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Abstract: Heart failure (HF) is the leading cause of death worldwide. The most effective HF treatment
is heart transplantation, the use of which is restricted by the limited supply of donor hearts. The
human pluripotent stem cell (hPSC), including human embryonic stem cell (hESC) and the induced
pluripotent stem cells (hiPSC), could be produced in an infinite manner and differentiated into
cardiomyocytes (CMs) with high efficiency. The hPSC-CMs have, thus, offered a promising alternative
for heart transplant. In this review, we introduce the tissue-engineering technologies for hPSC-CM,
including the materials for cell culture and tissue formation, and the delivery means into the heart.
The most recent progress in clinical application of hPSC-CMs is also introduced. In addition, the
bottleneck limitations and future perspectives for clinical translation are further discussed.

Keywords: heart failure; human induced pluripotent stem cells; cardiac regeneration; tissue
engineering; cardiomyocytes

1. Introduction

Heart failure (HF) refers to a condition in which the heart is unable to pump blood
into the body. It is a major cause of death in both developed and developing countries [1].
With over 30 million patients worldwide, HF has been listed as a crucial public healthcare
concern, owing to its high prevalence, mortality, morbidity, and cost of care [2]. Reduced
cardiac contractility and function, irregular left ventricle remodeling, and uneven stress
distribution in the heart muscle, which occur after myocardial infarction (MI), eventually
lead to catastrophic HF. Researchers and clinicians worldwide are working extensively
to develop new treatment strategies to improve the survival rate and reduce the global
incidence of HF.

The human heart is a complex organ that is composed of various cell types, such as
cardiomyocytes (CMs), fibroblasts, and endothelial cells, which can maintain blood flow
throughout the body. CMs, which make up approximately 1/3 of the cells in the atria
and approximately half of the cells in the ventricles, are the smallest contractile units of
the heart [3]. However, the adult human heart lacks endogenous regeneration potential;
thus, any defect in the size and deficiency of CMs leads to severe MI-related cardiovascular
complications, eventually resulting in HF [4].

Current HF treatments include prevention and end-of-life care, while surgical heart
transplantation is the only curative remedy. However, the limited supply of donor hearts
severely restricts the application of heart transplantation [5]. Moreover, immunosuppres-
sants, which are required following allogeneic transplantation, may cause serious kidney
damage or other problems, such as cancers and infections [6]. Owing to these problems,
the emergence of cardiac tissue engineering has provided substantial hope not only for
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resolving or rescuing damaged hearts post-MI but also for providing a permanent treat-
ment strategy. In addition to its application in cardiac regenerative medicine, cardiac tissue
construction in vitro can be applied for drug toxicity or drug screening evaluation and
in vitro disease modeling [3]. However, the cells and methods that should be used to
construct cardiac tissue need to be further explored.

Regarding the provision of cells for tissue construction, pluripotent stem cells (PSCs)
(e.g., embryonic PSCs) are a promising cell source because they can differentiate into
various cells, including CMs. The embryonic PSCs, however, still have the ethical issues [7].
In 2006, Professor Shinya Yamanaka succeeded in establishing induced PSCs (iPSCs) from
somatic cells, using four transcription factors [8]. Later, in order to reduce the risk of
tumorigenesis, hiPSCs were generated and validated with three transcription factors [6,9].
In addition, induction method by using combinations of plasmids has been developed to
efficiently induce clinical-grade hiPSCs [10].

Overall, iPSCs are attracting attention as a tool for drug discovery, regenerative
medicine, and disease pathology elucidation. In particular, since the adult CMs have a
low cell proliferation capacity, there are great expectations for the application of human
iPSC(hiPSC)-derived CMs in regenerative medicine. However, there have been concerns
regarding the safety of hiPS cells used in regenerative medicine. In recent years, a highly
safe and non-invasive method producing hiPSC lines has been established, and some of
these cell lines have already been clinically applied [11,12]. On the other hand, methods for
producing hiPSC-derived CMs have been reported one after another [13]. Although the
problem of CMs purity and quality has been largely resolved, the number of cells required
for myocardial transplantation is on the order of 100 million. Therefore, various problems
exist, such as the provision of large amounts of cells at low cost, CMs purification, removal
of undifferentiated cells, avoidance of carcinogenic risk, and immunosuppressive effects,
all of which being still refined.

In this review, we focus on the most recent techniques and progress in cardiac tissue
engineering and highlight, in particular, effective therapeutic approaches for cardiac re-
generation. There are two main conventional transplantation methods for treating heart
failure: patch-based therapy and injection-based therapy. The overall representation and
features of the aforementioned approaches are presented in Figure 1.

Bioengineering 2022, 9, x FOR PEER REVIEW 2 of 18 
 

the emergence of cardiac tissue engineering has provided substantial hope not only for 
resolving or rescuing damaged hearts post-MI but also for providing a permanent treat-
ment strategy. In addition to its application in cardiac regenerative medicine, cardiac tis-
sue construction in vitro can be applied for drug toxicity or drug screening evaluation and 
in vitro disease modeling [3]. However, the cells and methods that should be used to con-
struct cardiac tissue need to be further explored. 

Regarding the provision of cells for tissue construction, pluripotent stem cells (PSCs) 
(e.g., embryonic PSCs) are a promising cell source because they can differentiate into var-
ious cells, including CMs. The embryonic PSCs, however, still have the ethical issues [7]. 
In 2006, Professor Shinya Yamanaka succeeded in establishing induced PSCs (iPSCs) from 
somatic cells, using four transcription factors [8]. Later, in order to reduce the risk of tu-
morigenesis, hiPSCs were generated and validated with three transcription factors [6,9]. 
In addition, induction method by using combinations of plasmids has been developed to 
efficiently induce clinical-grade hiPSCs [10]. 

Overall, iPSCs are attracting attention as a tool for drug discovery, regenerative med-
icine, and disease pathology elucidation. In particular, since the adult CMs have a low cell 
proliferation capacity, there are great expectations for the application of human 
iPSC(hiPSC)-derived CMs in regenerative medicine. However, there have been concerns 
regarding the safety of hiPS cells used in regenerative medicine. In recent years, a highly 
safe and non-invasive method producing hiPSC lines has been established, and some of 
these cell lines have already been clinically applied [11,12]. On the other hand, methods 
for producing hiPSC-derived CMs have been reported one after another [13]. Although 
the problem of CMs purity and quality has been largely resolved, the number of cells re-
quired for myocardial transplantation is on the order of 100 million. Therefore, various 
problems exist, such as the provision of large amounts of cells at low cost, CMs purifica-
tion, removal of undifferentiated cells, avoidance of carcinogenic risk, and immunosup-
pressive effects, all of which being still refined. 

In this review, we focus on the most recent techniques and progress in cardiac tissue 
engineering and highlight, in particular, effective therapeutic approaches for cardiac re-
generation. There are two main conventional transplantation methods for treating heart 
failure: patch-based therapy and injection-based therapy. The overall representation and 
features of the aforementioned approaches are presented in Figure 1. 

 
Figure 1. Overview of human induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) 
for treating heart failure. iPSCs, induced pluripotent stem cells; CMs, cardiomyocytes. 

  

Figure 1. Overview of human induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) for
treating heart failure. iPSCs, induced pluripotent stem cells; CMs, cardiomyocytes.



Bioengineering 2022, 9, 605 3 of 18

2. Engineered Cardiac Patch (ECP) with Scaffold

In 1997, Eschenhagen et al. developed the earliest version of an ECP. They used
chicken embryonic CMs and collagen matrix for ECP formation [14]. In general, ECP can be
constructed by combining different types of cells, bioactive molecules (growth factors), and
biomaterials. The generation of ECP has improved our understanding of cardiac function
both in normal and pathological conditions. ECP has been widely used in drug screening,
disease modeling, and regenerative medicine [15]. A state-of-the-art work by Zhao et al.
has reported a scalable ECP that enables assessment of atrial and ventricular tissue function;
they electrically paced the tissue for 8 months for modeling polygenic hypertrophy [16].
Saleem et al. performed a blinded multicenter evaluation of drug-induced change in ECP
contractility, which aligned closely to the free therapeutic plasma concentration, showing
potential for a routine tool in safety pharmacology [17]. When used for transplantation,
ECP shows a higher survival rate of engraftment and significant improvement in cardiac
regeneration compared with suspended single cells [18].

2.1. Natural-Material-Scaffold-Based Approach

Natural material scaffolds have been widely used in ECP construction because of
their low immune response, which, when aggravated, can lead to the destruction of the
material [19]. Hydrogels are the most widely used biomaterials for engineering heat tissue.
Many natural polymers have been used to make hydrogel for tissue culture: collagen I,
the most abundant structural protein in extracellular matrix; fibrin, an insoluble protein
that is product of bleeding and also main component of blood clot; alginate, a natural
polysaccharide derived from brown algae which is ideal for encapsulating cells; gelatin, a
denatured form of collagen I which is used to coating surface of substrate for improving
cell adhesion; and Matrigel, a solubilized basement membrane matrix extracted from
Engelbreth–Holm–Swarm mouse sarcoma tumors, containing primarily laminin, collagen
IV, and various factors [20,21]. In addition, collagen V, a component of Matrigel that is
minimally expressed in the uninjured heart and a minor component of scar tissue, has been
reported to limit scar size after ischemic cardiac injury [22]. Tissue engineering with proper
collagen V proportion might also be promising in the foreseeable future.

Roche et al. reported a 47- and 59-fold increase in cell retention, using human mes-
enchymal stem cells (MSCs) with collagen and alginate patches compared with that of
suspended single cells in saline [23]. Furthermore, a wide variety of scaffolds with or
without bioactive molecules have been used for cardiac regeneration. Wu et al. developed
a wet adhesive hydrogel cardiac patch loaded with antioxidative, autophagy-regulating
molecule capsules, and MSCs [24]. The scaffold could improve the cardiac microenviron-
ment and enhance the survival of transplanted stem cells by scavenging reactive oxygen
species and upregulating autophagy, thus facilitating angiogenesis and reducing cardiac
fibrosis to efficiently repair the infarcted myocardium [24]. Wang et al. generated an ECP,
using iPSC-derived CMs and decellularized natural heart ECM as scaffolds, which showed
normal contractile and electrical physiology in vitro and improved cardiac function in a rat
model of acute MI [25].

After their first development of the ECP [26], the Eschenhagen group further applied
the human engineered heart tissue to repair the injured heart. They created engineered
heart tissues by mixing hiPSCs with fibrin and transplanted these tissues into guinea pig
hearts after cryoinjury. Compared with the human endothelial cell patches or cell-free
patches, the hiPSC-derived ECP showed enhanced remuscularization in the infarct area,
which also showed signs of CM proliferation and vascularization. Importantly, electrical
coupling could be observed between the transplanted tissue and the host heart [27]. Several
groups are working on generating larger three-dimensional cardiac tissues that are suitable
for large animals or in clinical applications. Keller et al. developed a 30 mm × 30 mm
cardiac tissue with multiple cell types, including CMs, endothelial cells, and vascular
mural cells, which were mixed with Matrigel and collagen solution. The patch survived
in vivo and improved cardiac function after MI [28]. Zhang et al. generated human cardiac
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muscle patches of clinically relevant dimensions (4 cm × 2 cm × 1.25 mm) by suspending
CMs, smooth muscle cells, and endothelial cells differentiated from hiPSCs in fibrin. The
engineered muscle patches considerably reduced the infarct size and improved the heart
function. Importantly, no arrhythmia events were observed post transplantation [18].
More recently, the Eschenhagen group found a positive correlation between the dosage of
transplanted CMs and the therapeutic effect [29]. Currently, one ECP-based clinical trial led
by Dr. Philippe Menasché has been completed, and all but one patient receiving the cardiac
progenitor cell-derived ECP showed an uneventful recovery [30]. An additional trial led
by Dr. Wolfram-Hubertus Zimmermann was initiated in 2020 with the aim of recruiting
53 participants [31].

As a newly emerging technology, 3D bioprinting has also been used in creating
thick tissues [32,33]. Cyfuse Biomedical has developed a sphere-based 3D-bioprinting
technology. By using a needle array, the preprepared spheroids were organized into a patch
with designed shape which demonstrated engraftment with vascularization in native rat
myocardium [34]. Instead of using the preprepared tissue “brick”, scholars also tried to
print the patch with bioink composed of single cells and biomaterials, such as alginate,
gelatin, and fibrin [35,36]. The transplanted CMs and the HUVECs were encapsulated
within hydrogel containing alginate and-fibrinogen and showed high orientation and well
integration with the vasculature of the host [37]. In addition to the patch, some groups also
3D printed the heart with chambers that could pump blood [38,39]. The pumping function
is, however, still limited, and these 3D-printed hearts still lack functional vasculature.

2.2. Synthetic-Material-Scaffold-Based Approach

Although there are many advantages to using natural material scaffolds, a serious
limitation of this method is that most natural materials are derived from animals. The
variation between batches of natural materials reduces their reliability [40]. Therefore,
researchers have attempted to use synthetic polymer materials as alternatives to construct
cardiac tissue. Polydimethylsiloxane (PDMS) is a silicone elastomer that has long been
used for cell culture, owing to its numerous advantages, such as optic transparency, non-
toxicity, and chemical compatibility. However, PDMS does not degrade in vivo, limiting
its application in transplantation. Other biodegradable polymers have been utilized for
cell culture and transplantation, including polycaprolactone (PCL), poly(L-lactide) (PLA),
poly(glycolide) (PGA), and their copolymers (PLGA). Notably, PLGA has been approved
by the FDA for medical application. PLA, PGA, and PLGA are all stiff and incompliant,
limiting their application in soft-tissue engineering. Richard T. Tran et al. developed a novel
biodegradable polymer based on citric acid, maleic anhydride, and 1,8-octanediol, referred
to as poly(octamethylene maleate (anhydride) citrate) (POMaC). POMaC displayed an
initial modulus between 0.03 and 1.54 MPa and was able to elongate as much as 534%.

Dhahri et al. introduced a soft Polydimethylsiloxane (PDMS) substrate to promote
hPSC-CMs maturation. After transplanted into guinea pig heart, these matured hPSC-
CMs showed better in vivo structure and alignment. Animals receiving matured CMs
experienced improved contractile function recovery compared with that of the control
group [41]. Other groups have integrated the micropattern into the substrate to guide the
orientation of cardiac cells, leading to anisotropic organization of the engineered tissue
and/or improved calcium-handling properties [42,43].

In addition to the substrate, electrical stimulation has also been used for pacing and ma-
turing hPSC-CMs [44,45]. Notably, the stimulation in early differentiation stage promoted
the maturation to adult-like level [44]. It could be expected that these adult-like CMs are
capable of enabling the remuscularization in the MI area and lead to better functional recov-
ery. More efforts have been devoted into fabricating patch-like scaffold in engineering CMs
tissue. Kai et al. developed elastic, biodegradable poly(ε-caprolactone) (PCL) nanofiber
cardiac patches loaded with MSCs, which were demonstrated to provide sufficient mechan-
ical support, induce angiogenesis, and accelerate cardiac regeneration in a rat model of
myocardial infarction [46]. Poly(lactic-co-glycolic acid) (PLGA) is another synthetic poly-
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meric material that has been approved by the Food and Drug Administration (FDA) [47]
and can be used as a scaffold for ECP construction. Our group obtained a high-quality
cardiac-tissue-like construct by seeding iPSC-CMs on aligned PLGA nanofibers. Multilay-
ered elongated CMs with alignment structure within the patches showed upregulation of
cardiac markers, enhancement of extracellular recording, and robust drug response [48]
(Figure 2). More recently, we developed large-scale functional cardiac patches by using
PLGA scaffolds and iPSC-CMs and showed marked improvement in cardiac function with
angiogenesis and antifibrotic effects in a porcine cardiomyopathy model [49]. In addition,
our group engineered a three-dimensional cardiac patch in a rotating wall vessel bioreactor;
in this way, more mature CMs were obtained and transplanted into rats with MI [50]. Lan-
caster et al. developed a tissue patch composed of a bioabsorbable knitted mesh, human
neonatal fibroblasts, and hiPSC-CMs. The patch increased cytokine expression, enhanced
electrical conduction, and improved heart function in a rat HF model [51]. Most of the
present patch-based therapies still require opening the chest to deliver and mount the patch,
which causes possible extra damage to the recipient. The Radisic group has developed a
flexible shape-memory scaffold for minimally invasive delivery of functional tissues. As
a proof of concept, they achieved successful delivery of the cardiac patches through an
orifice as small as 1 mm [52]. Masumoto et al. developed a device for minimally invasive
delivery of cell sheets without scaffolds. The sheets were successfully deployed within
3 min [53]. Because some ventricular arrhythmias are caused by scarring in the heart
that could alter the overall conductive properties, noncellular conductive scaffolds have
also been developed to restore conduction and reduce the risk of reentrant ventricular
arrhythmias [54].

The oxygen diffusion limit could lead to the apoptosis of the cells within thick tissue.
Many efforts were devoted to fabricating the functional vascular network. The Okano
group developed a perfusion bioreactor with microchannels. By overlaying multilayer cell
sheets on the bioreactors, the vascularized thick tissue could be obtained [55]. In a later
work, the same group further transplanted the in vitro prepared vascularized tissue into
a rat and successfully realized the blood vessel anastomoses [56]. More recently, Zhang
et al. developed a biodegradable scaffold with built-in vasculature. The nanopore and
micro-holes within the vessel wall mimic the blood vessel and allow oxygen and nutrient
exchange within tissues as thick as 1 mm. The surgical anastomosis to the femoral vessel in
a rat allow establishment of immediate blood perfusion [57].

The patch-based strategies have demonstrated dramatical therapeutic effects for hearts
with MI. Moreover, one study reports that the integration with host myocardium could
be affected by the non-cardiomyocyte epicardium [58]. The ablation of epicardium be-
fore transplantation could be challenging. Alternatively, researchers have developed the
microneedle-based therapy to break the barrier of the epicardium. The biodegradable mi-
croneedle could adhere firmly to the heart while allowing the slow release of encapsulated
factors into the myocardium [59]. Moreover, the cells-encapsulated microneedle systems
that could continuously release paracrine factors for enhanced heart repair have also been
developed [60,61].
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cell-derived cardiomyocytes; MI, myocardial infarction; EF, ejection fraction.

3. Cell Sheets

In 1990, T. Okano and his group first reported cell sheet technology, using a temperature-
responsive cell culture dish that grafted polymers, such as poly-N-isopropylacrylamide
(PIPAAm) [62]. In addition, Sekine et al., Wu et al., and Yeh et al. proved that a cell sheet
showed superior performance compared with a suspended single cell [63–65]. These methods
provide a way to use intact cells and secrete ECM to construct 3D structures in sheet form,
without the use of a scaffold. This structure mimics in vivo conditions, which means that the
cells in the cell sheet have behaviors and functions similar to those of native tissue cells [66].

Skeletal myoblasts (SMs) are the most investigated cell sheets for cardiac repair and
have many advantages, including autologous transplantation, ischemia resistance, non-
myocyte lineage differentiation, and high proliferative potential [67]. SMs have been used
in cardiac regeneration in various animal models [68–74]. Our group developed a method
for the construction of autologous SM cell sheets and reported the first phase I clinical trial
on this subject worldwide [75]. The outcomes of a subsequent long-term retrospective study
confirmed the recovery of cardiac function and a reduction in mortality [76]. These results
support the safety, feasibility, and possible effectiveness in treating end-stage ischemic
cardiomyopathy in patients with “no-option”.

MSCs have many characteristics, such as low immunogenicity, paracrine effects,
immunosuppression, and tissue repair; thus, these cells have been used in cardiac regener-
ation for several years [77–79]. In MSC transplantation, cell sheet technology eliminates
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the problems of cell loss and low retention rate. Many studies have reported that bone-
marrow-derived mesenchymal stem cell (BM-MSC) sheets and adipose-derived mesenchy-
mal stem cell (AD-MSC) sheets improve cardiac function and the regeneration of cardiac
tissue [77,80–82]. An increasing number of researchers are focusing on the advantages
and clinical application potential of umbilical cord-derived mesenchymal stem cells (UC-
MSCs) [83]. Gao et al. fabricated a UC-MSC sheet based on the establishment of a cell bank,
and the results showed that UC-MSC sheets could improve cardiac function in a porcine
MI model and had no risk of oncogenicity in vivo [84].

MSCs have been widely used to form cell sheets for heart repair in animal models
owing to their powerful paracrine ability. However, the effect of paracrine action on heart
repair remains limited. The use of cell sheets constructed from iPSC-CMs is considered
the most suitable method for heart regeneration treatment. Our group applied iPSC-
CM sheets to animal models of MI, including rats and pigs, and the results showed that
iPSC-CM sheets could extensively improve cardiac function, such as the left ventricular
ejection fraction and fractional shortening, attenuate heart remodeling, diminish the fibrosis
rate, and increase neovascularization [85–87]. By combining MSCs and hiPSC-CMs, we
demonstrated that MSCs could functionally mature hiPSC-CMs, and the mixture could
survive and enhance the therapeutic effects for treating MI models [88]. In 2020, our
group performed the world’s first clinical trial of iPSC-CM sheet transplantation for severe
ischemic cardiomyopathy patients, and so far, the treatment of three patients has been
effective. The efficacy was, therefore, confirmed, and no tumorigenesis is detected in the
patients [89,90] (Figure 3). In August 2022, our group completed the treatment of the fourth
patient at Juntendo University. This was the first transplant performed outside Osaka
University. In the future, more participants will be recruited and will receive therapy at
multiple sites, including overseas [91].

Bioengineering 2022, 9, x FOR PEER REVIEW 7 of 18 
 

MSCs have many characteristics, such as low immunogenicity, paracrine effects, im-
munosuppression, and tissue repair; thus, these cells have been used in cardiac regenera-
tion for several years [77–79]. In MSC transplantation, cell sheet technology eliminates the 
problems of cell loss and low retention rate. Many studies have reported that bone-mar-
row-derived mesenchymal stem cell (BM-MSC) sheets and adipose-derived mesenchymal 
stem cell (AD-MSC) sheets improve cardiac function and the regeneration of cardiac tissue 
[77,80–82]. An increasing number of researchers are focusing on the advantages and clin-
ical application potential of umbilical cord-derived mesenchymal stem cells (UC-MSCs) 
[83]. Gao et al. fabricated a UC-MSC sheet based on the establishment of a cell bank, and 
the results showed that UC-MSC sheets could improve cardiac function in a porcine MI 
model and had no risk of oncogenicity in vivo [84]. 

MSCs have been widely used to form cell sheets for heart repair in animal models 
owing to their powerful paracrine ability. However, the effect of paracrine action on heart 
repair remains limited. The use of cell sheets constructed from iPSC-CMs is considered 
the most suitable method for heart regeneration treatment. Our group applied iPSC-CM 
sheets to animal models of MI, including rats and pigs, and the results showed that iPSC-
CM sheets could extensively improve cardiac function, such as the left ventricular ejection 
fraction and fractional shortening, attenuate heart remodeling, diminish the fibrosis rate, 
and increase neovascularization [85–87]. By combining MSCs and hiPSC-CMs, we demon-
strated that MSCs could functionally mature hiPSC-CMs, and the mixture could survive 
and enhance the therapeutic effects for treating MI models [88]. In 2020, our group per-
formed the world’s first clinical trial of iPSC-CM sheet transplantation for severe ischemic 
cardiomyopathy patients, and so far, the treatment of three patients has been effective. 
The efficacy was, therefore, confirmed, and no tumorigenesis is detected in the patients 
[89,90] (Figure 3). In August 2022, our group completed the treatment of the fourth patient 
at Juntendo University. This was the first transplant performed outside Osaka University. 
In the future, more participants will be recruited and will receive therapy at multiple sites, 
including overseas [91]. 

 

Figure 3. Transplantation of human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-
CM) sheet on the heart of a patient, as well as the cardiac movement pattern before and after surgery.
(A,B) First transplantation of hiPSC-CM patches onto the heart surface of a patient with severe
cardiomyopathy. (C) The moving pattern observed via four-dimensional CT. Reproduced with
permission from Miyagawa et al. [89,90]. Copyright 2022, the authors.



Bioengineering 2022, 9, 605 8 of 18

4. Injection of Single Cells and Spheroids

As an easy and straightforward method, injection has long been used to deliver cells
into the infarcted myocardium. In patch-based therapies, the epicardium could become a
barrier between the CMs in the patch and host CMs, and the cells delivered by injection
could help avoid this problem. In a number of reports, the injected cells survived and
led to re-muscularization in the infarcted myocardium [92–94]. However, graft-related
ventricular arrhythmias were also observed, which were due to the spontaneous beating
of the injected CMs. In addition, the retention of the injected single cells remains low and
requires a large number of cells for injection (~109). Nevertheless, the first-in-man clinical
trials based on injecting single hiPSC-CMs have been performed by a team from Nanjing
University. Patients receiving the therapy showed markedly improved heart function.
However, unsustained irregular heartbeats were noticed [95].

Compared with single-cell suspensions, cardiac spheroids have shown enhanced
retention and survival capabilities [96–98]. Owing to the auto-assembling properties of
cells, scaffold-free spheroids can be generated by using the following methods: (a) culturing
on low-attachment plates, (b) hanging drop culturing, (c) microfluidic device generation,
(d) bioreactor rotation culturing, and (e) magnetic-based cell coating. Initially, cell spheroid
applications focused on drug screening [99] and disease modeling in vitro [100]. The
Mummery lab has developed cardiac spheres that contained iPSC-CMs, cardiac fibroblasts,
and cardiac endothelial cells. The CMs within these spheres demonstrated structural and
functional maturation. Notably, replacing the normal fibroblast with the patient fibroblast
would allow for recapitulating arrhythmogenic cardiomyopathy [101].

Human cardiac organoids are used for the modeling of myocardial infarction and
drug cardiotoxicity. Until recently, spheroids generated by co-culture of iPSC-CMs, cardiac
fibroblasts, and endothelial cells have been used to obtain vascularized cardiac tissues
that mimic the properties of the natural human myocardium [102]. These achievements
encouraged trials of spheroid transplantation. For instance, Kawaguchi et al. performed
spheroid transplantation of iPSC-CMs in rat and swine HF models and confirmed the safety
and effectiveness of spheroid transplantation [103]. In addition, Chin et al. described a
method of 3D bioprinting of cardiac tissue by using spheroids as “bioinks” and conductive
silicon nanowires to provide guidance during positioning. This concept enables precise
spatial allocation of spheroids and the creation of more complex cardiac tissue [71] and
might serve as a potential method for organ bio-fabrication [104]. In 2020, a clinical trial
was initiated by a team at Keio University, which used hiPSC-CM spheres to treat three
patients with HF [105].

CardioClusters made of mesenchymal stem cells (MSCs), endothelial progenitor cells
(EPCs), and c-Kit+ cardiac interstitial cells (cCICs) have also showed therapeutic effects in
response to injury and disease [98] (Figure 4). However, as the presence of transplanted
cells in the myocardium is extremely low, more effort is needed to improve the cell survival
after transplantation.

To facilitate the even and efficient delivery of spheres into the infarct area, the
Keio team also developed a specialized injection device with multiple needles. The
device allowed optimal distribution and improved sphere retention in a porcine heart
(Figure 4C) [106].

In order to facilitate the overall understanding of the tissue engineering technologies
mentioned above, we further summarize them in a table (Table 1).
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Figure 4. Cardiac sphere used for treating heart failure model. (A,B) CardioClusters made by
mixing cardiac interstitial cells, MSCs, EPCs, and cCICs. Reproduced from Monsanto et al. [98] with
permission. Copyright 2020, the Authors. (C) Injection device with multiple needles for optimal
distribution and improved sphere retention. Reproduced from Tabei et al. [106] with permission.
Copyright 2019, the authors. MSCs, mesenchymal stem cells; EPCs, endothelial progenitor cells;
cCICs, c-Kit+ cardiac interstitial cells.

Table 1. Characteristics of tissue-engineering approaches.

Tissue Engineering Approach Cell Sources Materials Species References

Engineered
cardiac tissue

Natural
material

hiPSC-CMs & hiPSC-Ecs
& hiPSC-SMCs Fibriogen & thrombin Swine [18]

hMSCs Collagen/Alginate Rat [23]

MSCs Hydrogel Rat [24]

hiPSC-CMs ECM Rat [25]

hiPSC-CMs & hiPSC-ECs ECM Guinea pig [27]

hiPSC-CMs & hiPSC-Ecs &
hiPSC-vascular mural cells Collagen I & Matrigel Rat [28]

hiPSC-CMs Fibriogen & thrombin Guinea pig [29]

hESC-cardiovascular
progenitors Fibrin Human [30]

hiPSC-CMs &
hiPSC-stromal cells

Bovine collagen type I
hydrogel Human [31]

iPSC-CMs & HUVECs alginate & PEF-Fibrinogen
(3D bioprint) Mice [37]

Synthetic
material

hiPSC-CMs PDMS Guinea pig [41]

MSCs PG Rat [46]

hiPSC-CMs PLGA Rat, Porcine [48–50]

hiPSC-CMs & fibroblasts Polyglatin 910 Rat [51]

Rat CMs & hiPSC-CMs POMaC Rat, Porcine [52]

Cell free Carbon nanotube &
Bacterial nanocellulose Canine [54]

hESC-CMs & hMSCs &
HUVECs POMaC Rat [57]

MSCs-secreted factors PLGA & HA Rat [59]
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Table 1. Cont.

Tissue Engineering Approach Cell Sources Materials Species References

Cell sheet

SMs

Rat, Hamster,
Canine [68–74]

Human [75,76]

BM-MSCs Porcine [77]

ADSCs Rat, Porcine [80–82]

UC-MSCs Mice, Porcine [84]

hiPSC-CMs
Rat, Porcine [85–87]

Human [89,90]

hiPSC-CMs & MSCs Rat [91]

Injection of single cells

hiPSC-CMs Monkey, Mice [92,93]

hESC-CMs Monkey [94]

hESC-CMs Human [95]

Spheroids

hMSCs Mice [96]

MSCs & EPCs & cCICs Mice [98]

hiPSC-CMs

Rat, Swine [103]

Human [105]

Porcine [106]

hMSCs, human mesenchymal stem cells; hiPSC, human induced pluripotent stem cell; CMs, cardiomyocytes;
SMs, skeletal myoblasts; CSCs, cardiac stem cells; ADSCs, adipose-derived mesenchymal stem cell; BM-MSCs,
bone-marrow-derived mesenchymal stem cell; UC-MSCs, umbilical-cord-derived mesenchymal stem cells; ECM,
extracellular matrix; PCL, poly(ε-caprolactone); PLGA, poly(lactic-co-glycolic acid).

5. Discussion
5.1. Challenges and Future Perspectives
5.1.1. Immunological Rejection

Despite the progress in tissue engineering, the clinical translation of hiPSC-CM-based
therapies remains challenging. Immunological rejection is the most important issue in
hiPSC-CM-based therapies. Although iPSCs could be induced from patient-derived cells
for the production of personalized hiPSC-CMs, its cost is high, and its induction is time-
consuming. Therefore, allogeneic hiPSC therapy has several advantages. Our group
previously found that the immunogenicity of allogeneic iPSC-CMs was reduced by ma-
jor histocompatibility complex-matched transplantation in a non-human primate model,
and a combination of appropriate immune suppression is still required to guarantee en-
graftment [107]. The mismatch of human leukocyte antigen (HLA) is also a factor for
immune rejection, and intensive efforts have been devoted to clustered regularly inter-
spaced short palindromic repeats (CRISPR)/Cas9-based gene editing for HLA molecule
disruption [108,109]. Before moving to clinical application, the safety of CRISPR/Cas9
editing, optimal immunosuppressive therapies, and ethical issues must be thoroughly
investigated and discussed. Another approach may be the co-transplantation of MSC with
hiPSC-CMs. The MSCs have been reported to have profound immunomodulatory prop-
erties for their expression of anti-inflammatory cytokines, such as IL-10 and TGFβ [110].
The co-transplantation of iPSC-CM and MSC could reduce the immune rejection [111] and
improve the heart function [112] more advantageously than in the iPSC-CM-only group.
However, 4 weeks after surgery, only very few transplanted cells survived in the host
myocardium, indicating that the immunomodulatory effect of MSC is still limited. Due
to this limit, clinical trials are still using immunosuppressive drugs [30,113], which affect
the long-term survival of patients. More efforts are needed in the future to investigate the
immune regulation for hiPSC-derived therapy.
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5.1.2. Cell Retention

In addition to immunological rejection, post-transplantation hypoxia and inflamma-
tion can also cause cell loss. These factors make it very difficult to achieve long-term
engraftment of transplanted iPSC-derived tissues, especially in large animal models. To
help the transplanted tissue survive the harsh environment, Sun et al. developed an
improved therapeutic approach by co-transplanting a premade microvessel with hiPSC-
CMs, which lead to an increased vessel density, perfusion, cell retention, and functional
recovery [114]. However, repeated administration of cardiac progenitor cells has been
suggested as a possible solution and has shown marked effectiveness in treating MI [115].
The effectiveness of this method needed to be evaluated with hPSC derived cells, where
the injection site may need to be in the myocardium rather than in the LV cavity. In spite of
these improvements, the thickness of transplanted tissue tends to be dozens of µm rather
than several mm [114]. Due to this limitation, the therapeutic effect of PSC-patch relies
more on cytokine factors rather than on remuscularization, often preventing the diseased
heart from total recovery. In the future, more efforts are needed to realize transplantation
using engineered cardiac tissue with functional blood vessels. The anastomoses with host
heart will allow for the immediate perfusion and the retention of the tissue.

5.1.3. Cell Engraftment and Maturation

The functional recovery of the diseased heart requires not only the recruitment of new
muscle cells to replace the diseased site but also electrical coupling with the host tissue,
and the degree of their maturation is extremely important. As for the electrical coupling
between the transplanted tissue and host, the Shiba group has confirmed that the injected
CMs can couple well with the host in a non-human primate model [92]. The Eschenhagen
group, as well as our group, has also confirmed that the hiPSC-CM patch could form
electrical coupling with the host heart in guinea pigs and rat models, respectively [27,116].
Despite the electrical coupling between the graft and the host, there is a number of reports
on the injected CMs leading to arrhythmia in the host heart [92,117,118]. This could be due
to the immature properties of hPSC-CMs, which include spontaneous beating. On the other
hand, the maturation of adult CMs takes years; since the iPSC-CMs in experimental culture
only last several weeks, their maturation tends to be weaker. Although it has been reported
that the transplanted iPSC-CMs undergo maturation under in vivo conditions [119], many
groups including ours have also reported various methods for promoting the maturation
of hiPSC-CMs for transplantation [29,88,120,121]. However, these hiPSC-CMs are still
less mature than the adult level, which may hamper their therapeutic effects. Future
research needs to be focused on further improving the maturation level of hiPSC-CMs in a
scalable manner.

5.1.4. Cost

Finally, the cost of iPSC-based therapies is another challenge faced by the patients.
To date, autologous iPSC therapies have been proven to be safe in macular degenera-
tion treatment and may be used as rejection-free therapies [122]. In another autologous
iPSC-derived cell therapy for Parkinson’s disease, without using immunosuppression,
the patient showed positive improvements during the two-year observation [123]. The
third autologous iPS-derived therapy is for treating thrombocytopenia. To date, the three
doses of autologous iPSC-derived platelets have been performed, and their safety can be
confirmed [124]. According to the estimate, the autologous hPSC line that meets the cGMP
requirement costs approximately 0.8 million dollars [125,126], and the subsequent scale-up
production, as well as the differentiation, would incur an extra cost. The iPSC biobanks
established by different countries have reduced costs. In addition, the Masayo Takahashi
group showed that automatic manufacturing will dramatically reduce human intervention
during large-scale production, which can also significantly reduce production costs [127].
It is necessary to further improve the artificial intelligence of the system and expand its
application to the entire hiPSC production process. By implementing the Henry Ford–style
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production line into hiPSC production, we may bring affordable off-the-shelf hiPSC therapy
to patients worldwide.

6. Conclusions

We reviewed achievements in cardiac regeneration, including engineered cardiac
patches, cell sheets, and cardiac spheroids. Although there are still some issues in cardiac
tissue therapy, such as the lack of angiogenesis, inflammation, immune rejection, and
maturation, multiple groups around the world have managed to validate the efficacy of
hPSC therapy in various animal models. Several clinical trials have been initiated, and
exciting progress has been reported, including no signs of tumorigenesis and functional
improvement of the heart. Through further technological improvements, therapy based on
engineered cardiac tissue could be ready for use by patients with HF in the near future.
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