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Abstract: Machine learning models are renowned for their high dependency on a large corpus of
data in solving real‑world problems, including the recent COVID‑19 pandemic. In practice, data
acquisition is an onerous process, especially in medical applications, due to lack of data availabil‑
ity for newly emerged diseases and privacy concerns. This study introduces a data synthesization
framework (sRD‑GAN) that generates synthetic COVID‑19CT images using a novel stacked‑residual
dropout mechanism (sRD). sRD‑GAN aims to alleviate the problem of data paucity by generating
synthetic lungmedical images that contain precise radiographic annotations. The sRDmechanism is
designed using a regularization‑based strategy to facilitate perceptually significant instance‑level di‑
versitywithout content‑style attribute disentanglement. Extensive experiments show that sRD‑GAN
can generate exceptional perceptual realism on COVID‑19 CT images examined by an experiment
radiologist, with an outstanding Fréchet Inception Distance (FID) of 58.68 and Learned Perceptual
Image Patch Similarity (LPIPS) of 0.1370 on the test set. In a benchmarking experiment, sRD‑GAN
shows superior performance compared to GAN, CycleGAN, and one‑to‑one CycleGAN. The encour‑
aging results achieved by sRD‑GAN in different clinical cases, such as community‑acquired pneu‑
monia CT images and COVID‑19 in X‑ray images, suggest that the proposed method can be easily
extended to other similar image synthetization problems.

Keywords: COVID‑19; image synthesis; chest computed tomography; generative adversarial
networks

1. Introduction
Machine learning (ML)‑integrated COVID‑19 diagnostic systems with medical imag‑

ing modalities have shown promising performances in various areas of the healthcare sys‑
tem amid the ongoing COVID‑19 pandemic, such as in disease transmission control, pa‑
tient management, and pathological studies [1–4].

Although medical imaging‑based COVID‑19 diagnosis has been reported since the
outbreak of the pandemic [5–7], large‑scale implementation of the medical imaging‑based
diagnostic system remains in a dilemma due to concern about the risk of exposure to the
coronavirus at imaging facilities, strained healthcare systems, and the movement control
enforced by local authorities [8]. In addition, the existence of the invariance radiographic
features of COVID‑19 that are shared among other types of pneumonia hinders the accu‑
rate differential diagnosis among these types of pneumonia, including influenza A [9], bac‑
terial pneumonia [10,11], community‑acquired pneumonia (CAP) [12,13], and interstitial
syndrome [14]. Despite the controversial state regarding the COVID‑19 diagnosis with
imaging modalities, there is solid evidence that supports radiography approaches in ex‑
treme and critical scenarios [15–17]; for example, patients who failed the RT‑PCR test but
have clinical symptoms of COVID‑19 or have a history of close contact with COVID‑19‑
infected individuals.

The continuous emergence of COVID‑19 variants has aggravated the impaired health‑
care system globally [18]. More importantly, the new variants will likely diminish the ef‑
fectiveness of the existing ML models that were previously trained and tested only on the
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early COVID‑19 image data. This complication is due to the uncertain characteristics of
these variants, and their impact on existing ML models remains obscure. The dominant
radiographic feature of COVID‑19 is ground‑glass opacity (GGO), which presents with
a grayish color and fiber‑like texture that is distributed within the region of the lungs
in “Crazy‑paving” and “reversed halo sign” patterns [16,17,19]. The GGO abnormali‑
ties can vary from large to small patches, and can be difficult to interpret from human
observation due to the invariances in radiography characteristics within the pneumonia
family [9–14] and vast pattern diversity, especially when the abnormalities appear to be
subtle and nanoscopic on observation.

The performance of most ML models is generally known to depend on the quantity
and quality of the training data. However, medical data or images are exceptionally scarce
due to privacy concerns and a lack of data, especially for newly emerged diseases [20–23].
Thereby, data acquisition plays an all‑important role in accelerating the development of
feasible machine learning models that may potentially assist the COVID‑19 and COVID‑
19 variants diagnostic systems.

The active research field of generative modeling has advanced the performance of
manymachine‑learning‑based image synthetization solutions in awide range of problems,
such as image‑to‑painting, image colorization, image transfiguration, and semantic map‑
to‑image [24–27]. Image synthesization via generative modeling is emerging as a pow‑
erful solution to data paucity in many data‑driven machine learning models for medical
imaging applications such as image synthetization [20–23,28], segmentation [29,30], super‑
resolution [31], and classification [32].

The rapid advancement of I2I translation has facilitated many state‑of‑the‑art image
synthesization approaches that continue to break through the limitations of conventional
methods in areas of super resolutions [33,34], unpaired I2I translation [21,35,36], multi‑
modal image translation [37–39], and fine‑grained translation [40,41]. Very recently, var‑
ious GANs have been adopted to generate synthetic COVID‑19 CT [21,28,42] and X‑ray
images [22,23], which are formulated as a problem of I2I translation. From the literature,
the motivation for the synthetization of COVID‑19 imaging modalities is mainly derived
from the scarcity of image data for high‑performance and robust machine‑learningmodels
developed for COVID‑19 detection and classification tasks [21,22,42].

The synthetization of COVID‑19 image data in the field of I2I translation can be inter‑
preted as a transfer of features, where the image translator learns the image mapping be‑
tween non‑COVID‑19 and COVID‑19 data distributions and distinguishes the classes with
the unique feature attributes that belong to each class. This powerful learning algorithm
encourages the synthetic images tomanifest new instances that are consistent with the real
data distribution. As a result, generative data augmentation facilitated by I2I translation
is superior to the conventional data augmentation approaches that are generally known to
suffer from data diversity [43].

From the literature, existing COVID‑19 image data synthetization approaches have
shown encouraging performances in different problem settings, which can be divided into
paired and unpaired image translations. The paired translation aims to replicate the same
style features based on a predefined descriptor, such as semantic maps. In contrast, un‑
paired image translation learns to generate style attributes based on the knowledge ob‑
tained without supervision. For instance, paired image translation is explored with the
pix2pix GAN model to generate high‑quality COVID‑19 CT images from semantic layout
maps that contain precise annotations of the GGO features within the lung regions [28]. Al‑
ternatively, image pairs can be generated using elastic registration algorithms to register
features of GGO on non‑COVID‑19 CT images [42]. Although paired image translation ap‑
proaches demonstrated excellent performance in image quality, acquisition and curation
of large numbers of image pairs are challenging considering the time and effort needed
to create the aligned image pairs. Moreover, paired image translation approaches lack fea‑
ture diversity because they focus only on replicating the GGO features and do not generate
new feature instances [28,42].
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Recent studies have shown that synthetic COVID‑19 chest X‑rays can be generated
from randomly distributed noise vectors using the auxiliary classifier GAN (ACGAN) [22].
Unlike conventionalGANs, the generator of theACGANgenerates the output images from
the input noise distribution and the class label of the target distribution. The discrimi‑
nator receives the generated images and predicts the probability that the image belongs
to a specific class and that the input image is real. The original ACGAN study claimed
that adding class labels as an input can improve the stability of the training dynamics
and enhance the quality of the synthetic images [44]. Although ACGAN does not rely on
image pair supervision, in image synthesization it is inevitably challenging to generate
high‑frequency and detailed structures from noise distribution. Consequently, the GGO
features presented in lower resolutions can be misinterpreted as bronchi, bronchioles, or
other unrelated abnormalities.

CycleGAN is another exciting extension of GANs, and is trained on unpaired images.
It encourages the outputs of the reverse generator to be similar to the input of the forward
generator, which forms a cycle‑consistency constraint that regularizes the bidirectional im‑
age translation dynamics and enhances the quality of the synthetic images [45]. The attrac‑
tive property of the CycleGAN training algorithm essentially addresses the problem of low
image‑quality synthesization and the requirement of image pair supervision. CycleGAN
has demonstrated promising results in high‑quality COVID‑19 CT image synthesization
from lung cancer images [21]. The authors of the study noted that the image translation
takes advantage of the existing annotations from the lung cancer nodules of the lung can‑
cer images to generate plausible features of COVID‑19 around the location of the nodules.
A similar approachwas also found to adapt well to COVID‑19 chest X‑ray images, andwas
intended to reduce the class imbalance distribution of COVID‑19 X‑ray images compared
to CAP and health control in a COVID‑19 classification task [23].

Most existing COVID‑19 imagingmodality synthetization approaches generate deter‑
ministic outputs, which means only a single output can be generated from every unique
input [21–23,28,42]. This is a considerable drawback for data augmentation due to the
limited image diversity from the deterministic setting of the GANs. By comparison, most
multimodal GAN frameworks aim to maximize perceptual diversity via disentangled rep‑
resentations, which results in significant perceptual differences [38,39]. As such, image
translation for medical images that relies on subtle and detailed visual descriptions of the
radiographic findings is more appropriately formulated using a fine‑grained feature trans‑
fer approach. In particular, fine‑grained image translation aims to transfer only the fine
contexture details of the images. However, fine‑grained feature transfer approaches lack
image quality preservation due to the sizeable geometrical deformation and dependency
on Variational Autoencoders (VAEs), which are prone to generate blurry images [40,41].

The utilization of regularization techniques to encourage image diversity has been
investigated previously using Gaussian noise addition and dropout layers in U‑net archi‑
tecture [46]. However, the stochasticity induced by the proposed regularization strategy
did not generate perceptually significant structural variances in the image transformation
tasks. In recent work, Yang et al. regulated the generator using a maximization objective
conditioned on two randomly sampled noise latent codes [47]. Although the proposed
method was explicitly designed for cGAN algorithms, the capability of the method in fa‑
cilitating fine‑grained feature diversity and its effectiveness in unsupervised training algo‑
rithms remain obscure.

In essence, based on the literature survey, existing works for the synthesization of
fine‑grained andmultimodal outputs for medical imaging are limited. Synthetic data hold
great value as supplementing data for AI‑based medical imaging applications where the
diagnostic models can benefit from diverse training data without conducting actual imag‑
ing procedures.

This paper presents an image synthesization framework that generates high‑quality
and realistic synthetic COVID‑19 CT images, which can be a practical solution to data
paucity and supplement the development of MLmodels. The image synthesization frame‑
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work is built on an image‑to‑image (I2I) translation framework that can translate radio‑
logical features of GGO on non‑COVID‑19 chest CT images. In this study, sRD‑GAN is
used. Unlike existing COVID‑19 synthetization methods that generate deterministic out‑
puts, sRD‑GAN can generate instance‑diverse outputs from a single input without relying
on prior distributions or auxiliary conditions.

The non‑COVID19‑to‑COVID19 CT I2I translation is formulated as a problem of im‑
age transfiguration, which involves transferring style features across the image domain
with highly similar global structures, such as the horse‑to‑zebra or orange‑to‑apple transla‑
tion [45]. However, sRD‑GAN has fundamental differences compared to general‑purpose
I2I translation problems due to three vital criteria:
1. Diverse style attributes of GGO features: the radiographic features of COVID‑19 on

chest CT contain the formation of GGO in various shapes and sizes. This setting is
in contrast with the general‑purpose unimodal I2I approaches, where the style at‑
tributes are easily identified with a single representation, such as black and white
lines (zebra), brown color region (horse), and orange color regions (orange) [45]. There‑
fore, the non‑COVID19‑to‑COVID19 translation is a more challenging task and re‑
quires translating the style attributes presented in different patterns and locations
within the region of the lungs.

2. Requirement of high‑frequency structures: in the general‑purpose I2I translation set‑
ting, minor and detailed variations of style attributes generated on the outputs usu‑
ally do not affect the global representation of the image due to the low requirement for
high‑frequency representation. However, the natural attributes of the GGO features
are represented in high‑frequency details and manifested in different shapes, loca‑
tions, and sizes [16,17,19]. Therefore, these detailed GGO patterns generated within
the lung parenchyma are essential in deciding the perceptual realism of the synthetic
COVID‑19 CT images.

3. High tolerance of texture artifacts: ideal image translation generates images contain‑
ing no traits of style attributes that overlap with the source domain, also known as
style artifacts. Texture or style artifacts refer to the translation error of style attributes,
which cause overlapping style attributes that belong to both image domains. Such
concern is negligible for non‑COVID‑19‑to‑COVID‑19 translation because the style
attributes of the images from both domains share similar radiographic representa‑
tions. As such, overlapping style attributes in style artifacts are hardly visible, and
do not affect the general realistic representation of the synthetic outputs.
sRD‑GAN is incorporated with the proposed stacked residual dropout (sRD) mech‑

anism, which systematically uses dropout regularization to facilitate latent space stochas‑
ticity and generate perceptually significant image differences. Since the proposed method
differs frommostmultimodal or diverse image translationmethods based on disentangled
learning, it can generate instance‑diverse outputs from the same input without depending
on prior distribution or auxiliary conditions. In addition, an adaptive pixel consistency
loss is also proposed to reduce the translational noises and enhance the perceptual realism
of the synthetic outputs.

The contributions of this paper can be summarized as: (1) a novel diverse I2I transla‑
tion framework (sRD‑GAN) is designed to facilitate COVID‑19 CT image synthesization
with instance‑level diversity; (2) an adaptive pixel consistency is introduced to improve
the perceptual quality of the synthetic COVID‑19 CT images; and (3) an in‑depth inves‑
tigation is conducted of the performance of various existing GAN models on the newly
defined COVID‑19 image translation task.

2. Material and Methods
2.1. Datasets

The COVID‑19 and non‑COID‑19 CT images were provided by the Union and Liyuan
Hospitals affiliated with Huazhong University of Science and Technology; the data con‑
tain substantial CT data with precise metainformation such as SARS‑CoV‑2 nucleic acids
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outcomes, CT outcome, morbidity, and mortality. To maximize information diversity
and quality, 100 subjects (patients) were curated from the iCTCF dataset acquisition plat‑
form [4], where each subject was manually inspected to ensure the positive COVID‑19
CT images contain a substantial magnitude of GGO features manifested in different chest
anatomies. Similarly, 200 subjects not infected with COVID‑19 were also curated with an
emphasis on the diversity of chest structure. From the sameplatform, 9575 chest CT images
without clinical conditions and diseases from a segregated dataset (HUST‑19 dataset) [4]
were acquired for testing purposes.

In addition, 416 COVID‑19 subjects and 412 CAP clinical subjects were also acquired
from [48] to enhance the generalizability of the image synthesizer, where the images were
provided by the Xiangyang Central Hospital and Xiangyang No. 1 People’s Hospital,
Hubei, China. Furthermore, 13,408 COVID‑19 and non‑COVID‑19 chest X‑ray images
were acquired from [49] to evaluate the adaptivity of the image synthesizer in different
imaging modalities. The information on the datasets is summarized in Table 1.

Table 1. Summary of datasets and descriptions.

Source Modality Class Quantity

[4] CT COVID‑19 100 patients
Non‑COVID‑19 200 patients

[4] CT Non‑COVID‑19 9575 images
[48] CT COVID‑19 416 patients

CAP 412 patients
[49] X‑ray COVID‑19 3216 images

Non‑COVID‑19 10,192 images

2.2. Stacked Residual Dropout (sRD) Mechanism
2.2.1. Assumption

Multimodal I2I translation generates diverse outputs using disentangle learning that
assumes images can be disentangled into a shared content latent space ci ∈ C, which rep‑
resents the invariance features from both image domains, and a style latent space si ∈ S,
which represents the distinctive class attributes of the image domains. However, in the
problem of non‑COVID19‑to‑COVID19 I2I translation, the features of GGO represented
on CT images are complex and vary with different patients. Thus, this study assumes that
the images from the image domains xi ∈ X, non‑COVID‑19 CT images, and yi ∈ Y, COVID‑
19 CT images, share a large content latent space ci ∈C and the unique radiographic features
of GGO are assumed to be si ∈ S. Finally, the non‑COVID19‑to‑COVID19 CT I2I translation
is formulated as is yi′ = G(xi), where yi′ = ci × si, so that Y′ ≈ Y, where Y′ is the synthetic
COVID‑19 CT distributions.

The dropout layers incorporated within the residual blocks facilitate latent space
stochasticity, which is induced directly in the bottleneck model of the image transforma‑
tion network. As such, the arbitrary style attribute generated with the stacks of residual
dropout is formulated as si′ = pi × si, where pi is the dropout variable representing an
arbitrary dropout state based on the predefined dropout rate [50].

2.2.2. Building Block of Residual Connections
Themultiple blocks of residual connections within the image transformation network

form a deep residual convolutional neural network (CNN) that learns a single direction
image mapping G(x)→ y′:

y′1 = p1 × res1(x1) (1)

y′2 = p2 × res2
(
y′1
)

(2)

where resi() denotes the sub‑residual block in a single residual block, x1 is any arbitrary
input instance from the previous layer, y1′ is the output instance for the first sub‑residual
block, y2′ is the output instance for the second sub‑residual block, and pi represents the
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dropout variable based on the predefined dropout rate. Figure 1 shows that each residual
block contains two identical sub‑blocks with residual dropout layers after the instance nor‑
malization layers. The input instance to the first sub‑residual block is concatenated with
the output of the second residual sub‑block via the skip connection [51]. Activation layers
are omitted for simplicity.
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2.2.3. Two‑Mode Structure of sRD Mechanism
The sRD mechanism operates in two different modes and the configurations of the

residual dropout layers of the image transformation network change between the modes.
In the training mode, the image transformation network is trained to learn the image map‑
ping G(x)→ y′ in a highly stochastic environment, where x is from the non‑COVID‑19 CT
domain and y′ is the synthetic COVID‑19 CT image generated by G. The output instance
of the single residual block is:

y1 = p1RES1(x) + x (3)

where RESi() denotes the main residual block in a single residual block, and pi denotes
the predefined dropout variable for the residual blocks. The outputs for the subsequence
residual blocks are:

y2 = p2RES2(y1) + y1 (4)

y3 = p3RES3(y2) + y2 (5)

y4 = p4RES4(y3) + y3 (6)

. . .
y9 = p9RES9(y8) + y8 (7)

Therefore, the image transformation network can be formulated as a function of x
such that:

yact = F(x) (8)
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where yact denotes the activation output from the final residual block, and x is the final
down‑sampled input to the image transformation network. The padding, normalization,
and activation layers are excluded from the formula for simplicity. Figure 2 illustrates the
configuration of the image transformation network in both training and inference modes.
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Figure 2. Image transformation network incorporated with the residual dropout mechanism in
the training mode and the inference mode. The RD‑activation code illustrates the reconfiguring of
the residual dropout at the inference mode to amplify the latent space stochasticity without any
model retraining.

In the inference mode, the residual dropout (RD)‑activation code is applied to read‑
just the stochasticity setting of the trained generator model without fine‑tuning or training.
The RD‑activation code is a user‑defined instruction that activates or deactivates the incor‑
porated dropout layers within the residual blocks. The rationale of the stochasticity setting
readjustment posterior to the completion of training is to amplify the magnitude of the la‑
tent space stochasticity relative to its initial state achieved in the training mode. As such,
a higher magnitude of latent space stochasticity can be achieved without readjusting the
parameter of the bottleneck model.

2.3. Stacked Residual Dropout GAN Framework (sRD‑GAN)
2.3.1. Overview of sRD‑GAN

The sRD‑GAN framework consists of one generator model and two discriminator
models. The generator model learns the bidirectional image mapping from G(x)→ y′ and
G(y) → x′, while the discriminator models predict the outputs from respective mapping
directions. The sRD‑GAN framework is illustrated in Figure 3.

Unlike CycleGAN, sRD‑GAN consists of only one generator model to generate syn‑
thetic outputs fromboth imagedomains, assuming the generatormodel exerts a self‑inverse
property [36]. This also assumes that a single generator model is sufficient to learn the
bidirectional image mapping across two image domains. Although the single generator
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structure does not benefit the time efficiency for the same image batch size compared to
the concurrent CycleGAN frameworks [36,45], it doubles the learning frequency of the
single generator model, which has been proven to improve the quality of the synthetic
images [36].
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2.3.2. Models
The basic architecture of the generator and discriminator models was designed based

on [46,52], respectively. The generator model comprises three different types of blocks.
In this work, it consists of two down‑sampling blocks, nine residual blocks, and two up‑
sampling blocks. The discriminator models are PatchGAN models that map inputs to 2D
arrays, which indicates whether the synthetic outputs are fake or real [46]. Details of the
model architectures are included in Tables A1 and A2 in Appendix A of this paper.

2.4. Lost Function and Formulation
2.4.1. Adaptive Pixel Consistency Loss

A new adaptive pixel consistency loss is introduced to enhance the perceptual realism
of the synthetic COVID‑19 CT images for improvement of the perceptual realism of the
images. The pixel consistency loss is utilized as a mapping constraint to exert a strong
correlation between the input image and its corresponding output image by encouraging
them to be similar via the mean absolute error.

In contrast to conventional loss functions, for which importance is controlled by con‑
stant values, the proposed adaptive setting of the pixel consistency loss function changes
the importance of the loss based on the generator loss at each training step. Therefore, a
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smaller error resulting from the generator will correspond to a smaller weight update. The
pixel consistency loss for both image mapping is defined as:

Lx
pixel(G) = Ex∼Pdata(x)[∥ G(x)− x ∥1] (9)

Ly
pixel(G) = Ey∼Pdata(y)[∥ G(y)− y ∥1] (10)

The adaptive setting of the pixel consistency loss is defined by:

λx
pixel = min[log(DY(y)) + log(1 − DY(G(x)))] (11)

λ
y
pixel = min[log(DX(x)) + log(1 − DX(G(y)))] (12)

2.4.2. Adversarial Loss
Adversarial training aims to learn the mapping function in a min‑max theory [53],

where the generator aims to generate outputs that are ideally similar to the distribution
of the target domain. In contrast, the discriminator aims to distinguish the fake and good
samples generated by the generator model. The generator and discriminator exert an ad‑
versary relationship, where a win in the discriminator would result in a loss in the genera‑
tor, and receive a penalty in the form of weight updates accordingly. The adversarial loss
for the forward and backward mapping direction based on one‑to‑one CycleGAN [36] is
formulated as follows:

LGAN(G, DY, X, Y) = Ey∼Pdata(y)[log DY(y)] + Ex∼Pdata(x)[log DY(1 − DY(G(x)))] (13)

LGAN(G, DX , X, Y) = Ex∼Pdata(x)[log DX(x)] + Ey∼Pdata(y)[log DX(1 − DX(G(y)))] (14)

2.4.3. Cycle Consistency Loss
Similar to CycleGAN and other concurrent models, cycle consistency loss reduces the

space of possible image mappings in many‑to‑many I2I translation problems [32,35,36].
The cycle consistency loss is computed as a mean absolute error between the outputs of
the reverse generator to the input of the forward generator, which enforces a one‑to‑one
mapping between the image domains in separated latent spaces. Since only one generator
model is used in sRD‑GAN, the cycle consistency loss is computed from the output images
that are generated from the same generator G. The cycle consistency loss is defined as:

Lx
cycle(G) = Ex∼Pdata(x)[∥ G(G(x))− x ∥1] (15)

Ly
cycle(G) = Ey∼Pdata(y)[∥ G(G(y))− y ∥1] (16)

2.4.4. Identity Loss
The identity loss is effective in preserving the color composition between the input

and its corresponding output, based on the original CycleGAN study [45]. The identity
loss function is modified in this work since only one generator is used in the sRD‑GAN
framework. The identity loss is computed between X′ and Y for forward mapping and Y′

and X for reverse mapping. The formulation of the identity loss is given by:

Ly
id(G) = Ey∼Pdata(y)[∥ G(y)− y ∥1] (17)

Lx
id(G) = Ex∼Pdata(x)[∥ G(x)− x ∥1] (18)

2.4.5. Full Objective Functions
The final objective function of the sRD‑GAN for G(x)→ y’ is:

L(G, DY) = LGAN(G, DY, X, Y) + λx
cycleLx

cycle(G) + λx
pixel L

x
pixel(G) + λ

y
idLy

id(G) (19)
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and the final objective function for the reverse cycle G(y)→ x’ is:

L(G, DX) = LGAN(G, DX , X, Y) + λ
y
cycleLy

cycle(G) + λ
y
pixel L

y
pixel(G) + λx

idLx
id(G) (20)

2.5. Experiment Setup
2.5.1. Implementation

For the experiment, the curated dataset pool was divided into training and testing
datasets without overlapping. In particular, one image was manually selected from 100
explicitly segregated patients from [4] as the test set. The axial slice of the CT data was
manual selected to ensure the test images are diverse in terms of chest and lung structures
since the adjacent CT slices can be close to identical. The images for training were ran‑
domly selected from the remaining data pool, creating a training dataset of 800 images
that consists of 400 images from the two image domains of COVID‑19 and non‑COVID‑19.
In addition, 3000 non‑COVID‑19 CT images were randomly selected from 9575 images of
the HUST‑19 dataset, which were used as an additional test set to evaluate the generaliz‑
ability of sRD‑GAN.

Following [21,45], the batch size for training the sRD‑GAN is set at one, and a com‑
plete training cycle requires 400 training steps. Each training step uses one image from the
respective image domain to form a training pair (xi, yi). Unlike the paired trainingmethod,
the images need not be aligned and are shuffled randomly during the preprocessing stage.
Due to the graphics memory limitation, the training images are resized to a spatial dimen‑
sion of 256× 256. During the inference time, the test images are kept at the high‑resolution
setting of 512× 512. The images for training and interface are color scaled with three RGB
color channels.

In the preliminary experiment, it was observed that the quality of the images does
not improve further after 40–50 epochs. Therefore, the learning rate was fixed at 0.0002
for the first 50 epochs and exponentially decayed for the following ten epochs. Similar
to CycleGAN [45] and one‑to‑one CycleGAN [36], the Adam optimizer was used as an
optimizer with a beta_1 value of 0.5 and beta_2 of 0.999. The weights of each layer and
instance normalization were initialized from a Gaussian distribution N(0, 0.02).

The training procedure for every training step is as follows:
(1) xi is fed as input to learn the forward mapping G(xi) → yi′, and backpropagate G

and DY.
(2) yi is fed as input to learn the reverse mapping G(yi) → xi′, and backpropagate G

and DX.

2.5.2. Software and Hardware Specification
All simulationworks, including data processing, neural network training, testing, and

analyses, were computed in PyCharm IDE Community Edition 2020.2.1× 64 with Python
3.6. All simulations were performed on a GPU environment for more efficient compu‑
tation, with CUDA version 10.1, Tensorflow‑gpu 2.2.0, and CudDNN version 8.0.2. The
hardware resources included a 240 Gb solid state drive memory and NVIDIA GTA 950M
as the graphics processing unit. A single training step took four seconds, and the model
required 106.67 h for training completion (60 epochs, 400 steps each) and one second to
generate one synthetic image in the inference mode.

2.6. Performance Evaluation
2.6.1. Radiologist Examination

The perceptual realism of the synthetic COVID‑19 CT images was evaluated using
the Visual Turing Test performed by a radiologist with ten years of experience in General
Clinical Radiology and Pediatric Radiology. In this test, 50 synthetic COVID‑19 CT, 30
real COVID‑19 CT images, and 20 real non‑COVID‑19 CT images were included. Of the
50 synthetic images, 20 synthetic images containing visible style artifacts were intention‑
ally included in the test for comparison. The radiologist was informed that the images



Bioengineering 2022, 9, 698 11 of 32

contained real and synthetic images, but was not told which were real and which were
synthetic images for blind evaluation. The Visual Turing Test results are illustrated using
confusion matrixes that separate the real COVID‑19, synthetic COVID‑19, and real non‑
COVID‑19 classes.

2.6.2. Learned Perceptual Image Patch Similarity (LPIPS)
The Learned Perceptual Image Patch Similarity (LPIPS) distance quantifies the im‑

age diversity by computing the distance between image batches, which are the activations
generated by the pre‑trained AlexNet model [54]. In this study, the LPIPS distance quanti‑
fies (1) instance diversity between synthetic outputs generated from the same inputs and
(2) significance of the synthetic COVID‑19 CT images, representing the perceptual differ‑
ences between synthetic COVID‑19 CT images and their corresponding real non‑COVID‑
19 CT image inputs. For instance‑diversity, larger LPIPS distances signify that the images
are perceptually more different. For the significance of the synthetic features, larger LPIPS
distances indicate more significant features presented on the synthetic images.

2.6.3. Fréchet Inception Distance (FID)
The FID score is generally used to measure the quality of the synthetic outputs gener‑

ated by GANmodels [55]. It compares the statistical measurement from real and synthetic
data without considering the image class. Using the pre‑trained Inception V3 model, the
activations of the real and synthetic images are computed as a multivariate Gaussian using
the covariance andmean of both types of images. Then, the distance between the twodistri‑
butions is calculated as the FID metric, where lower scores imply that the synthetic image
batch and the real image batch are statistically more similar, which signifies higher quality.

2.6.4. Statistical Analysis
In this study, the Uniform Manifold Approximation and Projection (UMAP) [56] is

computed to identify the correlations between the three distributions, including the real
COVID‑19, real non‑COVID‑19, and synthetic COVID‑19 CT images generated by sRD‑
GAN. For this purpose, a pre‑trained COVID‑19 detection network [57] is used to extract
the feature maps of the images to generate the high dimensional representation of these
data distributions using the UMAP algorithm. Clusters that are closer to each other signify
that the instances of the data belonging to these clusters aremore similar. Additionally, the
structural similarity between the synthetic and real COVID‑19 CT images is also analyzed
using a histogram illustration between the pixel distributions belonging to different image
classes. To further validate the synthetic data generated by sRD‑GAM, the Gradient Class
Activation Map (Grad‑CAM) is computed to identify the saliency response of the COVID‑
19 detection model on the data distributions using the feature maps generated by the pre‑
trained COVID‑19 detection model [57]. The saliency maps generated by the COVID‑19
detection model that was trained with only real data can provide essential insights into
the coherences between the synthetic and real COVID‑19 CT images and discriminative
behavior against real non‑COVID‑19 CT images.

3. Result and Discussion
In this section, extensive experiments and results are discussed. Firstly, the effect of

latent space stochasticity amplification facilitated by the two‑modemechanism of the sRD‑
GAN is discussed in Section 3.1. Next, the performance of various sRDmechanismdesigns
in inference mode is discussed in Section 3.2, which aims to describe the characterization
of the sRD regularization in different dimensionalities and magnitudes of the dropout reg‑
ularization. Section 3.3 justifies the qualitative evaluation of the synthetic COVID‑19 CT
images with respect to the image perceptual realism. Lastly, the effectiveness of the pro‑
posed adaptive pixel consistency loss function in facilitating effective noise reduction for
I2I translation is discussed in Section 3.4.
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3.1. sRD‑GAN in Training and Inference Modes
The sRD regularization is operational in two different modes, where the models are

initially trained with a smaller magnitude of residual dropout in training mode and in‑
crease the magnitude of the residual dropout for inference without retraining the models.
As such, the image instance diversity of the synthetic images generated in training and
inference modes can be compared to characterize the amplification effect of the residual
dropout facilitated by the duo training‑inference mechanism.

In trainingmode, six variations of sRD regularization are considered, where each vari‑
ation contains a different number of residual blocks with residual dropout (RD‑blocks).
From the first to the sixth variation, the increment in the number of RD‑blocks begins from
the last residual block until the sixth residual block. The illustration of the image transfor‑
mation network is explained in Figure 2.

The dropout rate is fixed at 0.5 for all RD‑blocks in this experiment. In addition, the
residual dropout is not activated for the first three residual blocks for all variations of sRD
regularization for training in this experiment. In the inference mode, residual dropout is
activated for all the residual blocks of the bottleneck model at a fixed dropout rate of 0.5
for all the six sRD‑GAN variations. It is important to emphasize that model retraining and
fine‑tuning are not required for this purpose.

Image instance diversity is evaluated by measuring the LPIPS distance between five
output image batches generated from the same input batch, where one reference batch is
selected from the five image batches. Figure 4 shows the LPIPS distance and the FID scores
of the synthetic images generated with six variations of sRD regularization in training and
inference modes. The amplification of the latent space stochasticity facilitated by the two‑
mode mechanism shows a remarkable increase in instance diversity for all variations of
sRD regularization, with the highest increase in LPIPS distance being 20250% between
training and inference modes for one RD‑block variation.
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Figure 4. (a) LPIPS and (b) FID metrics of the synthetic images generated in training and infer‑
ence modes.

Despite the lowest percentage increase of 271.84% by the six RD‑block variation, the
model achieved the overall highest LPIPSdistance of 0.1413, approximately two‑fold higher
than other variations. Figure 5 shows the perceptual difference output images generated
in training and inference modes, where the instance diversity of the synthetic images gen‑
erated in the inference mode is more significant compared to the images generated in the
training mode. Specifically, the GGO instances manifested on the synthetic images gener‑
ated in inference mode are diverse in shapes and sizes, whereas the GGO instances mani‑
fested in training mode are relatively smaller in magnitude.
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Figure 5. Synthetic COVID‑19 CT images generated in training and inference modes, where
the diverse outputs generated in inference mode show more apparent differences between the
synthetic instances.

Despite the significantly lower LPIPS distance yielded by the synthetic images in train‑
ingmode compared to inferencemode, the sRD regularization is capable of facilitating suf‑
ficient latent space stochasticity that yields a visible image difference, where its magnitude
increases with greater numbers of RD blocks, as shown in Figure 6. However, the ample
space of latent stochasticity induced in the inferencemode negatively impacted the percep‑
tual quality of the synthetic images, where all sRD regularization variations score higher
FID in inferencemode compared to trainingmode, as demonstrated in Figure 4. In particu‑
lar, the highest increase in FID score due to the amplification of latent space stochasticity is
observed to be 160.05% by the five RD‑block variation, and the largest FID score achieved
in the inference mode is found to be 190.57 by the six RD‑block variation. Nonetheless, the
degradation of perceptual quality of the synthetic images is relatively smaller compared to
the significant boost in instance diversity. Moreover, the differences in the instance‑diverse
outputs and the differences in perceptual quality of the synthetic images generated with
different variations of sRD regularization are hardly noticeable based on human observa‑
tion, except for the six RD‑block variation. In addition, Figure 6 also shows a drastic image
difference with large patches of noise that encompass the entire image observed in the six
RD‑block variation compared to other variations. This suggests that training with latent
space stochasticity can negatively affect the training process if themagnitude is not capped.
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Figure 6. Image difference between a reference output and a second output generated for different
numbers of RD‑blocks in training mode. The six RD‑blocks variation shows the largest magnitude
of image difference.

In essence, the key success of the latent space stochasticity amplification that signif‑
icantly boosts the instance diversity without causing image occlusions or blurry effects
is contributed by achieving training stability in a stochastic environment. In addition, a
negative correlation between instance diversity and perceptual quality can be established
due to the consistent trade‑off behavior observed between the two qualities. A possible
explanation for this is that the expanded space stochasticity has inevitably led to a more
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unconstrained space of image mapping, which likely increases the magnitude of noise ar‑
tifacts, leading to quality degradation.

In addition, the non‑linear relationship between the number of RD‑blocks and the
quality of the synthetic images suggests that the difference in latent stochasticity induced
by the varying number of RD‑blocks is insufficient to cause significant impacts on the per‑
ceptual quality of the output images. In contrast, the high stochastic nature of the learning
dynamics in GANs contributes to a more dominant effect on the quality of the images.

3.2. Impact of Different RD‑Block Designs
The comparison of the images generatedwith varying numbers of RD‑blocks explains

the impact of the number of RD‑blocks on the qualities of the synthetic images, as discussed
in Section 3.1. This section goes presents an in‑depth investigation of the impact of various
designs of the sRD mechanism on synthetic images. Since the stochasticity setting facili‑
tated by the sRDmechanism is formulated as a function of residual dropout, themagnitude
of the stochasticity can be characterized based on the dropout rate, latent depth, and the
stacked residual dropout.

3.2.1. Residual Dropout Rate
The impact of the residual dropout rate on the instance diversity is demonstrated

by systematically modifying the residual dropout rate of the sRD‑GAN in training and
inferencemodes. To facilitate high instance diversitywith the preservation of good‑quality
images, a new variation of sRD‑GANwas trained with six RD‑blocks with a light residual
dropout setting. The only difference between the sRD‑GANwith the light residual dropout
setting and the previously discussed sRD‑GAN,whichwas also trainedwith six RD‑blocks,
is the reduction in the dropout rate of the threemiddle blocks of the bottleneckmodel from
0.5 to 0.2. Figure 7 illustrates the instance‑diverse outputs generated by the sRD‑GAN
with the light residual dropout in inference mode, where all the synthetic COVID‑19 CT
images contain prominent findings of GGO that are generated in photorealistic quality.
The observed patterns of synthetic GGO are diverse regarding the shapes and locations
at which the features are manifested without affecting the structures of the chest and the
regions of the lungs.

The improvement contributed by the sRD‑GAN trained with a light residual dropout
setting is illustrated in Figure 8, where the model can generate plausible images at the
early stage of the training. On the contrary, the counterpart model that is trained with a
fixed dropout rate of 0.5 is still in a state of instability due to the larger magnitude of latent
stochasticity. Based on these observations, the images suffer massive distortion, where the
intensity levels that describe the chest and the background structures are disfigured to a
significant degree.

The pre‑trained sRD‑GAN with the light residual dropout setting was adopted di‑
rectly in the inference mode, where nine dropout rates were considered, ranging from 0.1
(lowest rate) to 0.9 (highest rate). The dropout rates were applied only to the first three
RD‑blocks of the bottleneck model, and the dropout rate of the remaining residual blocks
was fixed at 0.5. Figure 9 shows the LPIPS and FID metrics of the synthetic images gen‑
erated with varying combinations of dropout rates. Specifically, both metrics show an
exponentially increasing trend as the dropout rate increases. Notably, the most significant
increment of LPIPS distance is identified from the dropout rate of 0.8 to 0.9, of 56%. A sim‑
ilar scenario is observed for the FID score, with the largest FID score of 229.11, signifying
the poorest image quality with a 0.9 dropout rate. The negative correlation between the
image instance diversity and the perceptual quality observed in this experiment supports
the previous claim that specifies the trade‑off between both qualities due to the expanded
space of latent stochasticity.
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Figure 7. Instance‑diverse synthetic images generated from the sRD‑GAN with light residual
dropout using the same non‑COVID‑19 inputs in inference mode (0.2 dropout rate). Fine‑grained
image diversity is consistently observed on the synthetic features of ground‑glass opacities (GGOs)
generated within the region of the lungs. Other samples are included in Dataset S2.
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3.2.2. Single RD Activation at Different Latent Depths
High dimensionality processes geometrical structures such as lines and contours in

deep learning, while low dimensionality processes more abstract structures. Since the la‑
tent stochasticity is induced directly in the latent space of the image transformation net‑
work, the correlation between perceptual image diversity and dimensionality is likely to
be associated. Therefore, the residual dropout at different dimensionalities of the image
transformation network can be further investigated with a single RD‑activation at differ‑
ent orders of the residual blocks that represent the depth of the latent space. In this ex‑
periment, only one residual dropout was activated at nine different residual blocks of the
image transformation network at a time. Thereby, nine inference configurations were set
up since there are nine residual blocks in the image transformation network. The dropout
rate was fixed at 0.5 for the RD‑blocks. Similar to the experiment discussed in Section 3.2.1,
the pre‑trained sRD‑GAN with the light residual dropout setting was adopted.

Figure 10 shows the LPIPS and FID metrics of the synthetic images generated with a
single residual dropout regularization layer at nine different residual blocks of the image
transformation network. It is shown that the addition of the residual dropout at the first
and the second residual block achieves significantly larger LPIPS distances compared to
the other variations, with the highest of 0.0273 for the first RD‑block and 0.0238 for the sec‑
ondRD‑block, followed by a drastic decrease of 82% for the third RD‑block. For perceptual
quality, the synthetic images generated at the first RD‑block obtain the highest FID score
of 73.091, which is relatively higher compared to the other experiment variations. This be‑
havior highlights the impact of introducing latent space at high dimensionality, which has
the most significant impact on affecting the structural representation of the images.

The inconsistent trend of the FID and the LPIPS metrics of the images generated after
the third order suggests that the orders of the single residual dropout at lower dimension‑
alities do not contribute any significant differences to the magnitude of stochasticity. This
scenario is likely caused by the deeper latent space that processes more abstract informa‑
tion, which is usually not translatable from the human cortex of visualization.
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Figure 10. (a) LPIPS and (b) FID metrics of the synthetic images generated at different orders (single
RD activation). Performance metrics are also summarized in Table S1.

3.2.3. Sequential Stacked RD Activation
The stack of RD‑blocks is a sequential accumulation of residual dropout regulariza‑

tion layers of the sRD mechanism. However, unlike the experiment in Section 3.1, this
experiment is performed only in inference mode. The model is adopted directly from the
pre‑trained sRD‑GAN with light residual dropout, similar to Sections 3.2.1 and 3.2.2. In
inferencemode, the number of RD‑blocks is increased one at a time, from one block to nine
blocks. Similarly, no model training is required as the images are generated in inference
mode only.

The LPIPS and FID metrics of the synthetic images generated with different numbers
of RD‑blocks in the inferencemode is demonstrated in Figure 11, where a sharp increase in
LPIPS distance is observed from a single RD‑block to two RD‑blocks, and the size of the in‑
crement is smaller for the larger number of RD‑blocks. This result is consistentwith the pre‑
vious suggestion, where the significance of the stochasticity induced at lower dimensions is
too small to make any significant contribution to perceptually visible image dissimilarities.
For the same reason, the difference between the FID score of the images generated with
more than two RD‑blocks is also insignificant. Nevertheless, the largest FID score identi‑
fied is 89.46 for nine RD‑blocks, and the lowest is 73.09 for one RD‑block. This is expected
as the larger number of RD‑blocks will increase the capacity of latent stochasticity.
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3.3. Qualitative Assessment
The synthetic COVID‑19 CT images achieved encouraging results based on the Visual

Turing Test, with 63.33% of the synthetic images identified to contain clinical features con‑
sistent with the real COVID‑19 CT images. The result of the Turing Test is included in
Figure 12.
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Figure 12. Confusion matrix of the Visual Turing Test: (a) 30 images of good image synthesis,
(b) 20 images of bad image synthesis, compared to real COVID‑19 and non‑COVID‑19 CT images.

Figure 13 illustrates samples of synthetic COVID‑19 CT images, which were claimed
to contain radiological findings of GGO when examined by a radiologist. This result sug‑
gests that sRD‑GAN can generate photorealistic quality CT images with diverse patterns
of GGO in different shapes of the lungs.
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Figure 13. (a–g) Samples of synthetic COVID‑19 CT images examined by an experienced radiologist.
The green annotations indicate findings of GGO,whereas red annotations indicate irrelevant features
of GGO.

Among the twenty synthetic COVID‑19 CT images with style artifacts, only two im‑
ages were examined as real COVID‑19 CT, which signifies the repercussion of style ar‑
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tifacts, which is detrimental to the realistic representation of the synthetic images. An
illustration of the style artifacts’ post‑image translation is included in Figure 14. These
style‑artifacts are caused by ineffective learning due to the expanded space of stochastic‑
ity. In addition, there is no synthetic COVID‑19 image classified as non‑COVID‑19 in the
test, and this demonstrates the consistency of sRD‑GAN in generating synthetic features on
the output images; that is, the synthetic images contain anomalies that may not be related
to COVID‑19.
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Figure 14. (a,b) Examples of style‑artifacts manifested on synthetic COVID‑19 CT images. These
samples are generated from other GAN baselines.

3.4. Effective Noise Reduction via Pixel Consistency Loss
3.4.1. Adaptive Pixel Consistency Loss

GAN‑based image translation models are hard to train and even more challenging
when the image domain is specific and new. The successful synthesization of deep counter‑
feit COVID‑19CT images that are hardly distinguishable from real COVID‑19CT images in
this study is attributed to a dynamic loss function that penalizes pixel‑level inconsistency.

This section discusses the effectiveness of the proposed adaptive pixel consistency
loss in enhancing the perceptual quality of the synthetic images by effective reduction in
noises. The proposed adaptive setting of the pixel consistency loss is compared to its fixed
setting counterparts, defined by a constant variable that controls the magnitude of the loss.
Specifically, the lowest value was defined at 10, followed by 20 and 30 as the largest. For
comparison purposes, the other GAN baselines, including the CycleGAN and GAN, were
modified with the proposed pixel consistency losses. Since the other GAN baselines do
not generate diverse outputs, the images were only generated from the training mode for
fair comparisons. For the same reason, the LPIPS metric computed between the synthetic
output batch and the input batch was used to evaluate the significance of synthetic GGO
patterns manifested on the output image, and was not used to be confused with the LPIPS
metric computed between the synthetic outputs to evaluate instance diversity.

Table 2 summarizes the performancemetrics of the sRD‑GAN and the GAN baselines.
Overall, it is identified that large pixel consistency weight reduces the perceptual signif‑
icance of the synthetic features represented by low LPIPS distances and achieves good
perceptual quality represented by low FID score, as noticed in sRD‑GAN and CycleGAN.
In contrast, small pixel consistency weight results in high LPIPS distance and high FID
score. This scenario describes the negative relationship between the significance of syn‑
thetic features and the quality of the images. However, this relation does not apply to
GAN because the impact of the pixel consistency loss is insignificant compared to the un‑
constrained noise generated by the GAN that is trained without any mapping constraint.
This is proven by the inconsistent performance of the images generated by the GAN using
different settings of pixel consistency loss, as observed in Table 2.
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Table 2. Performance of GAN models with different pixel consistency loss settings.

Model LPIPS FID

sRD‑GAN
Adaptive 0.1254 38.9390

Constant = 10 0.1265 62.2360
Constant = 20 0.1186 43.3440
Constant = 30 0.0825 37.7170
CycleGAN
Adaptive 0.2862 116.8220

Constant = 10 0.2776 125.7760
Constant = 20 0.2553 79.0550
Constant = 30 0.1973 63.4590

GAN
Adaptive 0.2244 110.0560

Constant = 10 0.2132 89.7050
Constant = 20 0.1879 91.8460
Constant = 30 0.2072 94.6160

The significance of the adaptive setting of the pixel consistency loss is justified by the
upper‑bounded performances achieved by the one‑to‑one CycleGAN andCycleGANwith
the adaptive setting of pixel consistency loss compared to its constant setting. Notably, the
adaptive setting of both GAN baselines achieved relatively higher LPIPS distance without
sacrificing the perceptual quality of the images. Figure 15 shows the effectiveness in noise‑
artifact reduction based on the image generatedwith adaptive pixel consistency constraint.
In particular, the white spots and the blurry lines on the background structure of the CT
image illustrated in Figure 15a appeared to be reduced drastically compared to Figure 15b.
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and (d) CycleGAN + pixel consistency.
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3.4.2. Difference between Pixel and Cycle Consistency
While both pixel consistency loss and cycle consistency loss contributed to the per‑

ceptual quality enhancement of the synthetic images using the same mapping constraint
strategy, it is observed that both losses behave differently, as observed from the output of
the GAN baselines in Figure 15. Based on the comparison of the image generated with
and without the respective mapping constraints, it is demonstrated that pixel consistency
loss is more focused on noise reduction, and it cannot preserve high‑frequency structural
information. By comparison, cycle consistency loss utilized in CycleGAN and sRD‑GAN
is excellent in preserving structural information. However, cycle consistency alone fails
to effectively reduce noise interference, which is visible in the background of the chest
structure, as shown in Figure 15c.

3.5. Additional Analysis
3.5.1. GradCAM Analysis

To further evaluate the information correlations between the real and synthetic
COVID‑19 CT data, the GradCAM responses of a pre‑trained COVID‑19 detection
model [57] were generated using real and synthetic COVID‑19 CT images, as shown in
Figure 16. Furthermore, the shape of the lungs and the region of interest of GGO in both
real and synthetic imageswere intentionallymatched to the best effort to identify the differ‑
ences in the GradCAM response between both set of images. In particular, non‑COVID‑19
CT shows very different responses compared to real and synthetic COVID‑19 CT, where
the heatmaps generated from the non‑COVID‑19 CT images mainly focus on the back‑
ground rather than the chest structures. On the contrary, it is noticed that the heatmaps
generated from both real and synthetic COVID‑19 CT images are perceivably similar in dif‑
ferent shapes of the chest structures. The similarity of the synthetic COVID‑19 CT images
with real COVID‑19 CT images can be observed by similar heat map behavior generated
on both distributions on approximately similar patterns of GGO and chest structures.
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3.5.2. Pixel Intensity Distributions and UMAP Analysis
The similarity of the synthetic COVID‑19 CT images with real COVID‑19 CT images

is validated by the intensity distribution of the images, as illustrated in Figure 17a, where
the synthetic image distribution exerts a high degree of overlap with the distribution of
the real COVID‑19 CT. In addition, a UMAP [56] scatter plot is computed using three dif‑
ferent types of distributions, as shown in Figure 17b. Each data point is computed from
the output generated from the final convolution block of the previously trained COVID‑
19 detection model [57]. From the figure, it is shown that the synthetic instances are well
blended with the real instances, where a large portion of the synthetic instances (denoted
by red marks) reside around the real COVID‑19 (denoted by green marks) and the minor‑
ity with the real non‑COVID‑19 (denoted by blue marks). This is reasonable due to the
high tolerance of texture artifacts and the high similarity of the image structure between
COVID‑19 and non‑COVID‑19 CT images, especially when features of GGO found within
the region of the lungs are perceptually negligible.
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3.5.3. Performance on HUST‑19 Dataset
The performance of sRD‑GAN (light residual dropout setting in trainingmode and 0.2

dropout rate in inference mode) was evaluated on the HUST‑19 dataset [4], where 30 test
sets were constructed from 3000 non‑COVID‑19 CT images. Therefore, each test set con‑
tained 100 randomly selected images from the entire HUST‑19 dataset. Details about the
dataset are presented in Section 2.1.

The LPIPS and the FID metrics of the 15,000 synthetic COVID‑19 CT images gener‑
ated by sRD‑GAN using the 30 test sets are illustrated in Figure 18. The testing protocol
was similar to the preliminary experiment, where one input dataset generates five output
datasets. The LPIPS and the FID metrics were computed using the average score of both
measurements on the five output datasets. Based on Figure 18, the perceptual quality and
instance diversity of the synthetic images exert a negative correlation consistent with the
presented results, where an increase in LPIPS results in a decrease in image quality (higher
FID scores). However, it is also observed that such a relationship is not followed strictly in
some test sets due to the stochastic nature of GAN algorithms during themapping process,
and imposes a higher impact on the image quality than the effect of the sRD regularization.
This also explains the differences in the metrics between the test sets generated using the
same generator model, which are caused by the distribution bias that generates different
mapping results on different inputs.
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3.6. Benchmarking with Existing GANs
The sRD‑GAN framework for non‑COVID19‑to‑COVID19CT I2I translationwas com‑

pared to the existing GAN baselines on the same translation task, including the GAN [52],
CycleGAN [45], and one‑to‑one CycleGAN [36]. For sRD‑GAN, the one trained with six
RD‑blocks at the reduced dropout rate of 0.2 (discussed in Sections 3.2.1–3.2.3) was se‑
lected to benchmark against the images generated from other GAN baselines. Details of
the neural network architectures of the generator and discriminator models can be found
in [46,52], respectively. The training and testing procedures of the GAN baselines were
similar to those of sRD‑GAN for a fair comparison, except for the underlying network ar‑
chitectures and loss functions for each GAN algorithm.

Based on Table 3, the images generated by the proposed sRD‑GAN achieve supe‑
rior results compared to other GAN baselines. Remarkably, the FID score achieved by
sRD‑GAN is approximately threefold compared to the GAN and twofold compared to Cy‑
cleGAN and one‑to‑one CycleGAN. For the significance of synthetic GGO features, it is
shown that the images generated from the sRD‑GANmanifested the least significant mag‑
nitude of synthetic features compared to other GAN baselines, which is likely due to the
impact of noise reduction facilitated by the adaptive pixel consistency constraint. This is
because the synthetic GGO features are essentially noises that contain structural meaning
that could be understood by perceptual observation. Nonetheless, the relatively smaller
LPIPS distance does not affect the overall visibility of the features of GGO in synthetic
COVID‑19 CT images. Examples of the synthetic COVID‑19 CT images generated by the
GAN models are illustrated in Figure 19.

Table 3. Performance metrics of the images generated from different GAN baselines.

Model Training Duration LPIPS (Significance of Features) FID

sRD‑GAN ~106.67 h 0.1370 58.6774
One‑to‑one
CycleGAN ~106.67 h 0.1952 94.1130

CycleGAN ~106.67 h 0.3055 115.1420
GAN ~58.67 h 0.3905 157.1800

In addition, it is found that the synthetic images generated by the GAN model suf‑
fer significant noise interference and a large magnitude of information distortion. The
background noises appeared as large spots that are greyish‑white in color. Moreover, the
synthetic GGO features are presented in blurry conditions, with hazy lines and border
structures. By comparison, images generated by the CycleGAN model improve drasti‑
cally in terms of perceptual quality, which is also indicated by the lower FID score. The
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improvement is attributed to the bidirectional mapping mechanism that enforces a cycle‑
consistency constraint between the image domains at the cost of doubling the training du‑
ration to ~106.67 h, compared to ~58.67 h with GAN. Since sRD‑GAN and one‑to‑one Cy‑
cleGAN are trained with cycle‑consistency loss, the training duration is similar to that of
the original CycleGAN, at ~106.67 h, despite only one generator model being used.
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Figure 19. (a) Real COVID‑19 CT images, (b–e) example of synthetic images generated by the pro‑
posed sRD‑GAN and other GAN baselines. The synthetic images generated from GAN and Cycle‑
GAN contain a suboptimal realistic representation of the synthetic instances with large magnitude
of noise artifacts.

However, it is also noted that CycleGAN is ineffective in noise reduction, as suggested
in Section 3.4.2, in which the considerably significant noise artifacts are frequently visible
in the background of the structure of the chest region. On the contrary, it is shown that
images generated by the one‑to‑one CycleGAN achieved better image quality than those
of CycleGAN using a single image translator model. The improvement could be due to
the stronger constraint exerted by the self‑inverse property of the generator model, which
effectively reduces the possible mapping space [36].

3.7. External Validation on Different Clinical Cases
The proposed sRD‑GAN framework was adapted to two different clinical cases to

validate the reproducibility of the proposed method in facilitating instance diversity and
perceptual realism. For this purpose, the sRD‑GAN framework was extended to: (1) CT
images of community‑acquired pneumonia (CAP) and (2) X‑ray images of COVID‑19. The
model architecture, hyperparameters, and training options were similar to the setting of
sRD‑GAN for fair comparison purposes. The number of training images and the parame‑
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ters of the sRD‑GAN were not modified from the original setting of the experiment when
applied in the two external clinical cases.

Based on observation, the synthetic images generated by the sRD‑GAN in both clin‑
ical cases achieved a comparable result to the above‑discussed COVID‑19 CT image syn‑
thesization task, with good perceptual quality and perceptually visible instance diversity.
This suggests that the proposed sRD‑GAN framework can be easily extended to similar
medical imaging applications, including different imaging modalities and diseases. How‑
ever, it was observed that the perceivability of the instance diversity and the feature di‑
versity for both clinical cases were relatively less significant compared to COVID‑19 CT
images, which is likely due to differences in information diversity and distribution shifts.
Figures 20 and 21 show examples of synthetic CAP CT and COVID‑19 X‑ray images, re‑
spectively. The red arrows in Figure 21 indicate the regions in which the instance diversity
can be observed. Other samples are available in Dataset S4 and Dataset S5, respectively.
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4. Discussion
4.1. Key Findings

ACOVID‑19CT image I2I translationGAN frameworknamed sRD‑GAN is presented.
The empirical investigations of various designs of the sRD regularization, the adaptive
pixel consistency loss, and the performance benchmarking between existing GAN base‑
lines can be summarized as follow:
1. Instance diversity. Themain contribution of the novel sRD‑GAN is the ability to facil‑

itate perceptually visible instance diversity using a simple regularization‑based strat‑
egy that is highly generalizable across GAN‑based algorithms and without relying
on auxiliary conditions. In this study, the experiment result suggests that sRD regu‑
larization can facilitate sufficient latent space stochasticity to induce a significant per‑
ceptual difference between the instance‑diverse outputs. The in‑depth investigation
of the sRDmechanism from different perspectives reveals the positive correlation be‑
tween the number of RD‑blocks, dropout rate, and latent depths with the magnitude
of instance diversity. Specifically, larger numbers of RD‑blocks and larger dropout
rates can enlarge the space of stochasticity and ultimately lead to increased instance
diversity at the cost of perceptual quality degradation. In addition, the stochastic‑
ity induced at higher dimensionality can cause enormous structural changes, which
lead to larger amplification of latent stochasticity compared to lower‑dimensional la‑
tent spaces.
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2. Perceptual realism and quality. While the perceptual quality can be evaluated using
the standard FID metric, the actual reality of the synthetic COVID‑19 remains chal‑
lenging due to the domain knowledge requirement. With the help of an experienced
radiologist, the Visual Turing Test reveals a promising result achieved by the syn‑
thetic images for generating radiography findings of GGO, which is consistent with
the real COVID‑19 CT images. Furthermore, exhaustive experiments demonstrate
the consistent adversary correlation between image diversity and perceptual quality
due to the underlying property of the stacked residual dropout, which induces la‑
tent space stochasticity and simultaneously encourages a more unconstrained space
of image mapping. Thereby, a larger magnitude of stochasticity can generate addi‑
tional noise artifacts that could be detrimental to the overall perceptual quality and
realism of the images. The impact of the adversarial relationship between perceptual
quality and image diversity is addressed by a reduced dropout rate at higher dimen‑
sional latent spaces. As a result, drastic improvement in the perceptual quality was
noticed without affecting the significance of synthetic features generated on the out‑
put images. Furthermore, the sRD‑GAN also demonstrated superior performance in
terms of perceptual quality compared to other GAN baselines, where images gener‑
ated from theGANare distorted by a significant amount of noise artifacts. In contrast,
the images generated from CycleGAN and one‑to‑one CycleGANmodels failed to ef‑
fectively eliminate the noise artifacts.

3. Effective noise reduction. The comparison between the images generated with and
without pixel consistency and cycle consistency reveals the distinctive differences be‑
tween the consistency losses in the image translation task. In particular, the proposed
adaptive pixel consistency loss demonstrated superior performance in reducing the
noise artifacts of the synthetic images. The effectiveness of the noise reduction is due
to the strong connection enforced by the pixel consistency loss, which encourages
the output image to be similar to the input image. Moreover, the adaptive setting
of the pixel consistency loss addresses the problem of the diminished magnitude of
the translated GGO features caused by the pixel consistency constraint. A possible
explanation is that the conditional weight updates of the loss are based on the gen‑
erator’s performance. The superior performance of the adaptive setting of the pixel
consistency and its high effectiveness in reducing noise artifacts is also demonstrated
on other GAN baselines.

4.2. Failure in Image Synthesis and Limitations
Based on the observation of the synthetic COVID‑19 CT images generated by differ‑

ent GANs in the study, it is found that some CT images consistently failed to generate
synthetic features of GGO compared to the majority portion of the chest CT images in the
dataset. While it is hard to explain this ambiguous response of the GANs towards a sub‑
set of input distributions, a conditional mode collapse caused by the input distribution gap
would explain the outlined scenario. As such, training withmore samples with diversified
visual descriptors of the chest CT can reduce the impact of the conditional mode collapse,
which reduces the probability of synthetization failure. Nonetheless, the number of failure
translations identified in the test set based on the observation was small, and such failure
only happened on a small group of images with unique shapes and patterns.

In addition, it is also impossible to generate any targeted output instance in the prob‑
lem setting of unpaired I2I translation, including the exact size, location, pattern, density,
and color components of the feature of interest. In other words, the sRD‑GAN depends
neither on predefined conditions nor auxiliary conditions in training and inference modes,
which essentially preserve the stochastic properties of conventional unpaired image trans‑
lation approaches. For this reason, there is no guarantee that only patterns of GGO are
generated in the synthetic images; other irrelevant features, such as the noise artifacts, can
possibly be generated along with the GGO features. However, this issue can be controver‑
sial since the other features are regarded as noises, and could be leveraged to improve the
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robustness of the diagnostic models when the synthetic images are used to supplement the
training activities.

While the image translationproblemof non‑COVID‑19‑to‑COVID‑19 assumes a shared
content latent space that overlaps the large portion of the invariant features of the images
belonging to both image domains describing the geometrical structures of the chest CT im‑
ages, the instance diversity facilitated by the sRDmechanism is only limited to fine‑grained
feature transfer, which only involves synthesization of small and detailed features. There‑
fore, adapting the proposed method in other applications that require a large magnitude
of perceptual differences needs further investigation.

Finally, the metadata of the original CT images were not available in this study. They
may be available upon request from the dataset sources.

5. Conclusions
The COVID‑19 pandemic is a pertinent example in emphasizing the inevitable depen‑

dencies of modern ML techniques on the rapid acquisition of quality data, such that the
data quantity is sufficiently large to train a MLmodel to make meaningful decisions when
applied to real‑world problems. Synthetic data is one of the most practical applications of
the field of ML, especially when the artificial instances generated on the synthetic images
are indistinguishable from the real images, as demonstrated by the COVID‑19 CT modal‑
ity in this paper. As such, strategic utilization of synthetic data within the ML pipeline
in combating infectious diseases such as COVID‑19 can reduce the risk of virus exposure
since the actual imaging procedure is no longer necessary for acquiring data for a wide
range of AI‑assisted clinical applications. As a result of the new regularization strategy,
which does not require any non‑trivial modification to the underlying neural network ar‑
chitecture, studies of the effectiveness of the proposed method on other diseases, and its
contribution to the more recent topics of AI, such as zero‑shot or few‑shot learning, may
be interesting future research works.
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Appendix A
Similar to [36], only a single generator model is used in the GAN framework. The

generator model consists of three major components: two down‑sampling blocks, nine
residual connection blocks, and two up‑sampling blocks. The input dimension of the gen‑
erator model is fixed at 256 × 256 × 3 and is the same for output images.

The naming convention in Tables A1 and A2 is referenced directly from Johnson
et al.’s GitHub repository [52]. c7s1‑k refers to a 7 × 7 convolution with k filters and
stride of 1—normalization—activation. dk refers to a 3 × 3 convolution with k filters and
stride of 2—normalization—activation. Rk denotes a residual block with two sub‑blocks
of 3 × 3 convolution with k filters and stride of 1. uk refers to a 3 × 3 transposed convo‑
lution with k filters and stride of 0.5. ReLU activation is used for all layers except in the
output block, which uses the tanh activation. Instance normalization is used in all normal‑
ization layers. Reflection padding is used before convolution layers in every block except
in down‑sampling and up‑sampling blocks.

Table A1. Architecture of generator model.

Block Components Output Shape

Input Block c7s1‑64 256, 256, 64
Down‑sampling Block 1 d128 128, 128, 128
Down‑sampling Block 2 d256 64, 64, 256

Residual Block 1 R256 64, 64, 256
Residual Block 2 R256 64, 64, 256
Residual Block 3 R256 64, 64, 256
Residual Block 4 R256 64, 64, 256
Residual Block 5 R256 64, 64, 256
Residual Block 6 R256 64, 64, 256
Residual Block 7 R256 64, 64, 256
Residual Block 8 R256 64, 64, 256
Residual Block 9 R256 64, 64, 256

Up‑sampling Block 1 u128 128, 128, 128
Up‑sampling Block 2 u64 256, 256, 64

Output Block c7s1‑3 256, 256, 3

The discriminator is referenced from the pix2pix architecture [46]. PatchGAN maps
an input distribution to the variable size of N×N arrays instead of generating outputs of
a single scalar output. Therefore, each value of the squared activation outputs represents
a likelihood probability that the input image is real. The value chosen for N in this study
was fixed as 70, which is based on the recommendation of the authors of the paper. Details
of the model can be found in the original paper of pix2pix GAN [46].

Table A2. Architecture of the discriminator model.

Block Components Output Shape

Convolution Block 1 C64 128, 128, 64
Convolution Block 2 C128 64, 64, 128
Convolution Block 3 C256 32, 32, 256
Convolution Block 4 C512 16, 16, 512

Output Block

Ck refers to a 4 × 4 convolution with k filters and stride of 2—normalization—
activation. LeakyReLU, with a slope of 0.2, is used for activation, and instance normal‑
ization is used in all convolution blocks except Convolution Block 1. The output block is a
one‑layer 4 × 4 convolution with one filter to produce a single dimension output.
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