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Abstract: Calcium carbonate nanoparticles have been widely used in biomedicine due to their bio-
compatibility and biodegradability. Recently, calcium carbonate nanoparticles are largely integrated
with imaging contrast and therapeutic agents for various imaging and therapeutic approaches. In this
review, we first described the advantages and preparation methods of calcium carbonate nanoparti-
cles, then the state-of-the-art progress of calcium carbonate nanoparticles in diagnosis, treatment and
theranostics was summarized. Finally, we discussed the challenges and recommendations for future
studies of the calcium carbonate nanoparticles.
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1. Introduction

The rapid development of nanotechnology over the past few decades has led to
the approval of multiple nanoparticle (NP)-based drug delivery systems in clinics [1,2].
Furthermore, a large number of NPs are undergoing clinical trials or preclinical studies [3].
These NPs can be roughly divided into organic NPs and inorganic NPs. Among different
inorganic materials, calcium carbonate (CaCO3) NPs have gained much attention due
to their excellent biocompatibility and biodegradability, as well as easy preparation and
pH sensitivity [4]. CaCO3 exists as an amorphous calcium carbonate (ACC) phase, two
hydrated metastable phases (calcium carbonate hexahydrate and monohydrocalcite), and
three anhydrous crystalline polymorphs (calcite, aragonite, vaterite) [5]. Among them,
ACC phase displays the highest solubility and is the precursor of anhydrous crystalline
polymorphs, which is easily crystallized in solutions to form polymorphs [6].

By the combination of CaCO3 NPs with imaging contrast agents, different imaging
modalities such as fluorescence imaging (FLI), magnetic resonance imaging (MRI) and
ultrasound (US) imaging could be realized. By the combination of CaCO3 NPs with
drugs, diverse treatments including chemical therapy, gene therapy, photothermal therapy
(PTT)/photodynamic therapy (PDT) and immunotherapy could be achieved. Furthermore,
by the combination of CaCO3 NPs with both contrast agents and drugs, multimodal
theranostics could be reached. Therefore, the development of CaCO3 NPs would contribute
to the diagnosis, treatment and theranostics of diseases.

In this review, we will first summarize the advantages and preparation methods
of CaCO3 NPs. Then, CaCO3 NP-based biomedical applications will be classified in
detail. Finally, we will discuss the challenges and recommendations for future studies of
CaCO3 NPs.
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2. The Advantages of CaCO3 NPs
2.1. Excellent Biocompatibility/Biodegradability and pH-Sensitive Property

In biological systems, calcium carbonate and calcium phosphate are important com-
ponents of bones, shells or teeth [7]. Therefore, it is believed that CaCO3-based drug
delivery systems have excellent biocompatibility due to their chemical similarity with
tissues. Furthermore, some common NPs such as Au, Ag, Se, Cr, TiO2 and ZnO have been
demonstrated to improve mutation frequency and reactive oxygen species production, thus,
leading to cell apoptosis [8,9]. In contrast, CaCO3 NPs are one of the safest biomaterials
because their by-products (only Ca2+ and CO3

2−) already exist in the blood.
In addition, CaCO3 NPs are stable under normal blood pH (7.4) while decompose

quickly in an acidic tumor microenvironment, of which facilitates tumor-targeted deliv-
ery [10].

2.2. Ease of Preparation and Surface Modification

The preparation of CaCO3 NPs only needs common salts without organic solvents in
most cases, which makes them low-cost [11]. Moreover, the surface of CaCO3 NPs can be
modified with targeted moiety, which promotes these CaCO3 NPs to arrive at the target
sites [12].

3. The Preparation Methods and Controlled Release of CaCO3 NPs

So far, the commonly used preparation methods of CaCO3 NPs include the pre-
cipitation method [13], gas diffusion [14], flame synthesis [15], decomposition of cockle
shells [16], biomineralization and so on [17,18]. Among them, solution precipitation, mi-
croemulsion and gas diffusion methods have been widely used for CaCO3 NP-based drug
delivery systems.

3.1. Solution Precipitation Method

The solution precipitation method is the most established technique for CaCO3 NP
preparation, which uses the reaction between the Ca2+ and CO3

2− aqueous solution. This
method could produce large quantities of CaCO3 NPs without a surfactant, thus, reducing
the production cost. Because of the mild preparation conditions, many bioactive species,
including small molecule drugs, genes and proteins, could load into CaCO3 NPs during
the precipitation process [4]. Notably, the synthesis parameters such as pH, temperature,
ion concentration, stirring speed, solvent species and additives are often used to control
the size, shape and phase of CaCO3 NPs [13].

3.2. Microemulsion Method

As an extension of the precipitation method, the microemulsion methods are widely
used for CaCO3 NP preparation and gene encapsulation [19,20]. Microemulsion methods
contain the reversed microemulsion (water in oil, W/O) method and double emulsion
method. The reversed microemulsion method used the W/O microemulsion droplets as the
nano-reactors [19]. First, “calcium microemulsion” and “carbonate microemulsion” were,
respectively, prepared through adding the Ca2+ or CO3

2− aqueous phase into an organic
phase. Then, “calcium microemulsion” and “carbonate microemulsion” were mixed to
form CaCO3 NPs. Finally, a centrifuge was used to separate the CaCO3 NPs. For example,
Huang et al. developed CaCO3 NP loading with the therapeutic peptide by the reversed
microemulsion method for lung cancer treatment [21].

The double emulsion method is similar to the reversed microemulsion method [20].
Firstly, W/O “calcium microemulsion” was prepared the same as the reversed microemul-
sion method. Then, a great deal of aqueous phase (consisting of CO3

2−) was mixed with
“calcium microemulsion” to form the W/O/W double emulsion. CaCO3 NPs were formed
through the Ca2+ and CO3

2− reaction in the W/O/W double emulsion.



Bioengineering 2022, 9, 691 3 of 11

In general, through the microemulsion method, the structure, size and crystallinity of
CaCO3 NPs could be regulated by optimizing the surfactants, temperature, pH and ion
concentration [22].

3.3. Gas Diffusion Method

The gas diffusion method is mainly used for preparing ACC loading with small
molecule drugs [14]. As shown in Figure 1, CaCl2 was dissolved in ethanol and transferred
into a glass bottle. Then, the bottle was left in a desiccator along with another bottle of
ammonia bicarbonate. CO2 and NH3 were generated from ammonium bicarbonate, then
dissolved in the ethanol solution to form CO3

2− and NH4
+. Under an alkaline condition

caused by NH4
+, CO3

2− was reacted with Ca2+ to form ACC. In this method, the size,
shape and polymorph of the prepared ACC could be controlled through changing the
additives, temperature and Ca2+ concentration [23].
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Figure 1. Illustration of the gas diffusion method. CO2 and NH3 were generated from ammonium
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3.4. Controlled Release of CaCO3 NPs

CaCO3 NPs could improve the pharmacokinetics of loading drugs through a con-
trolled release, thus, reducing the side effects and enhancing the treatment effect. CaCO3
NPs release the drugs by three ways, including diffusion, carrier dissolution and recrys-
tallization [24]. pH is the key parameter for the controlled release of CaCO3 NPs. Under
acidic conditions, free protons react with CO3

2− to form HCO3
−, then dissolve CaCO3 NPs

and accelerate the release of loading drugs [25].

4. The Biomedical Applications of CaCO3 NPs
4.1. CaCO3 NPs for Diagnosis

Through combining CaCO3 NPs with fluorophores or paramagnetic elements (such
as Mn2+, Gd3+), FLI and MRI could be realized [26,27]. Moreover, CaCO3 NPs themselves
can produce CO2 bubbles under acidic conditions, which can then enhance the US imaging
signal. For example, Kim et al. prepared CaCO3 NPs for US imaging [28]. After an intra-
venous injection, the prepared CaCO3 NPs showed a remarkable US contrast enhancement
in the tumor tissue. In addition, Yi and co-workers reported membrane-cloaking nanocon-
jugates comprising NaGdF4 and CaCO3 NPs [27], which displayed more than a 60-fold
contrast enhancement compared with Magnevist (commercially used contrast agent) in
tumor MRI (Figure 2).
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4.2. CaCO3 NPs for Treatment

Because of the excellent biocompatibility/biodegradability, pH-sensitive property,
ease of preparation and surface modification, CaCO3 NPs have been widely used as
carriers for a variety of treatments including chemical therapy [29], gene therapy [21],
PTT/PDT [30] and combination therapy [31]. Moreover, CaCO3 NPs themselves could be
used as Ca2+ generators which induce immunogenic cell death (ICD) and autophagy to
activate immunotherapy [12].

4.2.1. CaCO3 NPs as Carriers for Chemical Therapy

CaCO3 NPs were able to load both hydrophobic and hydrophilic molecules, making
them suitable carriers for chemotherapy [9]. For instance, Wang et al. designed monostearin-
coated CaCO3 NPs for doxorubicin (DOX) loading [29]. Monostearin coating induced a
lipase-triggered DOX release in a lipase-overexpressed tumor site, which improved the
drug penetration (Figure 3).
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4.2.2. CaCO3 NPs as Carriers for Gene Therapy

Gene therapy works by substituting or silencing the defective gene to achieve the
therapeutic effect [32]. However, it has been a challenge for nucleic acid delivery due to
their negative charge, large size and easy degradation [33]. CaCO3 NPs could bind with
nucleic acids, making them promising vehicles for gene therapy [21]. For example, He
et al. constructed CaCO3 NPs for vascular endothelial growth factor small interfering RNA
(VEGF siRNA) delivery [34]. Both in vitro and in vivo results demonstrated that CaCO3
NPs are a suitable system for siRNA delivery. In another study, Chen et al. synthesized
CaCO3 NPs and modified them with polyethyleneimine (PEI), named as PEI-CaCO3 NPs,
which could be used for p53 gene adsorption [35]. After transfected, p53-loaded PEI-CaCO3
NPs significantly decreased the proliferation of tumor cells.

4.2.3. CaCO3 NPs as Carriers for PTT/PDT

PTT and PDT have become promising strategies for cancer therapy because of the
noninvasiveness and specific selectivity [36,37]. Recently, Xue et al. fabricated a nanocom-
posite consisting of CaCO3, indocyanine green (ICG) and polydopamine (PDA), named as
Fe3O4@PDA@CaCO3/ICG (FPCI) NPs, which can achieve the combination of PDA-based
PTT and ICG-based PDT (Figure 4) [30].
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4.2.4. CaCO3 NPs as Ca2+ Generators for Immunotherapy

Immunotherapy works by activating the immune system for searching and destroy-
ing cancer cells [38]. CaCO3 NPs can be used not only as carriers for immunotherapy
drugs themselves, but also could increase Ca2+ concentration, thus, inducing immunogenic
cell death (ICD) and autophagy [39,40]. Most recently, Zheng et al. prepared polyethy-
lene glycol (PEG)-decorated CaCO3 NP loading with curcumin (namely, PEGCaCUR) [39].
PEGCaCUR NPs can serve as a Ca2+ nanomodulator to induce Ca2+ overload, thus, enhanc-
ing the ICD effect and eventually inhibiting tumor growth and migration (Figure 5a). In
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another study, An et al. designed ovalbumin (OVA)-loaded CaCO3 (OVA@CaCO3) NPs
as a Ca2+ nanogenerator to destroy the autophagy inhibition condition in dendritic cells,
promote the damage-associated molecular patterns (DAMPs) and release and upregulate
the pH of the tumor microenvironment (Figure 5b) [40].
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4.2.5. CaCO3 NP-Based Combination Therapy

Combination therapy is able to notably decrease multidrug resistance and increase
efficiency [41]. CaCO3 NPs are commonly used for the co-delivery of chemotherapeutics
and gene drugs, which realized the combination of chemotherapy and gene therapy [31].
For example, Xiang’s group designed a lipid-coated CaCO3 NPs for the co-delivery of
sorafenib and miR-375 (miR-375/Sf-LCC NPs, Figure 6a) [42]. Both in vitro and in vivo
results proved that miR-375/Sf-LCC NPs are promising carriers for combination therapy. In
another study, Kong et al. developed gold nanorods@CaCO3 NPs coated with dextran and
phospholipid for the incorporation of different molecules, including DOX, 17-(allylamino)-
17-demethoxygeldanamycin, afatinib and amylase (Figure 6b) [43]. This platform has great
potential for the combination of PTT and chemotherapy.
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4.3. CaCO3 NPs for Theranostic

The therapeutic effect could be significantly improved through the rational design
of novel theranostic platforms with both imaging and treatment functions [44]. CaCO3
NPs have shown potential in both diagnosis and therapy, which encourages researchers to
design theranostic CaCO3 NPs for achieving imaging-guided treatment [4]. Specifically,
CaCO3 NP-based theranostic platforms can be classified as three types according to the
imaging mode, including US imaging-guided therapy [45], FLI-guided therapy [46] and
MRI-guided therapy [47].

4.3.1. US Imaging-Guided Therapy

CaCO3 NPs can generate CO2 bubbles and display potential as a US contrast agent in
the acidic tumor microenvironment. As a typical paradigm, Min et al. developed DOX-
loaded CaCO3 NPs that express US imaging and chemotherapy for cancer theranostics
(Figure 7a) [45]. These NPs displayed a strong echogenic signal and long echo persistence,
as well as a simultaneous DOX release at the tumor site, which exhibited efficient antitumor
effects guided by US imaging. Recently, Feng and co-workers reported CaCO3 NP loading
with hematoporphyrin monomethyl ether (HMME, a sonosensitizer) [48]. Under US
irradiation, generated CO2 bubbles could lead to cavitation-mediated necrosis and be
used as US contrast agents. Meanwhile, HMME can produce reactive oxygen species
for sonodynamic therapy (Figure 7b). These nanoplatforms provided the US imaging-
guided cavitation/sonodynamic combined therapy, which highlighted the possibility of
cancer theranostics.

4.3.2. FLI-Guided Therapy

CaCO3 NPs could be constructed as FLI-guided therapy nanoplatforms through the
co-delivery of FLI contrast and therapeutic agents. For example, Huang et al. designed
a theranostic CaCO3 NP encapsulation with DOX and fluorescence contrast agent indo-
cyanine green (ICG) for chemotherapy and fluorescence/US dual-mode imaging [46]. The
prepared CaCO3 NPs showed a satisfactory treatment effect guided by dual-mode imaging,
which demonstrated a promising strategy for dual-mode theranostics.

4.3.3. MRI-Guided Therapy

CaCO3 NPs can also load with MRI contrast and therapeutic agents for realizing MRI-
guided therapy. For instance, Gorin’s group prepared a CaCO3 NP-capsuling paramagnetic
element (Fe3O4) and DOX, which could be used for an MRI/photoacoustic imaging-guided
precise drug release [47].
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5. The Challenges and Recommendations for Future Studies of CaCO3 NPs

Although CaCO3 NPs have been widely investigated for diverse biomedical appli-
cations including diagnosis, treatment and theranostics due to their excellent biocom-
patibility/biodegradability and pH-sensitive property, as well as their ease of prepara-
tion and modifications, there are still several challenges that need to be addressed for
clinical translation.

First, long-term potential risks of CaCO3 NPs need to be noticed [49,50]. Although
calcium is an essential element in humans, overloaded calcium could induce thrombosis,
hypercalcemia and other potential dangers [51]. Furthermore, the most recent studies only
evaluated the short-term toxicity of mice through describing organ damage and immune
responses after a CaCO3 NP injection, which was obviously insufficient for a biosafety
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evaluation. Thus, for the clinical translation of CaCO3 NPs, it is necessary to systematically
assess the long-term effects of CaCO3 NPs from rodent models to mammalian models [4].

Second, the present preparation processes of CaCO3 NPs are instable, which easily
leads to large particles [9]. Thus, it is necessary to design precise methods for size control,
components, and surface modifications, sequentially achieving a large-scale production of
CaCO3 NPs.

Third, the drug release kinetics from CaCO3 NPs is difficult to predict. Although the
pH-sensitive property of CaCO3 NPs has been widely studied, their release under a normal
pH has not been evaluated in detail.

6. Conclusions

In summary, CaCO3 NPs have great potential in biomedical applications due to their
excellent properties, such as biocompatibility/biodegradability, pH-sensitivity, ease of
preparation and surface modifications. Although much has been carried out, more efforts
are still needed to solve the above challenges. We believe that more efficient CaCO3 NPs
will be developed as safe carriers for the diagnosis, treatment and theranostics of diseases.
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