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Abstract: Computational fluid dynamics (CFD) is widely employed to predict hemodynamic char-
acteristics in arterial models, while not friendly to clinical applications due to the complexity of
numerical simulations. Alternatively, this work proposed a framework to estimate hemodynamics
in vessels based on angiography images using machine learning (ML) algorithms. First, the iodine
contrast perfusion in blood was mimicked by a flow of dye diffusing into water in the experimentally
validated CFD modeling. The generated projective images from simulations imitated the counterpart
of light passing through the flow field as an analogy of X-ray imaging. Thus, the CFD simulation
provides both the ground truth velocity field and projective images of dye flow patterns. The rough
velocity field was estimated using the optical flow method (OFM) based on 53 projective images.
ML training with least absolute shrinkage, selection operator and convolutional neural network was
conducted with CFD velocity data as the ground truth and OFM velocity estimation as the input. The
performance of each model was evaluated based on mean absolute error and mean squared error,
where all models achieved or surpassed the criteria of 3 × 10−3 and 5 × 10−7 m/s, respectively, with
a standard deviation less than 1 × 10−6 m/s. Finally, the interpretable regression and ML models
were validated with over 613 image sets. The validation results showed that the employed ML model
significantly reduced the error rate from 53.5% to 2.5% on average for the v-velocity estimation
in comparison with CFD. The ML framework provided an alternative pathway to support clinical
diagnosis by predicting hemodynamic information with high efficiency and accuracy.

Keywords: machine learning (ML); convolutional neural networks (CNN); computational fluid
dynamics (CFD); optical flow method (OFM); dye perfusion; hemodynamics; least absolute shrinkage
and selection operator (LASSO); angiography; cardiovascular; particle image velocimetry (PIV)

1. Introduction

According to the statistical data from the World Health Organization, cardiovascular
associated diseases have become the topmost cause of death [1,2], and it has been identified
that hemodynamic factors play a significant role in the development and progression
of such diseases [3–6]. For example, the development of atherosclerosis is based on the
observation that vascular inflammation and plaques are distributed near side branches or
arterials stenosis, where blood flow is non-uniform, and at the lesser curvature of bends
where the blood flow rate is relatively low [7,8]. The effect of blood flow on the vascular
wall is through shear-stress forces, which influences the behavior of endothelial cells,
including morphological adaptations and physiological changes.

The methods for estimation of wall shear stress (WSS) can be performed by acquiring
three-dimensional (3D) reconstruction of vessel volume using either invasive modalities
such as intravascular ultrasound and invasive coronary angiography, or less-invasive tech-
niques, including computed tomography angiography and cardiac magnetic resonance
angiography with the application of numerical methods to calculate flow within the recon-
structed arterial model [9,10]. 3D reconstruction of the patient-specific vascular models with
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subsequent computational fluid dynamics (CFD) simulations can be used to predict the
nature of blood flow in the human vascular system [11–14], with specific mesh generation
and boundary conditions (BCs). The isolation and generation of BCs are among the most
significant challenges in the integration of CFD for assessing the physiologic significance of
artery disease [15]. However, the reconstruction of the vascular model using the medical
images, the accuracy of the reconstructed geometry, and further the computation resources
required for computation are not friendly to the wide application of this methodology in
clinical community.

On the other hand, in vivo quantifying hemodynamics by the diagnostic imaging
process is also widely investigated [16–20]. To determine hemodynamic characteristics,
a high spatial resolution of the blood flow velocity distribution is needed, especially
for quantifying the WSS. Premedical images based on digital subtraction angiography
(DSA) can be used to estimate the blood flow velocity distribution using intensity-based
algorithms, such as the optical flow method (OFM) [16–20]. Specifically, the movement
of the contrast pattern is calculated from the DSA images, representing the movement of
the local blood flow. However, such a method suffers low accuracy in the predictions of
flow characteristics [21]. DSA images involve X-rays that transmit through the patient and
produce a contrast projection onto the scintillator plane. The intensity variation is based
on how much X-ray energy passes through the nonuniform medium, which results from
varying attenuation through muscle, bone, soft tissue, blood, and contrast agent [22,23].
DSA images are generally acquired by transmitting light through a 3D domain, and then
projected onto a 2D image. Without isolating a 2D plane within the flow, the images are
essentially integrated representations of the entire flow field, which can introduce errors
into the calculations, especially when the measurements are inferred as measurements at the
center plane of the domain [10]. Kawaji et al. [24] calculated blood velocity by determining
displacement over consecutive images with a known elapsed time interval between frames.
The uncertainty in the velocity profiles begin to increase when the endpoint becomes
unclear, but for simple flows the relative error can be as low as 2.5% [24]. In our earlier
work, Yang and Johnson [21] investigated dye visualization specific to a pulsatile flow
through a horizontal tube, where OFM underestimated the center plane velocity by 16~24%
in the central region and by about 29~43% in the outer region compared to PIV. To increase
the accuracy of calculating the velocity distribution, this research proposes the use of
machine learning to correct velocity measurements from OFM. Alternatively, inspired by
recent developments in data-driven scientific computing, big data, convolutional neural
networks (CNN) and deep hidden physics algorithms [25,26], machine learning (ML) has
been used in biomedical and bioengineering applications [27–31]. For instance, Raissi et al.
have developed a physics-informed deep learning method which used passive scalar
contours as input and encoded the Navier–Stokes equations into their algorithm [25]. There
is growing potential of artificial intelligence (AI) in detecting hemodynamic information to
aid clinical diagnosis by integrating preclinical images and CFD modeling [32,33].

To extend the use of ML, this study used optical flow velocity based on projective
images to provide input for the ML model and therefore requires the physics-based flow
equations to be solved once (at beginning) as opposed to every time an epoch is conducted.
The ML model was used to correct high resolution flow details obtained from OFM to
provide more accurate measurements in hemodynamics estimation. More specifically, this
work employed CFD modeling to simulate dye perfusion through water, and the results
were used to generate a projection-based image similar to DSA. The projective images
and velocity distributions served as the input and the ground truth data, respectively, for
ML training. The pixel intensity was determined through a discretized form of the light
attenuation equation named Beer-Lambert Law [34]. Although blood is non-Newtonian
(which was assumed as Newtonian and replaced by water as a pilot study), the purpose
of this work was to test the efficiency and accuracy of ML algorithms velocity predictions
based on projective images. The detailed framework of this study was shown in Figure 1,
specifically in three steps, e.g., (1) simulate dye perfusion in water and generate projective
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images to provide the flow velocity estimation using OFM and the ground truth velocity
from CFD, in which CFD modeling was validated by particle image velocimetry(PIV)
experiments; (2) train ML models using the OFM and CFD data; and (3) validate the ML
models using both CFD data and parallel in vitro experiments. The presented work has the
potential to be employed into clinical applications to automate the flow velocity estimation
with high efficiency and accuracy.
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2. Materials and Methods
2.1. CFD and OFM Data

Choosing CFD to simulate the dye perfusion in water over experimental dye projection
images can facilitate accurate velocity fields for the training of ML algorithms and quantify
the error analysis between OFM and ML predictions. In addition, the simulation images
can avoid random errors induced in the experiments. In this study, Cradle SC/Tetra 2021
(Software Cradle Co., Ltd., Osaka, Japan) was used to simulate the dye injection into
a laminar water flow to obtain the accurate 3D velocity field and obviate experimental
uncertainties related to pixel intensities. The accurate velocity field from CFD served as the
ground truth for the supervised training of the ML model. The simulation was conducted
within a 1 × 1-inch square cross-sectional tube with a length of 1-inch with the dye inlet
located in the center (see Figure 2). To minimize computational costs, a fourth of the
domain was employed into the simulation. In this work, the blood was simplified as water
in simulations and experiments. The governing equations can be written in tensor form as:
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where ui represents the water/dye velocity, ρ is the density of water/dye which was identi-
cal to the measurements in the experiments, p is pressure, µ is viscosity of water/dye which
was identical to the properties in the experiments, gi is gravity, φ is the dye concentration
which is identified as a scalar value 1.0 in the dye injection inlet, D is the dye diffusion
coefficient. The coefficient of diffusion was set at 10−9 m2/s as the typical value for dye
between 10−10 and 10−9 m2/s [35]. A set of unstructured tetrahedral meshes was generated
using the assembled meshing package in Cradle SC/Tetra 2021. A mesh independent study
for the quarter model was conducted, and the final mesh with elements of 16,850,005 was
adopted for the current study. The mesh size near the wall and in the dye injection region
was refined with y+ < 1, where y+ is the dimensionless wall distance.
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Figure 2. Schematic geometry for CFD simulations.

Four different transient simulations were conducted where the dye concentration
and patterns varied in each simulation. Specifically, the first simulation injected dye at a
constant rate of 0.005 m/s with a dye radius of 0.37 mm initially and gradually increased
the radius throughout time until the radius reached 2.0 mm, which is the same situation as
the parallel experiment. Second simulation had intermittent dye injections where dye was
injected for 0.1 secs then stopped for 0.25 s, and this process would repeat continuously
with a period of 0.35 s. The diameter of the dye was held constant at 2.0 mm for the second
simulation. For the third simulation, the dye was injected intermittently in the same pattern
as the second simulation, except the dye concentration was no longer uniform at the inlet.
The distribution of the dye concentration was represented with a cosine function where the
dye concentration at the center was 1.0, and near a radius of 2.0 mm the concentration was
0.54. The fourth simulation involved a uniform dye concentration in the radial direction
but varied in a sinusoidal pattern with time. The dye distribution equations are expressed
for the third and fourth simulation, respectively, as
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φ(x) = φo cos(ωx) (4)

φ(t) = cos
(

4π

3
t
)

(5)

In Equation (4), φ represents the dye concentration, φo represents a constant concentra-
tion value of φo= 1.00, ω is the angular frequency of ω = 500/m. Equation (5) provides the
transient cosine wave for the dye concentration, where 4π

3 provides a period of 1.5 s and t
is the time in seconds. These four variations were carried out to represent the impact of
different perfusion patterns of the dye on the estimated velocity accuracy. Results from the
simulation were exported either every 0.2 s or 0.3 s (in reference to the simulation time),
and additional results were exported 0.02 s after the 0.2 or 0.3 s interval. This short time
step was necessary for OFM to calculate the velocity between two successive images, as the
nature of the OFM algorithm requires the movement of the pattern to be less than 1 pixel
to maintain a decent accuracy. Overall, the four cases provided 106 exported result files
which would lead to 106 image files or 53 data files after being analyzed with OFM.

Light passing through the domain was simulated to generate projective images. This
was accomplished with the Beer-Lambert law [34] which describes the amount of light
attenuated through a medium. By solving for the light intensity, I, out of the medium, the
overall projection image can be created by dividing the domain into multiple cells and
performing successive calculations of the intensity. Variable z represents the direction par-
allel to the light beam and perpendicular to the flow direction, µ represents the attenuation
coefficient, and Io is the initial intensity prior to passing through the element,

dI
dz

= −µI (6)

I = Io exp(−µ4 z) (7)

For example, if a single row of elements aligned in the z-direction encounters an initial
light source, the first element will decrease the intensity based on the element’s attenuation
coefficient (which is directly related to the dye concentration). The output intensity through
the first element will then be used as the initial intensity for the second element. This
process is continued until the light ray passes through all the elements. Therefore, the
intensity can be written in a discretized form as shown below.

Ij = Ij−1 exp
(
−µj4 zj

)
(8)

Example of a projective image is shown below in Figure 3, where the darker regions
represent locations where dye has attenuated light. The image resolution is 161 × 306 pixels.
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Once projective images were generated, OFM was applied to each image pair to
calculate velocity vectors at each pixel. The governing equation for OFM is an expression
of a brightness constraint, which assumes the intensities are constant from one image to
the next.

Qt + V·∇Q + Q∇·V = D∇2Q (9)

Here, the intensity of pixel is represented by Q (a matrix for the entire image), Qt is
the temporal brightness gradient, the velocity vector is given by V , and D is the diffusion
coefficient. Additional details can be found in our previous paper.

Along with the u- and v-velocity components, the intensity gradients in the x- and y-
directions were also calculated. Since OFM calculates movements based on pixel intensities,
the gradients are of importance as it provides an insight into which vectors were calculated
based on low or high intensity gradients. The velocity calculated from OFM is regarded
as the test data while the CFD velocities are regarded as the ground truth data for the ML
model. The CFD velocities were extracted from the center plane of the simulation as the
goal is to improve the OFM results to better represent the velocities in the middle plane of
the domain. Once these files were created, they were then used as the training data for the
ML algorithm. 423,093 simulated data points representing the flow velocity were generated
for the current modeling.

2.2. Experimental Data for Validation

The data discussed above is generated based on CFD results, however, the future
application of this work is to apply this method directly to in vivo images such as DSA.
Direct application to DSA images is not feasible currently because no method can accurately
describe the flow field for validations. Therefore, an in vitro experiment analogous to DSA
was created to obtain real images for testing the current method against accurate PIV
measurements. Additionally, this provides insight into whether the ML algorithm can
correct velocity values that incur error from the in vitro experiment such as non-uniform
light intensity throughout the image domain. The experiment consists of a square vertical
tube test section (with the same dimension as the counterpart used in the CFD simulation)
with a water reservoir and contraction region directly above, as presented in Figure 4. This
contraction region leads water from the reservoir to the test section through a gradual
cross-sectional change to mitigate the inducing of turbulence. Downstream of the test
section is a flow control valve that controls the speed of the flow when coupled with a
constant water height in the water reservoir. A pump feeds water into the reservoir where
a partition wall, which is slightly shorter than the reservoir walls, allows water to spill
over into the adjacent reservoir to maintain a constant water level. Dye is injected in the
center of the square tube through the guidance of a centering device to maintain consistent
positioning during the injection process. Finally, a convex lens is positioned one focal length
away from the LED bulb, where the lens’ position is between the bulb and the test section,
so light rays can transmit parallel through the test section thus mitigating non-uniform
light intensity on the image.

In the experiments, the water is analogous to blood in DSA images and the dye
provides contrast similar to the contrast agent injected in blood vessels. Furthermore, the
LED light is comparable to the X-ray source since both transmit through the domain and
project contrast agent perfusion onto a 2D plane. A LaVision PIV system consisted of
a Nd: Yag laser with a wavelength of 532 nm with a maximum pulse energy of 300 mJ,
and a programmable timing unit (PTU), and a 14-bit CCD camera with a resolution of
1392 × 1040 pixel (66 × 49 mm) was employed to conduct PIV measurements. The laser
was shaped into a laser sheet of 1 mm in the measurement region to illuminate the flow field.
The PTU synchronized the laser and the camera to obtain the particle images with a time
delay of 33 ms between images. The flow was seeded with fluorescent red polyethylene
microspheres with a diameter ranging from 10 to 45 µm. The fluorescent emission light
from the particle has a wavelength of 610 nm. A long pass filter with a cut-off wavelength
of 600 nm was mounted on the camera length to filter out the laser light and only leave
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the emission light passing through. This fluorescent imaging can effectively remove
the light reflection noise from the wall. DaVis 8.0 was used to process the images to
obtain 1000 instantaneous velocity distributions with a frame rate of 30 Hz. A multi-pass
cross correlation analysis was conducted in DaVis 8.0 with a 32 × 32 pixels interrogation
region with 50% overlap, then a second pass with an 8 × 8 pixels window size with
50% overlap. The final velocity vector resolution is 5.2 vectors/mm. The uncertainty in the
velocity measurements is estimated to be about 1% of the magnitude. A total of 5071 flow
velocity points for OFM velocity and PIV velocity were generated for evaluation of current
ML algorithms.
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The CFD simulation of the velocity distribution is compared with the PIV measure-
ments in the middle cut plane, as presented in Figure 5. Three lines were extracted from
PIV and CFD: 5 mm, 15 mm, and 35 mm. The overall difference in the velocity distribution
between the CFD simulation and the PIV measurement is less than 5% of the velocity
magnitude, which essentially validated the accuracy of the current simulation results (see
Table 1).
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Table 1. V-velocity validation between CFD and PIV at 5 mm, 15 mm, and 35 mm downstream of
the inlet.

Locations 5 mm 15 mm 35 mm

Relative Error (%) 3.3 4.8 3.5

2.3. Machine Learning Model

The following sections detail predicting the accurate velocity field with supervised
neural network training. Three deep machine learning models with varying numbers of
parameters and depths were tested. Regression is a predictive modeling task that involves
predicting a numerical output given some input. It is different from classification tasks
that involve predicting a class label. Typically, a regression task involves predicting a
single numeric value. Although, some tasks require predicting more than one numeric
value. These tasks are referred to as multiple-output regression or multi-output regression
for short. In multi-output regression, two or more outputs are required for each input
sample, and the outputs are required simultaneously. The assumption is that the outputs
are a function of the inputs, and u- and v-components of the velocity are correlated. Since
OFM calculates a velocity vector for every point in the image, even when the dye is not
present (pseudo vectors were calculated in regions without dye), specific regions with the
presence of dye were selected for the training and test data. The images generated were
8-bit grayscale images where pixel intensity values are assigned between 0 and 255. The
presence of dye in a pixel location decreases the intensity value for that location. Based on
observation, pixel values of 80 or less (after considering the image noise) represent regions
where dye is dominant and thus represent data points used in the training data or test data
sets. This criterion was applied to all the OFM output results, and each valid data point
compiles into a single file. Multiple data points correspond with the same XY-coordinates
as a result of multiple time instances containing dye at that point. Therefore, all of the
duplicates except one are used for training, and the other duplicate was used in the test
set. For instance, if the coordinate point (x, y) = (0.001, 0.0253) is near the dye inlet, then
there were multiple OFM data sets that contain dye at that coordinate point. Assuming
10 duplicates, one data point was selected randomly for the test set while the remaining
9 points were compiled into the training data. This random selection provided unbiased
data for the test set to determine if the ML algorithm was able to predict values accurately.

2.3.1. LASSO Regression Model

A multivariate (multi-input, multi-output) regression model with the L1 penalty was
designed, commonly known as LASSO [36]. We selected this model since it achieves
sparsity in the estimated model by setting the regression coefficients for features to zero for
those features that do not affect the output or target values. We treat this ML model as our
baseline model.

2.3.2. Multi-Layer Perceptron Model

A multilayer perceptron (MLP) model is defined for the multi-output regression task
defined in the previous section. Each sample has 4 inputs and 2 outputs; therefore, the
network requires an input layer that expects 4 inputs in the first hidden layer and 2 nodes
in the output layer. The ReLU activation function was used in the hidden layer which has
32 nodes, chosen after some trial and error. The model was fitted using two loss functions
and the Adam version of stochastic gradient descent.

2.3.3. CNNs for Multi-Output Regression

CNNs have proven great capability of learning important features from images at
the pixel level in order to make useful predictions for both classification and regression
problems [37]. Another advantage of this approach, compared to conventional fully con-
nected layer networks, lies in the fact that convolutions provide weight-sharing and sparse
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connectivity. These properties enable more efficient memory usage to learn the necessary
information needed to create a surrogate model. The surrogate model then reconstructs an
approximation of the entire velocity field from a given set of boundary conditions. Standard
CNN has several convolutional layers followed by fully connected layers (layers where
each hidden node is connected to every hidden node in the preceding and subsequent
layer), ending with a classification softmax layer (that generates the final classification
output). Adapting a classification CNN architecture to regression consists of removing
the softmax layer and replacing it with a fully connected regression layer with linear or
sigmoid activation. Linear activation means that the transfer function is a straight line.
Thus, the activation is proportional to the input and not confined to a specific range. Three
convolutional layers were added with ReLU activation and a max pool layer after the first
convolutional layer.

2.3.4. Long Short-Term Memory (LSTM) Model

LSTM is a type of Recurrent Neural Network (RNN), i.e., a multi-layer NN. The
LSTM architecture was originally introduced by Hochreiter and Schmidhuber [38] with the
purpose of overcoming the vanishing or exploding gradients problem. In a network of n
hidden layers, n derivatives are multiplied together. If the derivatives are large then the
gradient will increase exponentially as we propagate down the model until they eventually
explode, known as the problem of exploding gradient. Alternatively, if the derivatives are
small then the gradient will decrease exponentially as we propagate through the model
until it eventually vanishes, known as the vanishing gradient problem. LSTM allows flow
gates, i.e., the input gate, the forget gate, the control gate, and the output gate, as shown in
Figure 6. The input gate, the forget gate, the control gate, and the output gate are denoted
by it, ft, ct, and ot, respectively. The details of these four gates are enlightened below.
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The input gate, forget gate and control gate are expressed as:

it = σ(wi × [ht−1, xt] + bi) (10)

ft = σ
(

w f × [ht−1, xt] + b f

)
(11)

c̃t = tanh(wc × [ht−1, xt] + bc) (12)

ct = ft × ct−1 + it × c̃t (13)

The input gate decides which information can be transferred from the earlier cell to
the current cell as shown in Equation (10). The forget gate is defined by Equation (11), and
it is used to store the information from the input of previous memory or otherwise. The
control gate controls the update of the cell, and it is defined in Equation (13). To update the
hidden layer (ht−1) and update the output, finally the output gate is used which is given by
the following equations:

Ot = σ(wc × [ht−1, xt] + bo) (14)
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ht = Ot × tanh(ct) (15)

In the above equations, xt is the input, w represents the corresponding weight matrix of
input, bo is the corresponding bias of input, Ct−1 is the previous block memory, Ct represents
the current block memory, c̃t as shown in Equation (12) is the vector of new candidate
values updated with the tanh layer, ht−1 represents the previous block output, ht represents
the current block output. Furthermore, tanh is the hyperbolic tangent function that is used
to scale the values in the range of −1 to 1, and σ is the sigmoid activation function, which
gives the output between 0 and 1. We designed a sequential model containing LSTM layers
with ReLU activations, a dense output layer, and an Adam optimizer with two regression
loss functions. We set the input dimension in the first layer and the output dimension in
the last layer of the model followed by a regression layer.

2.4. Loss Functions

Conventional regression loss functions are metrics-inspired losses, namely the Mean
Absolute Error (MAE), and Mean Squared Error (MSE), defined as

MAE =
1
n ∑ n

i=1|pi − gi| (16)

MSE =
1
n ∑ n

i=1(pi − gi)
2 (17)

where predicted (resp. ground truth) values are denoted pi (resp. gi). We report both the
loss functions, as advocated in previous publications [39,40]. The metrics to evaluate the
results are Mean Absolute Error (MAE). We repeated 10-fold cross-validation with 10-folds
and three repeats training the model with Adam optimizer. Models are implemented with
Keras and PyTorch on NVIDIA Tesla T4 GPU.

3. Results and Discussion

In this section, the models discussed were evaluated on providing efficient approxi-
mations of flow velocity. Numerical experiments considered four regression models and
two loss functions, in which the Mean Absolute Error (MAE) and the Mean Squared Error
(MSE) were compared. Table 2 shows an average MAE value across 10 runs of experiments.
Hyper-parameter optimization using grid-search with a ten-cross-validation technique was
applied to optimize the number of hidden layers, hidden neurons, and the batch size. The
number of hidden layers was optimized ranging from 1 to 4 and the number of hidden
neurons was optimized ranging from 4 to 20 with an increment of 2. The batch sizes used in
parameter tuning were 32, 64, and 128. After applying hyper-parameter optimization, the
best hyper-parameters were obtained, there was one hidden layer with 10 hidden neurons,
and the batch size was 32. A dropout rate of 0.02 was applied to avoid overfitting after the
first hidden layer. Each of the MLP, CNN, and LSTM architectures were ran for 100, 500,
1000, and 2000 epochs. The best results were obtained with 100 epochs for MLP with an
execution time of 4 min per 10 epochs and 500 epochs for both CNN and LSTM, as with a
higher number of epochs, the average performance decreased.

Multiple regression algorithms were adopted to provide models capable of predicting
the velocity field. The deep learning models (MLP, CNN, and LSTM) outperformed the
baseline LASSO model. The hypothesis that the relationship between the 2D projection
images and the initial and final velocity components can be represented as a multivariate
regression problem with improved accuracy has been demonstrated in Table 2. Significant
differences across the three deep learning models were not observed. All of the reported
models were statistically significant with a p-value of <0.01 or 0.05. Furthermore, the
standard deviation of all the models was less than 1e−6 m/s. However, the MLP model
was computationally less expensive and hence, a quantitative analysis of the results in
comparison with the baseline OFM and with the standard CFD approach is presented
in Figures 7 and 8 for comparisons of both u- and v-components velocity contours. The
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velocity distribution (both u-component and v-component) can be used to analyze flow
characteristics such as the wall shear stress, which is a key parameter in the study of the
pathophysiology of vascular diseases.

Table 2. Performance of regression models in terms of mean absolute error (mae) for two different
loss functions: MSE, MAE.

LASSO MLP CNN LSTM

Validation with simulated test data
MAE (m/s) 2 × 10−4 † 2 × 10−4 * 4 × 10−4 * 4 × 10−4 *
MSE (m/s) 3 × 10−8 † 5 × 10−8 * 7 × 10−8 † 8 × 10−8 *

Validation with in vitro experimental data
MAE (m/s) 3 × 10−3 † 5 × 10−4 * 6 × 10−4 † 6 × 10−4 *
MSE (m/s) 5 × 10−7 † 4 × 10−8 * 5 × 10−8 * 8 × 10−8 †

* indicates p-value < 0.01, † indicates p-value < 0.05.
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As shown in Figure 7, the OFM results overestimated the u-component velocity in
the central region of the domain, especially downstream, but OFM underestimated the
flow between y = 0.005 m and y = 0.01 m. Despite these discrepancies in the u-contours
between OFM and CFD, the predicted values were able to match the CFD values between
y = 0.005 m and 0.01 m as well as further downstream. There is a discernible difference
between the predicted and CFD at the dye inlet, where the predicted values overestimate
near the centerline, which can be attributed by the overestimation from the OFM data.
Discrepancies of the v-component velocity contours between OFM and CFD are illustrated
in Figure 8, where OFM consistently underestimates the velocity especially downstream
from y = 0.017 m. However, the predicted values show similar contour patterns as the CFD
contour for most of the regions except near the inlet. The predicted inlet exhibits more of a
“V” shape whereas the Ground contour demonstrates more of a semicircle appearance for
the velocity range near −0.0075 m/s. These contour plots provide insight in the amount of
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error associated with projective images when analyzed with OFM as well as the accuracy
improvement when ML corrections are applied to OFM results.

Furthermore, the velocity profiles at various locations of the flow field were extracted
for comparison as shown in Figure 9. Near the inlet, at y = 1.66 mm, the v-component veloc-
ity profile for the MLP predictions has trouble matching the CFD results near x = ±0.7 mm
to x = ±1.5 mm, where the MLP predictions have “V-shape” in the contour as discussed
earlier. Further downstream at y = 6.64 mm, the predicted velocity profile resembles the
ground-truth velocity profile well with little discrepancies. These quantitative comparisons
of the velocity profiles can be further examined with error analysis in Figure 10 showing a
significant reduction in the percentage of error with respect to the ground truth (CFD) for
the v-component velocity. Error associated with the predicted values reach as high as 13%,
near the inlet, and as low as 2% around y = 0.008 m. It is interesting to observe that the error
in OFM is lower at the inlet and increases further downstream, whereas the opposite is true
for MLP predictions. The MLP predictions presented larger errors near the inlet as a result
of larger variations in the OFM velocities caused by low intensity gradients near the inlet
on the image. As the dye moving downstream, the MLP predictions can match the ground
truth well. The averaged V-error of about 53.5% in the velocity estimation with OFM has
been significantly reduced to 2.5% in average by the current MLP predictions. The fact
this model significantly reduces the error downstream of the inlet, provides high hopes
for the biomedical community since the regions of high interest are further downstream,
such as aneurysms and bifurcations. The current pilot study is focusing on prediction of
the velocity distributions. Future studies related to the wall shear stress predictions would
focus on the local velocity gradient accuracies, especially near the wall. The current ML
model development focused on the 2D velocity map prediction, which limits its use for the
complicated 3D flow environment, such as the blood flow in an aneurysm. Another limit is
the current model can only predict the velocity, but another important flow information,
pressure in the flow field, cannot be predicted. We plan to encode the Navier–Stokes
equation into the modeling as recently proposed by Raissi et al. [25], as well as extend the
current model to predict the 3D flow feature in the future study.

This research focused on a pilot study to examine the efficiency and accuracy of
ML algorithms to predict velocity field based on projective contrast images of flows in a
simplified tube model. OFM was applied at the beginning to incorporate physics-based
optical flow equations into the velocity prediction, which is more efficient than encoding
the Navier–Stokes equations into the ML algorithm. To apply this methodology to clinical
applications, further studies with more complex geometries, such as blood vessels and
aneurysms, need to be conducted. By providing additional cases and therefore training
data, the authors believe this methodology can develop a ML model which could be applied
directly to DSA imaging for quick high resolution velocity measurements to obtain wall
shear stress measurements.
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4. Conclusions

In this study, the flow velocity estimation as a multi-output regression problem was
performed. The performance of four machine learning models on simulated CFD images
as well as in vitro experimental OFM images were evaluated. Results showed that the
performance of all the neural network architectures (MLP, CNN, and LSTM) is comparable.
However, the MLP model is significantly less computationally intensive as compared to
the deep learning counterparts. The LSTM model has the longest computation time and
the best performance compared to CNN and MLP. Both MLP and LSTM models can be
used to automate the flow velocity estimation depending on the task and considering the
cost for computation. The pilot study in this work established a novel ML framework to
predict the velocity field based on OFM velocity estimation on projective contrast images
of internal flows.

The following summarizes the main contributions of this work, i.e.,

(1) We have presented an analysis that ML algorithms are able to correct OFM results
from projection-based images significantly reducing the error rate.

(2) We have extended the literature by considering the interaction of u- and v-components
velocity with the intensity gradients on the image in both x- and y-directions.

(3) We have released the data and code used in this work for reproducibility and further
research in this direction.
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