Supplementary Figures and Tables

Figure 1. On-chip device assembly. (A) A standard 5cm tissue-culture plate is drilled with 3 holes: 2 of r $=2 \mathrm{~mm}$ for screws and ar $=18 \mathrm{~mm}^{2}$ hole for a coverslip. The coverslip is supplied with a $150-250 \mathrm{um}$ spacer. Two nylon screws are inserted and glued from the outer part of the plate. (A') A picture of the tissue culture plate with the glass coverslip and the nylon screws. (B) The plastic insert unit is produced by a laser-cut printer and has a $1 \times 1 \mathrm{~mm}^{2}$ grid, two $\mathrm{r}=2 \mathrm{~mm}$ holes for screws (round) and two pairs of $\mathrm{r}=2 \mathrm{~mm}$ holes for tweezers (squared). A porous membrane covers the grid: (a) to allow efficient exchange of nutrients without exposing the tissue and (b) for sealing of the compartment. When assembled, the grid insert seals the compartment and limits the growth of the tissue at the Z axis. The lateral dimensions (X, Y) are not limited. This allows imaging of biological regions which are usually deep within the tissue. This unit is removable and is held by two bolts. (C) The assembled device, consisted of a modified tissueculture plate, a removable grid insert and a lid. (D) An illustration showing a top view (left) and a side view (right) of the device loaded with organoids. All measurements in the illustrations are in millimeters.

Figure S2. Live-Imaging of Neuroepithelium Tissues Derived from hESCs. (A) Fluorescent image showing an example for brain organoid which was grown on-chip for 18 days. The organoid is observed by live imaging with fluorescent markers of Actin (green) and Nuclei (red). Scale bar 200 m . (B) Magnified NE domains of day 18 organoid showing Actin (green) and immunohistochemistry of PAX6 antibody (magenta). Scale bar 50 m . (C) Fluorescent image taken from an 18 -hrs time-lapse movie of a day 17 organoid showing a NE domain labeled with FUCCI markers (Geminin-GFP, Cdt1-Red). Scale bar 50 m . (D) The averaged percentage of cells that were in different cell cycle phases through time: S-phase; G1 to S-phase transition; G2- to M-phase transition; and G1-phase. N=6 Neuroepithelium domains, sampled at 7 timepoints in 3 hrs interval. Error bars represent \pm SEM.

Figure S3. Time-lapse fluorescent images of 1x condition. (A) Extended panel for Figure 3B. Time-lapse fluorescent images showing Actin (green) and Nuclei (red) of a developing control and a $1 x$ condition organoid. Scale bar 200 mm .

Figure S4. Additional immunohistochemistry and qPCR for 1x condition. (A) Additional examples of immunohistochemistry and heatmap of beta-catenin expression (yellow-high; blue-low) at day 11 of the 1 x condition, showing the bead area and the far side. (B) qPCR analysis of the changes in OTX2 gene expression using the $1 x$ condition. Error bars represent \pm SEM. $N=24$ organoids per experimental group. Comparisons were analyzed using ANOVA with post-hoc Tukey's multiple comparisons test (DF=20): n.s. non-significant p-value >0.05.

Figure S5. Additional qPCR analysis for $2 x$ condition. qPCR analysis of the gene expression changes in the telencephalon markers: FOXG1, LEF1 and OTX2 using the 2 x condition. Error bars represent \pm SEM. $\mathrm{N}=24$ organoids per experimental group. Comparisons were analyzed using ANOVA with post-hoc Tukey's multiple comparisons test ($\mathrm{DF}=15$): n.s. non-significant p -value >0.05.

Figure S6. Additional qPCR analysis for $4 x$ condition. qPCR analysis of PAX6, OTX2, LMX1a and AQP1 genes at the 4 x condition. Error bars represent \pm SEM. $\mathrm{N}=24$ organoids per experimental group. Comparisons were analyzed using ANOVA: n.s. non-significant p-value >0.05.

Table 1. Primer Sequences.

	Forward (5' - 3')	Reverse (5' $-\mathbf{3 '}^{\prime}$)	Product Size
AQP1	CTGGGCATCGAGATCATCGG	ATCCCACAGCCAGTGTAGTCA	158 bp
EN1	GAGCGCAGGGCACCAAATA	CGAGTCAGTTTTGACCACGG	91 bp
EN2	CCGGCGTGGGTCTACTGTA	CCTCTTTGTTCGGGTTCTTCTT	92 bp
FGF8	GACCCCTTCGCAAAGCTCAT	CCGTTGCTCTTGGCGATCA	110 bp
FOXA2	TTCAGGCCCGGCTAACTCT	AGTCTCGACCCCCACTTGCT	67 bp
$F O X G 1 ~$	GCCAGCAGCACTTTGAGTTA	GGTGGAGAAGGAGTGGTTGT	114 bp
GAPDH	TCAAGAAGGTGGTGAAGCAG	CGCTGTTGAAGTCAGAGGAG	93 bp
GBX2	CTCACCTCTACGCTCATGGC	GCCTTGTCGAAGTTACCGC	125 bp
LEF1	TGCCAAATATGAATAACGACCCA	GAGAAAAGTGCTCGTCACTGT	150 bp
LMX1a	GCAAAGGGGACTATGAGAAGGA	CGTTTGGGGCGCTTATGGT	160 bp
NGN2	AAACCATGTCACGCGCTCA	GCCTTCAGTCTACGGGTCTT	224 bp
NKX2.2	AAACCATGTCACGCGCTCA	GGCGTTGTACTGCATGTGCT	111 bp
NKX6.1	CACACGAGACCCACTTTTTCC	CCCAACGAATAGGCCAAACG	110 bp
OLIG2	GGGCCACAAGTTAGTTGGAA	GAGGAACGGCCACAGTTCTA	110 bp
OLIG3	CCTGCTCGCCAGAAACTACA	CCCCATAGATCTCGCCAACC	80 bp
OTX2	AGAGGACGACGTTCACTCG	TCGGGCAAGTTGATTTTCAGT	115 bp
PAX2	TGTCAGCAAAATCCTGGGCAG	GTCGGGTTCTGTCGTTTGTATT	132 bp
$P A X 6 ~$	AGTGCCCGTCCATCTTTGC	CGCTTGGTATGTTATCGTTGGT	81 bp
$P A X 7 ~$	ACCCCTGCCTAACCACATC	GCGGCAAAGAATCTTGGAGAC	121 bp
WNT1	CGATGGTGGGGTATTGTGAAC	CCGGATTTTGGCGTATCAGAC	133 bp

