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Abstract: A novel generation of gels based on medium chain length poly(3-hydroxyalkanoate)s, mcl-
PHAs, were developed by using ionic interactions. First, water soluble mcl-PHAs containing sulfonate
groups were obtained by thiol-ene reaction in the presence of sodium-3-mercapto-1-ethanesulfonate.
Anionic PHAs were physically crosslinked by divalent inorganic cations Ca2+, Ba2+, Mg2+ or by
ammonium derivatives of gallic acid GA-N(CH3)3

+ or tannic acid TA-N(CH3)3
+. The ammonium

derivatives were designed through the chemical modification of gallic acid GA or tannic acid TA with
glycidyl trimethyl ammonium chloride (GTMA). The results clearly demonstrated that the formation
of the networks depends on the nature of the cations. A low viscoelastic network having an elastic
around 40 Pa is formed in the presence of Ca2+. Although the gel formation is not possible in the
presence of GA-N(CH3)3

+, the mechanical properties increased in the presence of TA-N(CH3)3
+ with

an elastic modulus G’ around 4200 Pa. The PHOSO3
−/TA-N(CH3)3

+ gels having antioxidant activity,
due to the presence of tannic acid, remained stable for at least 5 months. Thus, the stability of these
novel networks based on PHA encourage their use in the development of active biomaterials.

Keywords: polyhydroxyalkanoate; PHOU; water soluble PHA; network; tannic acid

1. Introduction

Poly(3-hydroxyalkanoate)s (PHAs) are natural polymers produced by microorganisms
as carbon and energy storage compounds when they are placed under special growth
conditions. PHAs are naturally occurring aliphatic polyesters that have a high structural
diversity related to the alkyl pendant group [1–3]. The length of this side chain group is
decisive for their final thermal and mechanical properties. PHAs can be divided into three
main types depending on the number of carbon atoms in the monomer unit: short-chain-
length PHAs (scl-PHA), with monomers consisting of 3–5 carbon atoms, medium-chain-
length PHAs (mcl-PHA), with monomers consisting of 6–14 carbon atoms, and long chain
length PHAs (lcl-PHA), which are obtained from long chain fatty acids with more than
14 carbon atoms. The former display physical properties associated with highly crystalline
thermoplastics while the latter generally possess low crystallinity and elastomeric character.
Due to their biodegradability [4,5] and biocompatibility, they constitute a very promising
group of natural biomaterials for various biomedical applications including drug delivery
and tissue engineering [6–9].

In order to enlarge the potential in biomedical applications, chemical modifica-
tions of mcl-PHAs have been performed. One of the first studies concerning the chemi-
cal modification of PHAs started with the production of poly(3-hydroxyoctanoate-co-3-
hydroxyundecenoate) (PHOU) that contained unsaturated groups in the side chains [10,11].
The chemical modifications of the unsaturated groups of PHOU have already been re-
ported [12–17]. The introduction of polar groups, such as hydroxyl, carboxylic and ammo-
nium groups, makes it possible to modify the hydrophilic/hydrophobic balance of the poly-
mer. Amphiphilic PHAs-PEG copolymers that were synthesized by esterification [18–20]
and by click chemistry [21–24] have shown the ability to self-associate in aqueous medium
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to form micelles, vesicular structures or polymersomes. Water soluble PHAs obtained by
introducing PEG [18], ammonium groups [25], or sulfonate functions [26,27] retained their
biocompatible and non-cytotoxic character and the presence of PEG and propyleneglycol
(PPG) segments provided hydrophilicity, blood compatibility [28], and thermo-sensitivity
respectively [29,30].

Networks based on PHAs were prepared by photoactivated reaction in the presence
of PEG-monoacrylate [28] or PEG-diacryloyl [31]. Chen et al. [32] recently reported PHA
gel via photo-crosslinking based on a thiol-ene reaction with PEG-dithiol as a photo-cross-
linker. Although some structures from chemically cross-linked PHAs have already been
described in the literature, there is to our knowledge no study on the gels with PHAs
bearing sulfonate groups. These novel materials should constitute an interesting support
in the biomedical field because of the biological interactions of the sulfonate groups due
to their anticoagulant, antiangiogenic, and antimitogenic properties. These active anionic
sites are known to interact with proteins, such as fibronectin [33–36].

In our paper, we describe the synthesis of PHA sulfonate, PHOSO3
−, by a photoac-

tivated thiol-ene process in the presence of sodium-2-mercapto-1-ethanesulfonate and
the elaboration of crosslinked structures by combination with bivalent cations or organic
polycationic molecules (Figure 1).
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Figure 1. Gelation process of PHOSO3
− induced by cationic species as Ca2+, Mg2+, Ba2+, and gallic

and tannic acid derivatives.

Among the bivalent cations that have the capability of forming a gel by ionic inter-
actions with anionic polymers, Ca2+, Ba2+, and Mg2+ present interesting properties in
biomedical applications [37–39]. In particular, the gelation of an alginate solution with a
multivalent ion of opposite charge such as Ca2+ allows to obtain a resistant and biocompat-
ible hydrogel.

To increase the numbers of ionic interactions, we report here the synthesis of am-
monium derivatives of gallic acid and tannic acid. Gallic acid (GA) is a natural tri-
hydroxybenzoic acid extracted from plants and evaluated as an antioxidant, antibacterial,
and antiviral compound [40,41]. Tannic acid (TA) is a kind of natural polyphenol that is
commonly found in high herbaceous and woody plants that is a well-known bio-based
molecule for its antioxidant and antibacterial activity [42–44]. Moreover, polyphenols
due to their cyclic structure and the presence of a large content of hydroxyl groups are
good candidates for the development of stable physical gels and offer the possibility to be
easily modifiable through these accessible functions. Tannic acid has already shown the
ability to make gels or hydrogels with good mechanical structures by different interactions
such as supramolecular interactions by hydrogen bonds [45], coordination with transition
metals [46,47], and a self-assembly method by redox reaction [48,49]. A series of biobased
UV-curable antibacterial resins were synthesized through modifying tannic acid with gly-
cidyl methacrylate (GMA) [50]. In this study, ammonium groups were introduced on GA
and TA through reaction with glycidyl trimethyl ammonium chloride (GTMA). The pres-
ence of ammonium groups on GA and TA increases both the number of cationic charges
compared to divalent cations and the rigidity by the presence of the aromatic rings. Gels
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were formed by ionic interactions of the oppositely charged polyelectrolytes PHOSO3
− and

Ca2+, Ba2+ and Mg2+, and GA-N(CH3)3
+ and TA-N(CH3)3

+. The viscoelastic properties of
the gels and their antioxidant activity were studied.

2. Materials and Methods
2.1. Materials

Poly(3-hydroxyoctanoate-co-3-hydroxyundecenoate) with 33% double bonds PHOU
was provided from the Swiss Federal Laboratory for Materials Testing and Research (EMPA,
Switzerland, Mn = 40,000 g/mol, Polydispersity index 1.7). The different comonomers are
randomly distributed. CaCl2, BaCl2, MgCl2, and Sodium 2-mercapto-1-ethanesulfonate
(98%) were purchased from Aldrich. Tannic acid was purchased from Alfa Aesar. Tetrahy-
drofuran (THF), dimethylsulfoxide (DMSO), methanol, and ethanol absolute anhydrous
were purchased from Carlo Erba. Gallic acid, 2,2-dimethoxy-2-phenylacetophenone
(DMPA, Irgacure 651), glycidyltrimethyl ammonium (GTMA), triphenylphosphine (TPP),
and methyl hydroxyquinone (MEHQ), were supplied from Sigma-Aldrich and were used
without prior purification. Butylacetate was supplied from Merck. Tannic acid was pur-
chased from Alfa Aesar.

2.2. Synthesis of PHO Sulfonate, PHOSO3
−

A total of 0.2 g PHOU was solubilized in 12 mL THF under agitation at room tem-
perature. Five molar equivalents (relative to the double bonds of PHOU) of sodium
2-mercapto-1-ethanesulfonate (98%) and 0.5 eq. molar DMPA were solubilized in 18 mL
of a MeOH/THF (2/1 v/v) mixture. The mixture placed at 11 cm was irradiated for 300 s
at room temperature with a mercury xenon (180 Mw·cm−2) Lightning cure LC8 (L8251)
lamp from Hamamatsu coupled with a flexible light guide. During the entire irradiation
process the mixture was kept under stirring. After irradiation, 25 mL DMSO was added.
The resulting product was dialyzed in a 1000 Da cut-off dialysis tube against distilled water,
which was changed three times daily for 4 d.

2.3. Synthesis of Trimethyl Ammonium Gallic Acid: GA-N(CH3)3
+

In a two-neck round-bottom flask, 2.125 g of gallic acid, 4.996 × 10−2 moles of GTMA,
0.1456 g of triphenylphosphine (TPP) and 0.0097 g of methyl hydroxyquinone (MEHQ)
were solubilized in 5 mL of anhydrous ethanol and butyl acetate 1:2 (v:v), under an inert
atmosphere. The mixture was stirred at 100 ◦C for 48 h. After 48 h, the mixture was precip-
itated in acetone to remove solvent and then purified by flash column chromatography
using methanol as an eluent.

2.4. Synthesis of Trimethyl Ammonium Tannic Acid: TA-N(CH3)3
+

In a flask, 4.25 g of tannic acid, 0.25 moles of GTMA, 0.09 g of triphenylphosphine
(TPP) and 0.0075 g of methyl hydroxyquinone (MEHQ) were solubilized in 10 mL of an
anhydrous ethanol and butyl acetate 1:2 (v:v) mixture, under an inert atmosphere. The
mixture was stirred at 100 ◦C for 48 h. Then it was solubilized in an H2O/ethanol mixture
(25:75) and centrifuged. The precipitate containing the TA-N(CH3)3

+ was recovered and
dried in a vacuum chamber at 40 ◦C for one night. The molar mass of the monomeric unit
of the polymer is M0 = (0.67 × 142) + (0.33 × 323) = 201 g·mol−1.

2.5. Elaboration of Network Based on PHOSO3
−

PHOSO3
−/Ca2+. Networks were prepared according to the following protocol. A

total of 0.05 mL of CaCl2 0.2 M was added to 0.25 mL of PHOSO3
− with a concentration of

27 g·L−1. The mixture was vortexed for 30 s allowing the instantaneous formation of the
network.

PHOSO3
−/TA-N(CH3)3

+. A total of 0.2 mL of PHOSO3
− with a concentration of

96 g·L−1 and 0.01 g of TA-N(CH3)3
+ were introduced into a haemolysis tube. After an

agitation with a vortex, a sticky, brown gel was formed.
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2.6. DPPH Test

The radical scavenging activity (RSA) of the networks was determined by using
2,2-diphenyl-1-picrylhydrazyl. A total of 37 mg of the PHOSO3

−/TA-N(CH3)3
+ were

immersed in 3 mL of 0.1 mM of DPPH solution in methanol in the dark for 60 min at
room temperature. The RSA was measured by using a Varian Cary 50 Bio UV-Visible
spectrophotometer controlled by the CaryWinUV software. RSA was therefore determined
by monitoring the decrease of the absorbance at 517 nm (Equation (1)):

RSA (%) = ((Aref − As)/Aref) × 100 (1)

where Aref corresponds to the absorbance of the 0.1 mM of DPPH solution without a
sample and As corresponds to the absorbance of the 0.1 mM solution of DPPH with 37 mg
samples of tannic derivatives.

2.7. Characterization

The molar mass of the PHO(67)U(33) was determined by Size Exclusion Chromatogra-
phy in THF using a Schimadzu LC-10AD pump with two Shodex GPC K-805L columns
(5 µm Mixte-C) at a concentration of 10 mg·mL−1. A Wyatt Technology Optilab Rex
interferometric refractometer (Toulouse, France) was used as a detector, and low poly-
dispersity index polystyrene standards (3 × 104–2 × 106 g/mol) were used for PHOU
analysis. 1H NMR spectra (400 MHz) were performed with a Bruker AV 400M spectrometer
(Wissembourg, France). In a disposable spectrophotometer cell, 10 µL of CaCl2 (0.2 M) was
added to 0.250 mL of PHOSO3

− at 37 g·L−1, in a constant manner. After manual stirring,
the transmittance was measured at 600 nm with a UV-vis Cary50 Bio Varian UV−visible
spectrometer supplied by Varian (Agilent, Les Ulys, France) recording controlled by Cary
Win UV software in the range 250–800 nm. Rheological properties were determined with a
hybrid rheometer (DISCOVERY HR-2) (Guyancourt, France) using a cone and plate geom-
etry (20 mm, 1◦). Rheological tests were performed at 25 ◦C (room temperature) and the
Peltier temperature control system was used to keep the temperature constant throughout
the analysis. The evaporation of the water contained in the 3D network was limited by
the presence of a solvent trap. For PHOSO3

−/M2+ networks, the elastic modulus (G’) and
viscous modulus (G”) were plotted against frequency from 0.1 et 100 rad·s−1 for an applied
strain at 20% on 0.350 mL of a 3D network. In addition, for the PHOSO3

−/TA-N(CH3)3
+

network frequency sweep tests were done between 0.1 and 100 Hz for an applied strain at
1%. These measurements were carried out three times to ensure the repeatability of the
results and the viability of the tests.

3. Results and Discussion
3.1. Synthesis of Poly(3-Hydroxyalkanoate) Sulfonate, PHOSO3

−, Ammonium Derivatives of
Gallic Acid GA-N(CH3)3

+ and Tannic Acid, TA-N(CH3)3
+

Poly(3-hydroxyoctanoate-co-3-hydroxyundecenoate) PHOU is a hydrophobic polyester
composed of long alkyl side chains and lateral unsaturated groups. Sulfonate groups
were grafted to the terminal double bonds of the PHOU, to both provide an amphiphilic
character to the PHA and to induce non-covalent binding of SO3

− ions to cationic species
to form ionic crosslinking (Figure 1).

Poly(3-hydroxyoctanoate-co-3-hydroxyundecenoate), PHOU was first characterized
by 1H NMR (Figure 2) to determine the percentage of terminal unsaturation by integrating
protons corresponding to the CH peak (2) at 5.1 ppm, and the signal relating to the terminal
alkene group of side chain (7) at 5.7 ppm. Sodium-3-mercapto-1-ethanesulfonate was
grafted under photochemical activation, using 5 molar equivalents of sulfonate groups.
After purification by dialysis, the polymers were dried by freeze-drying and then analyzed
by 1H NMR. The presence of the signals relating to the two CH2 methylene (c, d), which are
characteristic of sulfonate groups, appeared at 2.66 ppm and the total disappearance of the
peaks relating to the terminal alkene group of side chains (7) and (8) indicated the success
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of the formation of PHOSO3
−. We previously showed that no chain scission occurred

during this thiol-ene reaction and the PHOSO3
− is water soluble [26,27].
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Ammonium derivative of gallic acid GA-N(CH3)3
+ and tannic acid TA-N(CH3)3

+

were synthesized through the reaction with glycidyl trimethylammonium chloride GTMA
(Figure 3). 1 H NMR spectra (Figure 4) showed that GTMA was grafted to phenol groups of
the TA due to the disappearance of the peak at 3.1 ppm (a) which correspond to the epoxide
groups of GTMA and the appearance of peaks at 3.5–4.6 ppm, which correspond to the
-CH2-CH(OH)-CH2-N(CH3)+ units (a’, b’, c’). The number of ammonium groups N(CH3)3

+

was calculated from the area ratio of the peaks at 6.7–7.5 ppm (I1,2), which corresponds to
the protons on the aromatic group of tannic acid, and the peak at 3.2 ppm (Id), which are
characteristic of the protons on the ammonium groups (Equation (2)). The conversion of
the grafting reaction is defined by Equation (3).

N(CH3)3
+ =

I1,2 × 20
Id × 9

(2)

Conversion (%) =
N(CH3)3

+

25
× 100 (3)

The substitution degree of TA was calculated as around 76% (which corresponds to
19 N+ per molecule) and TA-N(CH3)3

+ is totally soluble in water. The substitution reaction
of GA determined by NMR is quantitative. The degree of substitution was calculated as
the ratio of the integration of the peak (d) at 3.3 ppm to the number of hydrogens carried
by the nitrogen atom (N+), i.e., nine. Integration of peaks b and c confirmed that there were
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4 N+ per molecule. As a consequence, we can further study the influence of the numbers of
ammonium groups on the gel formation.
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3.2. Effects of the Nature of Cations on the Formation of Gels

Networks were spontaneously formed after a few seconds of mixing PHOSO3
− and

cationic species. The influence of the nature of divalent cations as Mg2+, Ba2+, and Ca2+

was first studied. In the presence of Mg2+ no gel formation was observed regardless of the
concentration. Mg2+ therefore does not have sufficient interaction energy and attractive
power [51]. The Ba2+ did not allow the formation of a gel and gave rise to a precipitate even
at very low concentrations. This result may be due to the bigger size of the barium atom
nucleus combined with an insufficient proportion of sulfonate functions [52]. PHOSO3

−,
which is completely soluble in water (27 g·L−1; 1.1 × 10−5 moles), instantly forms a
network in the presence of a sufficient molar concentration of Ca2+. The variation of
transmittance as a function of the number of moles of Ca2+ showed three well-defined
zones (Figure 5). A first zone is defined between 0 to 1.5 × 10−5 moles, showing that the
polymer remains in solution. Between 1.5 × 10−5 and 2.5 × 10−5 moles, the transmittance
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drops sharply from 98% to 20%, respectively, attesting to the gel formation. The addition of
Ca2+ beyond this concentration does not modify the transmittance, which remains constant
at 20%. The presence of precipitate is then observed when the moles of salt are greater than
2.6 × 10−5 moles.
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The gel formation conditions were studied next in the presence of Ca2+, gallic acid and
tannic acid derivatives. Under our conditions, no gel was formed in the presence of GA-
N(CH3)3

+ whereas gels formed very easily in the presence of TA-N(CH3)3
+, which allows

us to affirm that the number of positive charges is very important during gel formation.
Therefore, in order to be able to compare the conditions of gel formation in the presence of
Ca2+ and the TA-N(CH3)3

+ derivative, Figure 6 shows the different zones observed for the
gels as a function of the number of positive and negative charges. To perform this study
we added increasing volumes of positive charge solution (Ca2+ or TA-N(CH3)3

+) from
the same initial solution. The results obtained are very different because there are three
zones in the case of Ca2+ (liquid, gel and precipitate), whereas there are only two zones
for TA-N(CH3)3

+ (liquid and gel). In the presence of Ca2+, the gels were formed in the
stoichiometric conditions of the number of moles of positive and negative charges. On the
other hand, in the presence of TA-N(CH3)3

+, the experimental conditions were different
because it is enough that the number of moles of sulfonate groups and positive charges are
greater than 2.296 × 10−5 moles and 0.483 × 10−5 moles, respectively.
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3.3. Structure of Networks and Antioxidant Properties

The mechanical properties of the PHOSO3
−/Ca2+ networks are strongly dependent of

the polymer and CaCl2 concentration (Table 1). Dynamic viscoelastic measurement results
show that at the higher frequency region G’ is larger than G”, showing that these gels
present predominantly elastic properties. The modulus G’ depends on the concentration
of CaCl2 and increases linearly with the concentration of PHOSO3

−, which shows the
influence of hydrophobic interactions between chains and undoubtedly the presence of
entanglements. This effect is superimposed on the ionic bonds between the polymer and
Ca2+. However, the elastic modulus obtained remains low and does not exceed 40 Pa.
Although the network keeps its structure for a week, the addition of water led to the
deterioration of the network. The low percentage of SO3

− groups (33%) did not allow
the formation of enough ionic interactions with Ca2+. The use of other calcium salts such
as CaCO3 was studied, but its low solubility in water did not allow the formation of the
network, or even CaSO4·2H2O in the presence of Na2HPO4, which is often used as a
gelation accelerator [38].

Table 1. Influence of PHO-SO3
− concentration on gel mechanical properties of PHOSO3

−/Ca2+

networks at 10 Hz.

[PHO-SO3−] (g/L) nSO3− ×105 nCa
2+ ×105 n Positive Charges ×105 G’ (Pa) G” (Pa)

47 1.93 1.4 2.8 4.01 3.93
59 2.42 1.5 3.0 14.62 11.26
68 2.79 1.4 2.8 24.20 12.78
71 2.91 1.8 3.6 38.38 24.92

Although the formation of a tannic acid-based network often requires a certain pH
value necessary to have the phenolate groups [44–46], the advantage of our system is
that there is no pH-dependence of the gel formation. In the physiological medium, the
tannic acid derivative TA-N(CH3)3

+ and the sulfonate PHA always have quaternary amine
and sulfonate groups, respectively. The PHOSO3

−/TA-N(CH3)3
+ network has better

mechanical properties than the gel obtained in the presence of Ca2+ (Figure 7). Indeed,
the viscoelastic modulus at 100 Hz was much larger than those of the PHOSO3

−/Ca2+

network. The elastic modulus of the PHOSO3
−/TA-N(CH3)3

+ network was stable even
after 5 months. This was due to the presence of polyphenolic moieties that gave the network
a very high stability and remarkable mechanical properties despite the low proportion of
SO3

−. Unlike the PHOSO3
−/Ca2+ network, the addition of water to the PHOSO3

−/TA-
N(CH3)3

+ network did not disrupt the structure of the network, and the network structure
was maintained even after the rheological studies. Moreover, the formation of the network
was a completely reversible process even after freeze-drying without any change of the
viscoelastic modulus.
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The antioxidant capacity was assessed using the DPPH radical scavenging assay. This
method consists in performing a reduction of the DPPH radical to its non-radical form
in the presence of tannic acid, a hydrogen donating compound (Figure 8). The solution
containing DPPH has a purple color, corresponding to a UV-visible absorbance at 517 nm.
In the presence of TA, TA-N(CH3)3

+, and PHOSO3
−/TA-N(CH3)3

+, the solutions became
yellow and presented significant antiradical activity with a radical scavenging activity
(% RSA) superior to 82%.
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4. Conclusions

A copolymer based on unsaturated PHAs was functionalized with the polar SO3
−

sulfonate groups to promote, on the one hand, its solubility in water [26,27], and on the
other hand, ionic interactions with cations. An efficient and reproducible method for the
synthesis of copolymer of water soluble PHOSO3

− was developed by thiol-ene reaction in
the presence of sodium-3-mercapto-1-ethanesulfonate. This copolymer was further used for
the preparation of network by ions’ interaction with different cations, namely Ca2+, Ba2+,
and Mg2+. Among them, only Ca2+ presented the ability to form a gel in the well-defined
contents. To reinforce the mechanical properties and stability of the gels, a polycationic
derivative of tannic acid was synthesized by reaction with glycidyl trimethyl ammonium
chloride (GTMA). The presence of aromatic groups and cationic charges improved the
elastic modulus from 40 Pa obtained with Ca2+ to 4200 Pa in the presence of TA-N(CH3)3

+.
The antioxidant networks based on PHOSO3

−/TA-N(CH3)3
+ were stable for 5 months in a

buffered physiological environment and constitute a new generation of soft biomaterials.
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