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Abstract: Point-of-care (POC) tests for the diagnosis of diseases are critical to the improvement of the
standard of living, especially for resource-limited areas or countries. In recent years, nanobiosensors
based on noble metal nanoparticles (NM NPs) have emerged as a class of effective and versatile
POC testing technology. The unique features of NM NPs ensure great performance of associated
POC nanobiosensors. In particular, NM NPs offer various signal transduction principles, such as
plasmonics, catalysis, photothermal effect, and so on. Significantly, the detectable signal from NM
NPs can be tuned and optimized by controlling the physicochemical parameters (e.g., size, shape,
and elemental composition) of NPs. In this article, we introduce the inherent merits of NM NPs
that make them attractive for POC testing, discuss recent advancement of NM NPs-based POC tests,
highlight their social impacts, and provide perspectives on challenges and opportunities in the field.
We hope the review and insights provided in this article can inspire new fundamental and applied
research in this emerging field.

Keywords: point-of-care test; disease biomarker; noble metal; nanoparticle; social impact

1. Introduction

Point-of-care (POC) testing can be informally defined as a rapid way to make a medical
diagnosis close to the point at which the test is taken [1–3]. One of the first documented
POC tests was developed in the 1960s to quantify blood glucose levels [4–6]. Through time,
POC tests became more and more common, such as the at-home pregnancy test, which was
first introduced in the 1970s and commercialized in the 1980s [7,8]. Modern-day examples
of POC tests include lateral flow assays (LFAs), electrochemical biosensors, dipsticks, and
many others [9–11]. To standardize POC tests, the World Health Organization designed the
ASSURED criterium to judge a test’s affordability, sensitivity, specificity, user-friendliness,
rapidness, equipment, and deliverability.

The importance of POC testing lies in its ability to provide the early detection of infec-
tious and noninfectious diseases alike. The ongoing coronavirus disease 2019 (COVID-19)
pandemic highlights the critical need for POC testing [12–15]. Many laboratory tests, such
as polymerase chain reaction (PCR) and mass spectroscopy, are tedious, expensive, and
require trained professionals to operate the tests. In contrast, POC tests offer a simple,
tactile, and straightforward method, to deliver medical prognosis to patients quickly and
effectively. The benefits of POC testing over laboratory tests is prevalent around the world
and provides a promising future for the early, sensitive diagnosis of a wide array of illnesses.
For instance, converting from lab tests to POC tests for large-scale screening could avert
millions of deaths every year in low- to middle-income countries [16,17]. In the United
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Kingdom, for example, cardiovascular disease testing costs were reduced from EUR 25
to EUR 18 GBP when POC tests were prioritized [16]. The COVID-19 antigen home test
(which is based on the LFA platform) can return the results in just 15–30 min.

With the rapid advancement of nanoscience and nanotechnology, nanobiosensors
have emerged as a robust and effective diagnostic technique in the past couple of
decades [18–23]. Many nanobiosensors are designed to be simple, rapid, and low-cost,
making them particularly suitable for POC testing [24,25]. In a typical setup of a POC
nanobiosensor (see Figure 1), bioreceptors (e.g., antibodies and DNAs)-functionalized
nanoparticles specifically capture disease biomarkers and generate detectable signal through
various transduction mechanisms. As such, the concentration of disease biomarkers in
a sample can be quantitatively or qualitatively analyzed by measuring the intensity of
detection signal. It should be emphasized that the nanoparticle as signal transducer
is a key component of a nanobiosensor, because it is responsible for signal generation
and thus largely determines the performance (e.g., sensitivity and reproducibility) of the
associated nanobiosensor.
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Figure 1. Schematics showing the principle of a typical POC nanobiosensor.

Among various nanoparticles used for POC nanobiosensors, the nanoparticles of
noble metals (including gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh),
iridium (Ir), and ruthenium (Ru)) have drawn increasing attention [26–28]. The intriguing
and superior physicochemical properties of noble metal nanoparticles (NM NPs) make
them suitable signal transducers for POC nanobiosensors. For instance, NM NPs provide
multiple signal transduction principles (e.g., plasmonic, catalysis, photothermal effect etc.).
Significantly, the signal from NM NPs is strong and reliable. More details about the merits
and unique features of NM NPs are discussed in Section 2 below. It should be noted that,
although the unit prices of noble metals are relatively high, the material cost of NM NPs in
the application of POC tests should not be a major concern, because of the tiny amount of
usage (typically 10−6–10−9 g NM NPs per test).

In this article, we discuss recent advancements of NM NPs-based nanobiosensors
for POC testing and highlight their social impacts. This article is not meant to cover the
full landscape of NM NPs-based POC testing, but primarily focus on recently innovative
designs, where most examples highlighted were reported in the past 5 years. We start with
the introduction of the unique features of NM NPs that make them appealing for POC
testing. Then, we discuss the recent progress in the development of NM NPs-based POC
testing. We also elaborate the social impact of NM NPs-based POC testing on addressing
critical social issues, such as healthcare disparities, and the management of health care at
the individual and community levels. At the end of this paper, we provide our perspectives
on the challenges and opportunities in this niche field.

2. The Unique Features of Noble Metal Nanoparticles (NM NPs)

Noble metal nanoparticles (NM NPs) have many unique features that make them
attractive for the development of advanced nanobiosensors for POC testing.
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(i) Intriguing Properties. NM NPs offer multiple signal transduction principles for
POC testing. They can produce various types of detection signal, including: plasmonic,
optical, photothermal, colorimetric, electrochemical, surface-enhanced Raman scattering
(SERS), and fluorescent signals [26]. Significantly, the signals from NM NPs often outper-
form those from conventional materials, which allows for highly sensitive detection. For
instance, when used as labels, Au NPs of 40 nm in diameter offer much stronger colori-
metric signal than dyes, because their absorption cross-section is five orders larger than
ordinary organic dyes [29]. The ability of Ag NPs in enhancing Raman signal is orders of
magnitude stronger than most non-noble metal NPs [30,31].

(ii) Tunable Physicochemical Parameters. The properties of NM NPs can be tailored
and optimized by controlling their physicochemical parameters (Figure 2) such as size,
shape, internal structure (e.g., solid versus hollow), crystallinity (e.g., single crystal versus
polycrystal), and elemental composition [32,33]. Taking plasmonic property as an example,
50 nm Au nanospheres display a major localized surface plasmon resonance (LSPR) peak
at ~525 nm, while the major LSPR peak of 50 nm × 10 nm Au nanorods is located at
~825 nm [34,35]. The plasmonic activity of Pd NPs in wavelengths of visible light can be
substantially enhanced when they are re-shaped from spheres to thin plates [36]. With
increased mechanistic understanding on the behaviors of nanocrystal growth and the aid
from modern characterization tools (e.g., high-performance electron microscopes), most of
these physicochemical parameters can now be precisely controlled in experiments.
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(iii) Facile Synthesis. Thanks to the contributions from multiple research groups in
the last several decades, a variety of methodologies have been established for the synthesis
of NM NPs [37–39]. Particularly, solution-phase synthesis is considered a simple and
effective approach for the production of NM NPs with good dispersibility in water [32],
which is desired for biomedical applications. Solution-phase synthesis can be performed in
an ordinary wet chemistry laboratory without the need of sophisticated instruments. In a
typical synthesis, metal precursor is reduced by a reductant in solution in the presence of a
colloidal stabilizer. By manipulating thermodynamic and kinetic conditions of a solution-
phase synthesis, the growth pathway of nanocrystals and thus the parameters of final
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products can be controlled. More details about solution-phase synthesis of NM NPs can be
found in our recently published review articles [40,41].

(iv) Convenient Surface Functionalization. The surface of NM NPs can be con-
veniently functionalized with biomolecules (e.g., proteins, peptides, and nucleic acids),
facilitating the application in POC testing. The functionalization can be readily achieved
through non-covalent or covalent methods. In non-covalent methods, biomolecules are
absorbed to NM NP surfaces through attractive electrostatic interactions at specific pH
values [42]. The covalent conjugation of biomolecules to NM NPs can be conveniently
achieved by means of metal-thiolate bonding, where a thiol-containing molecule (e.g.,
thiol-PEGs) is used as a linker to bridge NPs and biomolecules [43–45].

(v) Excellent Stabilities. NM NPs display excellent stabilities because they are made
of noble metals that are chemically and thermally inert. For instance, NM NPs have
outstanding resistance to oxidation [26,46]. NM NPs have higher melting points compared
to most other nanomaterials. For example, Pd nanocubes of 18 nm in edge length could
maintain a cubic shape after annealing at 400 ◦C for 8 min [47]. The thermal stabilities of
NM NPs can be further improved by controlling their morphologies and/or compositions.
The superior stabilities of NM NPs ensure good consistency of signal production and thus
reliable performance of associated POC nanobiosensors.

3. Recent Advancements in NM NPs-Based POC Testing

NM NPs have been used for POC testing for decades. The most known example
might be the lateral flow assay (LFA, or test strip), where Au NPs are usually utilized as
colorimetric labels owing to their outstanding optical properties [48,49]. Over-the-counter
pregnancy tests and the recent COVID-19 antigen rapid tests are representative examples
of the LFA. Over the last couple of decades, engineered NM NPs have been extensively
used for the POC tests of various platforms beyond the LFA, despite most of them being
in early stages of commercialization. This section highlights recent NM NPs-based POC
testing techniques with innovative designs.

3.1. Catalytically Active NM NPs-Based POC Tests

Among NM NPs, platinum-group metal (including Pt, Pd, Rh, Ir, and Ru) NPs are
known to be excellent catalysts for many industrially important reactions. In recent years,
these catalytic NM NPs have been employed to catalyze reactions that produce detectable
signal for POC testing.

In a recent work by Xia et al. (Figure 3A), conventional Au NPs of ~40 nm in diameter
were coated with a thin layer of Pt to form Au@Pt core@shell NPs [50]. The Au@Pt NPs
were able to effectively catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB, a
typical peroxidase substrate) by H2O2, producing a blue-colored product oxidized TMB
with a large molar extinction coefficient of 3.9 × 104 M−1 cm−1 [51,52]. The catalytic
reaction can be conveniently performed in aqueous solution at room temperature, making
it suitable for POC testing. Significantly, the color signal from Au@Pt NPs-catalyzed
reaction is much stronger than the color signal from plasmonics of Au NPs, allowing
for highly sensitive colorimetric detection. The Au@Pt NPs as labels were applied to
the LFA platform. Using human prostate-specific antigen (PSA, a biomarker of prostate
cancer) as a model disease biomarker, the Au@Pt NPs-based LFA achieved a low “naked
eye” detection limit of 20 pg/mL, which was two orders of magnitude lower than that
of conventional Au NPs-based LFA. In another work, Stevens et al. utilized porous Pt
NPs to catalyze the oxidation of CN/DAB (4-chloro-1-naphthol/3,3′-diaminobenzidine,
tetrahydrochloride) by H2O2 that generates black-colored products. The Pt NPs were
applied to the LFA of p24 (a biomarker of HIV), achieving a low detection limit at the low
femtomolar range [53]. Notably, this LFA system was successfully applied to the analyses
of clinical human plasma samples.
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Figure 3. Catalytically active NM NPs-based POC tests. (A) Au@Pt core@shell NPs-based LFA:
(i) schematics showing the detection principles of conventional Au NP- and Au@Pt NP-based LFAs;
(ii) energy-dispersive X-ray (EDX) mapping image of an individual Au@Pt NP; (iii) detection results
of the Au NP- and Au@Pt NP-based LFAs of PSA standards. The asterisks (*) indicate detection
limits by the naked eyes. Adapted with permission from ref [50]. Copyright 2017 American Chemical
Society. (B) Pt NPs with volumetric bar chart chip for detection of CTCs: (i) sample preparation and
aptamer conjugation; (ii) sample loading (green); (iii) loading of H2O2 (yellow) and ink (red); (iv) Pt
NPs-catalyzed decomposition of H2O2; (v) formation of oxygen bubble that displaces the red ink into
the vertical parallel channel. Adapted with permission from ref [54]. Copyright 2019 Wiley-VCH.

NM NPs can also be utilized to catalyze reactions that generate signals other than color.
Yang et al. reported an innovative POC testing system for circulating tumor cell (CTC)
detection that was designed based on the oxygen gas generated by Pt NPs [54]. Specifically,
in this system (Figure 3B), target CTCs were captured and labeled with aptamer-conjugated
Pt NPs. The Pt NPs can effectively catalyze the decomposition of H2O2, producing oxygen
gas (O2). A portable volumetric bar chart chip (V-Chip) was coupled to the detection system.
In the presence of target CTCs, the produced O2(g) results in movement of an ink bar in
the V-Chip. As a result, the number of CTCs in a sample could be conveniently quantified
by recording the distance moved by the ink. Such a portable POCT system was sensitive
enough for single cell detection. In another design, O2(g) generated by NM NPs (e.g., Pt
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NPs and Au@AgPt NPs) was retained in a confined space [55]. An increased amount of
O2(g) led to an increase in gas pressure that could be read by a portable pressuremeter. As
such, the concentration of target analytes could be quantitively determined by measuring
the gas pressure.

3.2. Plasmonically Active NM NPs-Based POC Tests

Plasmonic NM NPs (e.g., Au and Ag NPs) have found wide applications in POC
tests [56]. Bimetallic nanostructures, such as gold-silver nanocages, have attracted sig-
nificant research interest due to the tunable LSPR properties [57,58]. Particularly, their
refractive index sensitivity can be effectively regulated by the wall thickness and ratio of
Au to Ag. Conventional Au-Ag cages prepared by the galvanic replacement between Ag
NPs as templates and HAuCl4 are confined to a specific wall thickness [59]. Gao et al.
adopted a template regeneration strategy in galvanic replacement reaction to craft the Au-
Ag nanocages with controllable wall thicknesses and intriguing plasmonic properties (see
Figure 4Ai) [60]. Particularly, the wall of nanocages can be controlled to the desired thick-
ness using regenerated templates (i.e., Ag@Au-Ag core@shell nanostructures, Figure 4Aii)
for continuous galvanic replacement. With the well-defined multiwall morphologies and
the disappearance of the surface cavities, the LSPR of newly developed Au-Ag nanocages
shifted from 775 nm to the visible range of 551 nm. To demonstrate the potential application
in POC testing, [Ag-Au]5 nanocages (i.e., nanocages of five-layered walls) with λmax of
~550 nm (red color) were applied as labels to the LFA to detect the human prostate-specific
antigen (PSA). The results suggested that [Ag-Au]5 nanocages achieved a naked eye de-
tection limit at 0.1 ng mL−1, which was ~10 times lower than that of conventional Au
NP-based LFA (Figure 4Aiii–iv).

Plasmonic coupling assays (PCAs) are another class of rapid tests for a broad range
of analytes from proteins to virus particles. The LSPR of NM NPs shifts when NPs come
in close proximity to each other (e.g., aggregations) and gives an observable color change.
Since the initial report by Mirkin et al. in 1997 [61], NM NPs-based PCAs have been
extensively employed in various sensing applications, including the sample-to-answer
detection of aptamers, proteins, viruses, and bacteria, in diverse biologically complex media
to diagnose infectious diseases [62]. Previous work has demonstrated that the plasmonic
properties of MN NPs have strong dependence on various parameters, such as their size,
morphologies, the composition of metal, and the surrounding environments. Recently,
Ye et al. developed a simpler method for preparing Au-Ag nanoshells with enhanced
plasmonic activities [63]. Rather than repeating the galvanic replacement reaction on
the regenerated templates, they performed the reaction in the presence of Na3CA. Upon
injecting the HAuCl4, the Na3CA quickly reduced the Au3+ ions into Au+, such that the
stoichiometry between Au and Ag in the galvanic replacement reaction changed from 1:3
to 1:1 (Figure 4Bi). The resulting Au-Ag nanoshells with hollow interiors show superior
plasmonic activities due to the field enhancement from the plasmon hybridization between
the inner and outer surfaces. The Energy-dispersive X-ray (EDX) mapping image of an
individual Au-Ag nanoshell confirmed the elemental distribution, where Au and Ag
elements are diffused throughout the NPs (Figure 4Bii). Compared with the same size solid
Au NPs (50 nm) at the same particle concentration, Au-Ag nanoshells have four times higher
extinction cross-section at visible wavelength range and 20-fold improvement in detecting
DNA. When integrating with reverse transcription loop-mediated isothermal amplification
(RT-LAMP, Figure 4Biii), Au-Ag nanoshells realized the single-molecule detection of severe
acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) RNA with high specificity
(Figure 4Biv). Liu et al. further demonstrated that altering nanoparticle morphology has
a significant importance on the intact virion detection [64]. With respiratory syncytial
virus, they demonstrated that Au nanourchins have increased capability to bind to the
virus particle compared with spherical Au NP, and stronger plasmonic coupling at longer
distances (~10 nm) that are relevant for immunorecognition.
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Figure 4. NM NPs with improved plasmonic resonance enabled ultrasensitive POC testing. (A) Au-
Ag nanocages-based LFA: (i) schematic illustration showing the approach of template regeneration
and galvanic replacement for the synthesis of metallic nanocages with controlled wall thicknesses;
(ii) EDX mapping images of an individual Ag@Au-Ag core@shell nanostructure; (iii) LFAs for PSA
detection using advanced Au-Ag nanocages and conventional Au NPs, respectively. The asterisks (*)
indicate detection limits by the naked eyes; (iv) calibration curves of the detection results in (iii) by
quantifying the intensity of testing lines against PSA concentrations. Adapted with permission from
ref [60]. Copyright 2020 American Chemical Society. (B) Au-Ag nanoshells-based plasmonic LAMP:
(i) schematics showing the simplified growth of the hollow nanoshells by galvanic replacement;
(ii) EDX mapping images of an individual Au-Ag shell; (iii) concept of the plasmonic LAMP for viral
RNA detection; (iv) plasmonic LAMP achieved a limit of detection at 1.3 copy/µL for SARS-CoV-2
RNA. Adapted with permission from ref [63]. Copyright 2022 Wiley-VCH.

3.3. Photothermally Active NM NPs-Based POC Tests

The absorption of light energy by NM NPs leads to photothermal heating and can
serve as sensitive contrast. Qin et al. first reported a thermal contrast amplification (TCA)
strategy for Au NP-based LFAs with continuous wave laser heating [65]. By applying laser
on a completed LFA strip, the accumulated Au NPs on the test line induce temperature
changes that can be directly recorded by an infrared camera or sensor. Compared with
visual detection, TCA readout provides improved ability in the analytical quantification of
LFA results (Figure 5Ai) [66]. Later optimization of the immunoassays and miniaturization
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of the TCA instrumentations by Zhan et al. further enhanced the LFA sensitivity up to
256-fold (Figure 5Aii) [66]. Notably, the design of NM NPs as thermal contrast labels has
a significant impact on the LFA reaction kinetics and TCA signal, thus affecting the LFA
analytical performance. For example, the larger Au NPs hold higher binding affinity to
the target analyte due to more antibody conjugation on the Au NP and increased Au NP
capture. Combined with the high light absorption and scattering for larger Au NP, they
allow much more sensitive detection. Other factors, such as the low diffusion limit for large
NPs and highly non-specific background signals caused by membrane-trapping, should
also be considered.
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Figure 5. Photothermally active NM NPs for POC tests. (A) Thermal contrast amplification for
Au NPs-based LFA: (i) schematic showing the visual and thermal detection of printed Au NPs on
LFA membrane; (ii) comparison of the visual and thermal detection sensitivities in the diagnosis
of C-reactive protein (CRP) using printed Au NPs of different sizes (e.g., 30, 60, and 100 nm).
Adapted with permission from ref [66]. Copyright 2017 American Chemical Society. (B) Digital
plasmonic nanobubble (PNB) detection for POC diagnosis of RSV: (i) schematic illustration of PNB
generation mechanism; (ii) compartment-free digital plasmonic counting principle for virus detection;
(iii) bivariate scatter plots of amplitude and area under the curves (AUC) extracted from 3000 PNB
signals for RSV detection; inset shows the model of antibody-functionalized Au NPs for the assay;
(iv) the “fon” counting results from (iii) against RSV with different concentrations. Adapted with
permission from ref [67]. Copyright 2022 Springer Nature.

While the continuous wave (CW) laser heating leads to a bulk temperature increase,
pulsed laser can excite the NM NPs locally and vaporize water to create nanobubbles,
referred to as plasmonic nanobubbles (PNBs). Liu et al. utilized the digital PNB (dPNB)
detection for intact virus diagnosis [67]. Since the vapor and liquid water have very different
refractive indexes, dPNB can be easily detected by a continuous laser probe (Figure 5Bi). An
optofluidic setup was designed to flow the Au NP suspensions in a micro-capillary for high
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throughput detection. The focused laser beams create a microscale “virtual detection zone”
of about 16 pL and detect dPNB signals (Figure 5Bii). There is no crosstalk between laser
pulses since PNB only last hundreds of nanoseconds. This allows for the rapid counting of
dPNBs and set thresholds for “on” and “off” signals in a compartment-free manner. When
implemented in a homogeneous assay for respiratory syncytial viruses (RSV) detection,
dPNB achieved a limit of detection at ~100 PFU/mL or 1 genome-equivalent copy/µL
(Figure 5Biii, iv). This is competitive with nucleic acid amplification methods. Further
advantages include the simplicity of the assay without separation or amplification steps,
room temperature operation, and rapid dPNB counting, within minutes. Such a system
opens new possibilities to develop separation-, amplification-, and compartment-free NM
NP-based digital assay that is a rapid and ultrasensitive POC diagnostic platform.

3.4. SERS Active NM NPs-Based POC Tests

The Raman signal of molecules can be drastically enhanced by metallic nanoparticles
(particularly Ag and Au NPs) owing to the localized electromagnetic field around the
surface of NPs [68]. This phenomenon is known as surface-enhanced Raman scattering
(SERS), whereas the NPs are called SERS substrates [69]. Since the pioneer work by Van
Duyne et al. in 1977, SERS has been broadly used for biosensing applications [70,71]. The
recent development of portable or handheld Raman spectrometer makes SERS suitable for
POC testing.

In the 2000s and early 2010s, great effort in the field of SERS biosensors had been
put on engineering sensitive SERS substrates with large enhancement factors (EFs). In
particular, EF of a substrate can be substantially increased through the formation of hot
spots (i.e., small, localized regions with intensified electric fields [72]). Common methods
for the fabrication of hot spots include engineering nanostructures with sharp features (e.g.,
corners and edges) and inducing nanoparticle aggregations [73].

In recent years, the trend of fabricating hybrid SERS substrate has drawn increas-
ing attention, where NM NPs are incorporated with secondary functional materials [74].
Hybrid SERS substrates can integrate the merits of multiple materials and/or produce
synergies. For instance, by coupling NM NPs with semiconductors, SERS EF can be en-
hanced by ~10–103-fold through combined (synergistic) contributions from both materials.
In a typical hybrid noble metal-semiconductor system, photoexcited electrons arising from
the LSPR of metal flow to conduction band of semiconductor. Such a process promotes a
semiconductor-to-molecule charge transfer process, resulting in a chemical mechanism-
based SERS enhancement [74]. This synergistic enhancement had been demonstrated
in the Au-TiO2 system [75]. In another example (Figure 6A), noble metal was coupled
with carbon nanotubes [76]. Specifically, single-walled carbon nanotubes (SWCNTs) were
functionalized with Ag/Au alloyed NPs to form SWCNT/Ag/AuNPs conjugates. The
2D-band of SWCNTs at 2578 cm–1 remains unchanged and thus can be used as the internal
reference. This hybrid SERS substrate allows for more reliable and reproducible detection
because the signal is measured by ratiometric intensity between SWCNT as an internal
reference and a Raman reporter molecule (e.g., MPP with a peak at 2207 cm−1).

Another important progress of SERS active NM NPs-based POC testing is to address
emerging healthcare issues. A notable strategy is to use SERS tags (i.e., SERS active NPs
pre-functionalized with reporter molecules with known Raman peaks) as labels for the LFA.
As a distinct advantage over conventional LFAs, SERS tag-based LFA is more sensitive
because a small amount of SERS tags specifically captured in the test line of LFA strip can
provide strong Raman signal. In a recent study by Wang et al. (see Figure 6B), Raman
dye-functionalized SiO2@Ag core@shell NPs were used as SERS tags for LFA of anti-SARS-
CoV-2 (the virus that causes COVID-19) IgM and IgG [77]. The SERS signal intensities of the
IgM and IgG test lines were conveniently recorded by a portable Raman instrument. The
detection limit of this SERS tag-based LFA was 800 times lower than that of standard Au
NPs-based LFA. Significantly, the SERS tag-based LFA was successfully applied to serum
samples collected from COVID-19 patients, demonstrating the potential clinical use of the
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new technology. The platform of SERS tag-based LFA can also be applied to detection of
other infectious diseases. For instance, Choo et al. developed a SERS LFA for serodiagnosis
of scrub typhus, a mite-borne infectious disease [78].
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Figure 6. SERS active NM NPs-based POC tests. (A) SWCNT/Ag/AuNPs conjugates for SERS
imaging of hypoxia: (i) preparation of the SWCNT/Ag/AuNPs conjugate-based SERS nanoprobe;
(ii) sensing principle of hypoxia. Adapted with permission from ref [76]. Copyright 2019 American
Chemical Society. (B) SERS-based LFA for detection of anti-SARS-CoV-2 IgM and IgG: (i) preparation
of the dual-layers DTNB-modified SiO2@Ag NPs. DTNB = 5,5’-dithiobis-(2-nitrobenzoic acid);
(ii) SARS-CoV-2 S protein-modified SiO2@Ag SERS tags; (iii) detection principle of the SERS-based
LFA of anti-SARS-CoV-2 IgM and IgG. Adapted with permission from ref [77]. Copyright 2021
Elsevier B.V.

3.5. Label-Free Colorimetric NM NPs-Based POC Tests

Owing to the outstanding optical properties, NM NPs (especially Au and Ag) have
been demonstrated to be excellent colorimetric labels for POC testing where the detection
results can be visualized by naked eyes. Importantly, the color of Au and Ag NPs can be
tuned in the visible light spectrum by controlling NP morphology (e.g., size and shape)
and/or elemental composition [79,80], which allows for the design of innovative POC tests,
such as those capable of multiplexed detection.
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In recent years, label-free colorimetric NM NPs have been utilized for the development
of versatile and sensitive POC tests [81]. In this system, colorimetric NM NPs are not labeled
with bioreceptors, which reduces the non-specific binding of NPs caused by bioreceptors and
improves detection reproducibility. In a typical design, target analytes in an assay are linked
to the generation of certain substance that can trigger the morphological or compositional
changes of colorimetric NPs through creative mechanisms (e.g., growth and etching of NPs).

In a recent work by Xia et al. (see Figure 7A), Au/Ag alloyed nanocages are used
as label-free colorimetric reporters for the detection of human carcinoembryonic antigen
(CEA, a cancer biomarker) [82]. In this detection system, CEA is specifically captured by
antibodies that are labeled with alkaline phosphatase (ALP). ALP can effectively catalyze
the formation of ascorbic acid that induces the growth of Ag on the inner surfaces of Au/Ag
nanocages. As the amount of Ag inside the nanocages is increased (which is correlated
to CEA concentration), a distinct color change from light blue to blue, violet, magenta,
and orange, can be visualized. As such, the concentration of CEA in a sample can be
conveniently determined by comparing the color of assay solution with the color chart of
CEA standards of known concentrations. It should be noted that, compared to the growth of
Ag on the surface of solid NPs (e.g., Au nanospheres and nanorods), the growth of Ag inside
Au/Ag nanocages is more efficient in tuning the color of NP suspension. This advantage
ensures a high detection sensitivity of the Au/Ag nanocages-based detection platform.
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alkaline phosphatase; AA-P: l-ascorbic acid 2-phosphate; DHA: l-dehydroascorbic acid; (ii) detection
results of CEA standards. Adapted with permission from ref [82]. Copyright 2021 American Chemical
Society. (B) Au nanorods (Au NRs) as label-free colorimetric reporters for detection of HIV antigen:
(i–iii) working principle of the Au NRs-based, microfluidic-integrated multicolor immunosensor
for HIV antigen detection. Adapted with permission from ref [83]. Copyright 2020 American
Chemical Society.
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In another work by Yang et al. (see Figure 7B), the color change of NP suspension
was achieved through chemical etching [83]. Specifically, target antigen HIV-1 p24 was
specifically captured by horseradish peroxidase (HRP)-labeled antibodies. HRP-catalyzed
oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) can quantitatively mediate the etching
of Au nanorods (Au NRs). The aspect ratio (length/width) of Au NRs was reduced as
the extent of etching was increased, which led to various color changes. The assay was
performed in a microfluidic platform that enables the integration of all analytical processing
within one small chip, making the detection technique particularly suitable for POC testing.

3.6. NM NPs-Based POC Tests of Other Mechanisms

In addition to the above mentioned systems, POC tests can be designed and established
by taking advantage of other properties of NM NPs through various mechanisms. For
example, the average hydrodynamic size of NM NPs can be measured by dynamic light
scattering (DLS). The measured size is highly sensitive to the change in the refractive index
of surrounding medium of NPs and the coupling or aggregation of NPs [84]. Therefore,
NM NPs can be employed for the development of DLS-based POC biosensors. NM NPs
are also used in electrochemical biosensors that rely on amperometry or voltammetry
techniques [85]. In this approach, NM NPs can enhance electrochemical signal through
various mechanisms, such as increasing the loading of electrochemically detectable species
and catalyzing the electrolysis of a large amount of substrate [86]. NM NPs of ultra-small
sizes (<2 nm), possess fluorescent properties, allowing for the development of fluorescent
biosensors [87,88]. In some recent studies, NM NPs were used for developing biosensors
with creative mechanisms. For instance, Au nanorods are responsive to the acoustic field,
which can induce particle aggregation [89]. Such induced aggregation can be integrated
with Raman enhancement for sensitive and rapid biosensing.

4. Social Impact

NM NP-based POC testing technology possesses great potential to address disparities
in health care. Healthcare disparities, generally considered as the differences in access,
utilization, and the quality of care among population groups, affect millions of people
in the United States [90]. Underserved populations, such as racial and ethnic minorities,
low-income individuals, uninsured or underinsured people, and rural populations, have
been disproportionately impacted by healthcare disparities [91]. These populations are
found to have worse access to care and/or receive poorer care quality [91–93]. Access to
care pertains to the ability to obtain the needed and optimal care in a timely manner [94,95].
Research has identified multidimensional barriers to care, including affordability (e.g.,
high healthcare cost, no or inadequate insurance coverage), availability (e.g., lack of or
insufficient facilities, shortage of qualified personnel), and accessibility (e.g., transportation
challenges, long travel time, language barriers) [91,95–97]. Even among those who initiate
healthcare dialogue or treatment, disparities in the quality of care (e.g., receipt of person-
centered, coordinated, affordable, safe, and effective care) still exist and continuously
pose challenges for the continued treatment engagement and optimal care outcomes [91].
Healthcare disparities can not only lead to adverse health impacts for individuals experi-
encing disadvantages, but also have a negative financial impact on the entire society due to
unnecessary healthcare expenditures (e.g., costs associated with treating severe illnesses,
emergency room visits, hospitalization), as well as lost workforce productivity [93,98].
There is clearly a pressing need to reduce healthcare disparities to improve the overall
health of the nation’s population.

NM NP-based POC testing can play a critical role in expanding access to quality care.
For instance, this testing technology can rapidly and effectively detect various pathogens
and biomarkers, while also being less reliant on major equipment and highly trained tech-
nicians, as compared to PCR testing [99–101]. This is particularly beneficial for individuals
living in rural, remote, and/or economically disadvantaged areas where sophisticated test-
ing resources are inadequate or unavailable. Moreover, this type of user-friendly test can
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be used conveniently at home, which can help eliminate the transportation barriers faced
by persons with limited mobility, people with poor access to a vehicle, and those bearing a
higher burden of travel for care (e.g., older adults, individuals with disabilities, low-income
individuals, racial and ethnic minorities, and residents of rural communities) [99,102,103].
Moreover, this low-cost testing helps address the affordability issue, one prominent barrier
to care, for individuals and families, particularly those with no or insufficient insurance
coverage [91]. It is estimated that nearly 2% of U.S. people delay obtaining care due to trans-
portation barriers and approximately 30% forgo or delay getting care due to cost [103,104].
Increasing the use of this efficient, convenient, and inexpensive NM NP-based POC testing
technology can aid in the early diagnosis, monitoring, and treatment of diseases, lessening
individuals’ risk of developing severe symptoms and negative outcomes, and reducing
preventable costs within the healthcare system and the society as a whole [90,95].

Furthermore, the COVID-19 pandemic has highlighted the important role and ex-
panded the rise of this rapid, sensitive, user-friendly, and affordable testing technology.
Given the fact that COVID-19 is highly contagious and can be spread asymptomatically or
pre-symptomatically, having an increased capacity for quick, reliable, and large-scale test-
ing is pivotal in the rapid detection of COVID-19 infections and the timely implementation
of infection control measures (e.g., isolation, contact tracing) to prevent community spread
and disease outbreak [13,99,105,106]. It can also provide critical information to guide
speedy decision-making (e.g., on triage, referral) and appropriate treatment which helps
reduce the burden on healthcare systems [106]. As such, future work is recommended to
leverage the testing methods, infrastructures, and innovative technologies (e.g., smartphone
apps, telehealth) that were rapidly developed during the COVID-19 pandemic to improve
community-based public health surveillance and prepare for future infectious diseases.

5. Concluding Remarks

In this article, we have discussed recent advancements in noble metal nanoparti-
cles (NM NPs)-based POC testing. Because of their unique features, such as outstanding
properties, facile synthesis, and excellent stabilities, NM NPs are particularly suitable for
developing nanobiosensors for POC testing. Specifically, NM NPs are utilized as versatile
and sensitive transducers to generate various detectable signal through different mecha-
nisms such as catalysis, plasmonics, photothermal effect, and SERS. Notably, the properties
and thus signal from NM NPs can be optimized by carefully controlling their physico-
chemical parameters (e.g., size, shape, internal structure, and elemental composition). The
NM NPs-based POC tests are greatly beneficial to society because they provide the public
with widespread access to low-cost and effective diagnostics. Significantly, it holds great
potential in addressing healthcare disparities and improving the health opportunities and
outcomes of many. In addition, it is a valuable tool in the prevention, diagnosis, and
monitoring of significant infectious diseases, such as COVID-19.

Despite successful demonstrations and promising progresses, there are still challenges
and unmet needs in this field that deserve to be addressed in the future. For example:
(i) while NM NPs-based POC tests (e.g., LFA) could be simple and easy-to-operate, their
sensitivities oftentimes are lower than those sophisticated instrument-based diagnostic
techniques. It is challenging yet worthwhile to retain the simplicity of POC testing and
meanwhile improve its sensitivity. For instance, the analytical sensitivity of Au NPs-
based LFA of COVID antigen was found to be much lower than for reverse transcription-
polymerase chain reaction (RT-PCR) tests [107], which may lead to delayed testing; (ii) many
NM NPs-based POC tests can only provide qualitative or semi-quantitative test results
due to the lack of instrument for quantification of detection signal. The returning of a
simple “yes or no” answer may not be sufficient for physicians to make medical decisions.
In the detection of cancer biomarkers, for instance, quantitative test results are often
needed to determine whether the level of certain biomarker in a patient exceeds the cutoff
point; (iii) researchers are facing challenges in reliably producing high-quality NM NPs.
Good batch-to-batch reproducibility is critical to ensure consistent performance of NM



Bioengineering 2022, 9, 666 14 of 18

NPs-based POC tests. Currently, some synthetic systems for NP production (especially
those involving multiple reagents and complicated reaction mechanisms) have significant
batch-to-batch variabilities.

The technological revolution and rapid advancement of other related fields reveal new
opportunities for the development of advanced NM NPs-based POC tests. Recent efforts
toward biosensor miniaturization make POC testing techniques more accessible and/or
capable of quantitative analysis. For instance, the uses of handheld devices (e.g., portable
Raman spectrometer) and microfluidic platforms have been demonstrated to be effective
strategies to develop miniaturized NM NPs-based POC tests. With appropriate setups,
personal smartphones can be used for quantitative analysis of POC tests and storage of
test results. NM NPs can be coupled with other materials to achieve innovative designs
for POC testing. For example, coupling NM NPs with magnetic nanoparticles enables
facile separation of target biomarkers from a sample, which eliminates the interferences
from complex biological matrices and thus ensures a high signal-to-noise ratio [108]. The
knowledge of other disciplines can be used to maximize the capability of NM NPs-based
POC tests. For example, machine-learning-based image processing method was used
for digital signal analysis in an Ag NP-based plasmonic biosensor [109]. Compared to
conventional image processing methods, machine-learning-based image processing is more
rapid and accurate, making it suitable for rapid and high-throughput detection. Ultimately,
we hope this article can be useful resource to scientists in both academia and industry who
are committed to developing advanced POC diagnostic technologies.
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