the influence of stress on HRV and BRV. This new finding enables ECG
and RSP signals to be interpreted in a recognizable and reproducible manner. This work
provides a foundation for the further systematic processing of human mental–emotional
states assessed via ECG and RSP signals. Identifying potential biomarkers is a prerequisite
for establishing real-time data analysis and interpretation of future ECG and RSP signals
collected via portable and wearable devices.
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